Chapter 5. Maximum Value Functions (Exercises)

Exercise 5.1: The Cobb-Douglas Cost Function. Consider a production function

\[y = A \prod_{j=1}^{n} x_j^{\alpha_j}, \]

where \(y \) is output, \(x_j \)'s are inputs, \(A \) and \(\alpha_j \)'s are positive constants. Let \(w = (w_j) \) be the vector of input prices. Suppose the producer wishes to produce a fixed quantity \(y \) at minimum cost.

Question 1: Write out the cost minimization problem and solve for the minimum cost function \(C(w, y) \). Hint: the minimum cost function should be

\[C(w, y) = \beta \left(\frac{y}{A} \right)^{1/\beta} \prod_{j=1}^{n} \left(\frac{w_j}{\alpha_j} \right)^{\alpha_j/\beta}, \]

where \(\beta = \sum_{j=1}^{n} \alpha_j \).

Question 2: If \(\beta < 1 \), calculate the corresponding maximum profit function \(\pi(p, w) \), where \(p \) is the output price. What goes wrong if \(\beta \geq 1 \)?

Exercise 5.2: The CES Expenditure Function. Suppose the direct utility function is

\[U(x, y) = \left[\alpha x^\rho + \beta y^\rho \right]^{1/\rho}, \]

where \(x \) and \(y \) are the quantities of the two goods, and \(\alpha > 0, \beta > 0, \rho < 1 \) are given constants. The prices of good \(x \) and \(y \) are \(p \) and \(q \) respectively.

Question 1: Show that the expenditure function is of the form

\[E(p, q, u) = \left[ap^r + bq^r \right]^{1/r} u, \]

where \(u \) is the target utility level, and \(a, b, \) and \(r \) are constants that can be expressed in terms of \(\alpha, \beta \) and \(\rho \).
Question 2: Show that the ratio of the cost-minimizing quantities is

\[\frac{x}{y} = \frac{a}{b}(\frac{q}{p})^{1-r}. \]

The elasticity of \(\frac{x}{y} \) with respect to \(\frac{q}{p} \):

\[\frac{d \ln(x/y)}{d \ln(q/p)}. \]

is called the elasticity of substitution in production. Show that in this example, it is constant and equal to \(1 - r \). What condition must be imposed on \(\rho \) to ensure a non-negative elasticity of substitution, that is, \(r < 1 \)?