
Advanced Microeconomics

Review of Maximization Problem

This math review note is based on Mathematical Appendix of MWG, but mainly contains

intuitions and applications. For rigorous proofs, please refer to other notes or textbooks

on multivariable calculus. The lecture notes on the website http://ocw.aca.ntu.edu.

tw/ntu-ocw/index.php/ocw/cou/101S130 is a good reference.

M.J. Unconstrained Maximization (p.954)

Consider f : RN → R

Definition M.J.1. The vector x ∈ RN is a local maximizer of f(·) if there is an open

neighborhood of x, A ⊂ RN , s.t. f(x) ≥ f(x) for every x ∈ A. If f(x) ≥ f(x) for every

x ∈ RN , then x is a global maximizer of f(·).

Theorem M.J.1. Suppose that f(·) is differentiable and that x ∈ RN is a local maximizer

or local minimizer of f(·) . Then ∂f(x)
∂xn

= 0 for every n, or more concisely

∇f(x) =

!

""""""#

∂f(x)
∂x1

...
∂f(x)
∂xN

$

%%%%%%&
= 0.

Remark. ∇f(x) = 0 is only a necessary condition for local maximizer or local minimizer.

Figure 1 below graphically illustrates this idea for the one-variable case.

Figure 1: Local Maximizer and Local Minimizer
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Theorem M.J.2. Suppose that the function f : RN → R is twice continuously differen-

tiable (C2) and that ∇f(x) = 0.

(i) If x ∈ RN is a local maximizer, then the (symmetric) N × N matrix D2f(x) is

negative semidefinite.

(ii) If D2f(x) is negative definite, then x is a local maximizer.

Remark. Replacing “negative” by “positive”, the same is true for local minimizer.

Proof. Consider any arbitrary direction of displacement εz ∈ RN , where ε ≥ 0 is a

scaler. By Taylor expansion,

f(x + εz) − f(x) = ε∇f(x) · z + 1
2ε2z · D2f(x)z + Remainder

= 1
2ε2z · D2f(x)z + Remainder

Note that ( 1
ε2 Remainder) is small when ε is small because Remainder contains ε3, ε4, ...terms.

(i) Suppose x is a local maximizer. Then for small enough ε, [f(x + εz) − f(x)]/ε2 ≤ 0

must hold. So taking limit,

z · D2f(x)z ≤ 0

More explicitly,

[f(x + εz) − f(x)]
ε2 = 1

2z · D2f(x)z + Remainder

ε2 (1)

lim
ε→0

Remainder
ε2 = 0 and lim

ε→0
[f(x+εz)−f(x)]

ε2 ≤ 0 (∵ x is a local maximizer) implies

z · D2f(x)z ≤ 0.

(ii) Suppose z · D2f(x)z < 0. Then RHS of (1) is negative for ε sufficiently small.

Therefore, [f(x+εz)−f(x)]
ε2 < 0 for all sufficiently small ε.

Remark. In the above proof, in part (ii), we rely on the assumption of z · D2f(x)z < 0.

z · D2f(x)z ≤ 0 is not enough to guarantee local maximization. To see this, consider the
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example, f(x) = x3. D2f(0) is negative semidefinite because d2f(0)/dx2 = 0, but x = 0

is neither a local maximizer nor a local minimizer.

Figure 2: f(x) = x3

Theorem M.J.3. Any critical point x (i.e., any x satisfying ∇f(x) = 0) of a concave

function f(·) is a global maximizer of f(·).

Proof. Concavity implies f(x) ≤ f(x) + ∇f(x) · (x − x), ∀x. Since ∇f(x) = 0, we have

f(x) ≤ f(x), ∀x.

M.K. Constrained Maximization

Case I: Equality constraints We first study the maximization problem with M equality

constraints, given by (C.M.P.1) below.

max
x∈RN

f(x) (C.M.P.1)

s.t. g1(x) = b1

...

gM(x) = bM

Assumption. N ≥ M (Generically, solution doesn’t exist if M > N.)

The Constraint Set is

C = {x ∈ RN : gm(x) = bm for m = 1, ..., M}.
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Theorem M.K.1. Suppose that the objective and constraint functions of problem (C.M.P.1)

are differentiable and that x ∈ C is a local constrained maximizer. Assume also that the

M × N matrix !

""""""#

∇g1(x)T

...

∇gM(x)T

$

%%%%%%&
=

!

""""""#

∂g1(x)
∂x1

· · · ∂g1(x)
∂xN

... . . . ...
∂gM (x)

∂x1
· · · ∂gM (x)

∂xN

$

%%%%%%&

has rank M. (This is called constraint qualification: It says that the constraints are

independent at x.) Then, there are numbers λm ∈ R (Not R+), one for each constraint,

such that
∂f(x)
∂xn

=
M'

m=1
λm

∂gm(x)
∂xn

for every n = 1, ..., N, (M.K.2)

Or, equivalently,

∇f(x) =
M'

m=1
λm∇gm(x). (M.K.3)

The numbers λm are referred to as Lagrange multipliers.

How to understand Theorem M.K.1? Note that we will not prove the theorem, but

will explain the theorem using examples and graphs.

Two-variable, one-constraint Cases We first consider simple cases with two vari-

ables, and then extend the intuition to three and more variables.

Example M.K.1. Consider the following two-variable, one-constraint example.

max
(x1,x2)∈R2

x1 + x2

s.t. x2
1 + x2

2 = 1

Here, f(x) = x1 + x2, g(x) = x2
1 + x2

2. Graphically, the constraint set C = {(x1, x2) ∈

R2 : x2
1 + x2

2 = 1} is a circle with radius 1 centred at 0. And the level sets of f(x1, x2),

i.e., {(x1, x2) ∈ R2 : x1 + x2 = k}, are straight lines with slope −1. Figure 3 illustrates

the idea.
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Figure 3: Two-variable example

From Figure 3, it is not hard to see that the objective function obtains its maximum when

the level set x1 +x2 = k is tangent to the circle x2
1 +x2

2 = 1. Therefore, (x1, x2) = ( 1√
2 , 1√

2)

solves the problem. Figure 4 shows that ∇f( 1√
2 , 1√

2) is parallel to ∇g( 1√
2 , 1√

2).

Figure 4: The gradients

Numerically, ∇f(x1, x2) = (1, 1) and ∇g(x1, x2) = (2x1, 2x2). At the solution (x1, x2) =

( 1√
2 , 1√

2), ∇f(x1, x2) = (1, 1) and ∇g(x1, x2) = (
√

2,
√

2). Thus, we have ∇f(x1, x2) =
1√
2∇g(x1, x2). That is, this simple example complies with Theorem M.K.1.
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More generally, for two-variable, one-constraint cases, the maximum must be obtained

where the level set of the objective function is tangent to the constraint set. See Figure

5 below.

Figure 5: Two-variable case

Since ∇f(x) is orthogonal to the level set {x ∈ R2 : f(x) = k} and ∇g(x) is orthogonal

to the constraint set C = {x ∈ R2 : g(x) = b}, and the two curves are tangent at x, so

∇f(x) and ∇g(x) must lie on the same line. That is, ∃λ such that ∇f(x) = λ∇g(x).

This gives rise to Theorem M.K.1 for the two-variable cases.

Three-variable, one-constraint cases Graphically, the constraint set

C = {x ∈ R3 : g(x) = b}

is a surface. The level set of the objective function {x ∈ R3 : f(x) = k} is also a surface.

Similar to the two-variable cases, the maximum must be obtained where the level set of

the objective function is tangent to the constraint set. See Figure 6 below.

Since ∇f(x) is orthogonal to the level set {x ∈ R3 : f(x) = k} and ∇g(x) is orthogonal

to the constraint set C = {x ∈ R3 : g(x) = b}, and the two surfaces are tangent at x,

so ∇f(x) and ∇g(x) must lie on the same line. That is, ∃λ such that ∇f(x) = λ∇g(x).

This gives rise to Theorem M.K.1 for three-variable, one-constraint cases.
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Figure 6: Three-variable, one-constraint case

Three-variable, two-constraint cases Graphically,the two constraints are surfaces.

The constraint set

C = {x ∈ R3 : g1(x) = b1 and g2(x) = b2}

is the intersection of the two surfaces, forming a curve. See Figure 7 below.

Figure 7: The constraints

Similar to previous cases, the maximum must occur when the level set of the objective

function (which is a surface in this case) is tangent to the constraint set. See Figure 8

below.
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Figure 8: Three-variable, two-constraint case

In Figure 8, the level set of the objective function (the surface {x ∈ R3 : f(x) = k}) and

the constraint set (Curve C) are tangent at point x. Line T is the tangent line to Curve

C at x. So, Line T is also tangent to the surface {x ∈ R3 : f(x) = k}.

We will show below that ∇f(x), ∇g1(x) and ∇g2(x) lie on the same plane.

(i) Since ∇f(x) is orthogonal to the surface {x ∈ R3 : f(x) = k}, ∇f(x) is orthogonal

to Line T .

(ii) Since Line T is tangent to Curve C at x, and Curve C is in the surface formed

by the first constraint {x ∈ R3 : g1(x) = b1}, so Line T is tangent to the surface

{x ∈ R3 : g1(x) = b1} at x. Therefore, given that ∇g1(x) is orthogonal to the

surface {x ∈ R3 : g1(x) = b1} , ∇g1(x) is orthogonal to Line T .

(iii) Following the same logic as in Part (ii), ∇g2(x) is also orthogonal to Line T .

Since ∇f(x), ∇g1(x) and ∇g2(x) are all orthogonal to Line T , they lie on the same plane.

Therefore, ∃λ1, λ2 such that ∇f(x) = λ1∇g1(x) + λ2∇g2(x), if ∇g1(x) and ∇g2(x) are

linearly independent (“Constraint Qualification”). This gives rise to Theorem

M.K.1 for the three-variable, two-constraint cases.
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More variables Theorem M.K.1 says that ∇f(x) lies on the hyperplane spanned

by ∇gm(x) for m = 1, ..., M , if the constraints gm(x) are linearly independent

(“Constraint Qualification”). The same intuition from previous simple cases apply:

1. The constraint set C = {x ∈ RN : gm(x) = bm for m = 1, ..., M} and the level set

{x ∈ Rn : f(x) = k} are tangent at the maximum x.

2. ∇gm(x), m = 1, ..., M is orthogonal to the constraint set.

3. ∇f(x) is orthogonal to the level set {x ∈ RN : f(x) = k}.

Therefore, ∇f(x) and ∇gm(x), m = 1, ..., M lie one the same hyperplane. ∇f(x) =
M(

m=1
λm∇gm(x), if the matrix

!

""""""#

∇g1(x)T

...

∇gM(x)T

$

%%%%%%&

has Rank M .

What happens when Constraint Qualification fails?

Example. Consider the case ∇g1(x) = −α∇g2(x). See Figure 9 for graphical illustration.

Figure 9: Failure of Constraint Qualification

Here, although x is a local maximizer, ∇f(x) cannot be written as λ1∇g1(x) + λ2∇g2(x).
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How to use Theorem M.K.1? We will introduce an alternative presentation of Theo-

rem M.K.1.

Define Lagrangian function:

L(x, λ) = f(x) −
M'

m=1
λm(gm(x) − bm)

The constrained maximization problem can be rewritten as the following unconstrained

maximization problem:
max

x∈RN ,λ∈RM
L(x, λ).

First Order Conditions (F.O.C.) give:

∂f(x)
∂xn

−
M'

m=1
λm

∂gm(x)
∂xn

= 0, for n = 1, ..., N ;

gm(x) − bm = 0, for m = 1, ..., M.

Remark. In practice, failure of Constraint Qualification is rarely a problem. However,

you should be alerted and check Constraint Qualification if you find the above standard

methods problematic. If you find no solution, it may be that the maximization problem

itself has no solution, or Constraint Qualification may fail so that F.O.C is not applicable.

Example. Let’s get back to Example M.K.1 and apply Theorem M.K.1 to solve it.

Solution. Lagrange function:

L(x1, x2, λ) = x1 + x2 − λ(x2
1 + x2

2 − 1).

F.O.C. gives
∂L
∂x1

= 1 − 2λx1 = 0

∂L
∂x2

= 1 − 2λx2 = 0

∂L
∂λ

= 1 − x2
1 − x2

2 = 0.

We obtain two solutions

(x∗
1, x∗

2, λ∗) = (1/
√

2, 1/
√

2, 1/
√

2)

and (x∗
1, x∗

2, λ∗) = (−1/
√

2, −1/
√

2, −1/
√

2).

The values are f(1/
√

2, 1/
√

2) =
√

2 and f(−1/
√

2, −1/
√

2) = −
√

2.
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Similar as shown in Theorem M.J.1, F.O.C. is only a necessary condition for local maxi-

mum. We also need to check Second Order Condition.

Second Order Condition To ensure that the solution is a maximum, we need similar

conditions as in Theorem M.J.2: If x is a local maximizer, then

D2
xL(x, λ) = D2f(x) −

M'

m=1
λmD2gm(x)

is negative semidefinite on the subspace

{z ∈ RN : ∇gm(x) · z = 0 for all m}.

The other direction also applies, i.e., negative definiteness on the subspace implies local

maximization.

Example. Apply Second Order Condition to the solutions of Example M.K.1.

Solution. We first calculate D2
xL(x1, x2, λ):

D2
xL(x1, x2, λ) = D2f(x1, x2) − λD2g(x1, x2) =

!

""#
−2λ 0

0 −2λ

$

%%&

At (x∗
1, x∗

2, λ∗) = (1/
√

2, 1/
√

2, 1/
√

2),

D2
xL(1/

√
2, 1/

√
2, 1/

√
2) =

!

""#
−

√
2 0

0 −
√

2

$

%%& .

Then, we obtain the subspace.

∇g(x1, x2) =

!

""#
2x1

2x2

$

%%& .

At (x∗
1, x∗

2, λ∗) = (1/
√

2, 1/
√

2, 1/
√

2),

∇g(x1, x2) =

!

""#

√
2

√
2

$

%%& .

So, the subspace is given by

{z ∈ R2 : ∇g(x∗
1, x∗

2, λ∗) · z = 0} = {z ∈ R2 :
√

2z1 + i
√

2z2 = 0} = {z ∈ R2 : z2 = −z1}.
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Thus, what we need to check is the negative semi-definiteness of D2
xL(1/

√
2, 1/

√
2, 1/

√
2)

on the subspace {z ∈ R2 : z2 = −z1}. Since

z ·

!

""#
−

√
2 0

0 −
√

2

$

%%& z =
)
−

√
2z1

√
2z1

*
!

""#
z1

−z1

$

%%& = −2
√

2z2
1 ≤ 0,

(x∗
1, x∗

2) = (1/
√

2, 1/
√

2) is a maximizer.

Repeating the above process for the other critical point (−1/
√

2, −1/
√

2, −1/
√

2) reveals

that (x∗
1, x∗

2) = (−1/
√

2, −1/
√

2) is a local minimizer. (You should check it by yourself.)

Remark. You could also use bordered Hessian matrix to check Second Order Condition.

What does λm measure?

Claim. λm measures the sensitivity of f(x∗) to a small increase in bm, i.e., λm = ∂f(x∗(b))
∂bm

.

To see this, we first generate a family of maximization problems with different values of

b
T =

)
b1 b2 ... bM

*
: max f(x) subject to g(x) = b.

Let x∗(b) be a solution, and suppose that the constraint qualification holds at all b ∈ RM .

Then, ∃λ∗(b) ∈ RM such that

∇f(x∗(b)) −
M'

m=1
λ∗

m(b)∇gm(x∗(b)) = 0 (FOC)

gm(x∗(b)) − bm = 0 m = 1, ..., M. (Constraints)

By chain rule,

∇bf(x∗(b) = ∇f(x∗(b)∇x∗(b) =+,-.
(FOC)

M'

m=1
λ∗

m(b)∇gm(x∗(b))∇x∗(b) (2)

Differentiating both sides of (Constraints) by b gives

∇gm(x∗(b))∇x∗(b) − em = 0, m = 1, ..., M, (3)

where em is a vector in RM that has 1 in the mth place and 0s elsewhere.

Plugging (3) into (2) gives

∇bf(x∗(b) =
M'

m=1
λ∗

mem = λ∗(b).

That is, ∂f(x∗(b))
∂bm

= λ∗
m(b).
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Case II: Inequality Constraints

max
x∈RN

f(x) (C.M.P.2)

s.t. g1(x) ≤ b1

...

gM(x) ≤ bM

Remark. Problem (C.M.P.2) is a simplified version of Problem (M.K.4) in MWG. Here,

the coexistence of equality constraints is ignored.

The Constraint Set is

C = {x ∈ RN : gm(x) ≤ bm for m = 1, ..., M}.

Similar to Theorem M.K.1, we require Constraint Qualification: ∇gm(x) with the
binding constraints, i.e., for those m = 1, ..., M such that gm(x) = bm at the optimum,

are linearly independent.

Theorem M.K.2 (Kuhn-Tucker Conditions). Suppose that x ∈ C is a local maximizer

of problem (C.M.P.2). Assume also that the constraint qualification is satisfied. Then,

there are multipliers λm ∈ R+ (Not R), one for each inequality constraint, such that

(i) For every n = 1, ..., N,

∂f(x)
∂xn

=
M'

m=1
λm

∂gm(x)
∂xn

or

∇f(x) =
M'

m=1
λm∇gm(x)

(No change compared to case of equality constraints, except λm ∈ R+.)

(ii) For every m = 1, ..., M,

λm(gm(x) − bm) = 0

i.e., λm = 0 for any constraint k that doesn’t hold with equality.

Condition (ii) is called “complementary slackness” condition. It refers to the fact that

one of the two inequalities λm ≥ 0 and gm(x) ≤ bm must be binding.
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Explanation of (i) Here, the constraint set is the entire space on or below the surfaces.

Recall, in the case of equality constraints, ∇f(x) can be any linear combination of

∇g1(x), .., ∇gM(x). With equality constraints, we need to ensure that movement locally

along the constraint set does not change f(x).

Here, with inequality constraints, λm must be non-negative to make sure that any

local movement from x into the constraint space does not have a component pointing

towards ∇f(x) and thus leading to an increase in f(·).

Figure 10: Kuhn-Tucker Condition (i)

Explanation of (ii) When gm(x) < bm, the constraint is not binding. So it doesn’t

affect the F.O.C locally =⇒ λm = 0.

How to use Theorem M.K.2? Define Lagrangian function:

L(x, λ) = f(x) −
M'

m=1
λm(gm(x) − bm)

Kuhn-Tucker conditions give:

∂f(x)
∂xn

−
M'

m=1
λm

∂gm(x)
∂xn

= 0, for n = 1, ..., N (FOC for xn)

gm(x) − bm ≤ 0, for m = 1, ..., M (Constraints)

λm ≥ 0, for m = 1, ..., M (Non-negativity of λ)

λm(gm(x) − bm) = 0, for m = 1, ..., M (Complementary slackness)
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Second Order Condition Second order conditions for inequality problems (C.M.P.2) is

exactly the same as those for equality problems (C.M.P.1). The only adjustment is that

the constraints that count are those that bind, that is, those that hold with equality at

the point x under consideration.1

Example M.K.2. Use Theorem M.K.2 to solve the following problem:

max
(x1,x2)∈R2

x2
1 − x2

s.t. x2
1 + x2

2 ≤ 1

Solution. Here, f(x) = x2
1 − x2, g(x) = x2

1 + x2
2.

Lagrange function:

L(x1, x2, λ) = x2
1 − x2 − λ(x2

1 + x2
2 − 1).

Kuhn-Tucker conditions:

∂L
∂x1

= 2x1 − 2λx1 = 0 (FOC for x1)

∂L
∂x2

= −1 − 2λx2 = 0 (FOC for x2)

x2
1 + x2

2 ≤ 1 (Constraint)

λ ≥ 0 (Non-negativity of λ)

λ(x2
1 + x2

2 − 1) = 0 (C-S)

From (FOC for x1), we have λ = 1 or x1 = 0.

1. λ = 1. Then from (FOC for x2), we have x2 = −1
2 . Then from (C-S), we have

x1 = ±
√

3
2 . In this case, f(

√
3

2 , −1
2) = f(−

√
3

2 , −1
2) = 5

4 .

2. x1 = 0. Then from (FOC for x2) and (C-S), we have

/
0001

0002

x2 = −1

λ = 1
2

or

/
0001

0002

x2 = 1

λ = −1
2 .

The second solution is rejected since (Non-negativity of λ) requires λ ≥ 0. In this

case f(0, −1) = 1.

1More accurately, we should keep the binding constraints with strictly positive corresponding Lagrange
multipliers.
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We need to apply Second Order Condition to the three candidate solutions. (The proce-

dure is similar to Example M.K.1 and thus is omitted here.)

In the end, the solutions are (x1, x2) = (
√

3
2 , −1

2) and (x1, x2) = (−
√

3
2 , −1

2).

The problem in Example M.K.2 is simple and we could easily graph it.

Figure 11: Example M.K.2

From Figure 11, we have the 4 critical points. And it is not hard to see that the solutions

to the maximization problem are the two points that lie on the indifference curve that

gives value 5
4 .

Adding Non-negativity Constraints If we add non-negativity constraints xn ≥ 0, n =

1, ..., N to the maximization problem (C.M.P.2):

max
x∈RN

f(x)

s.t. g1(x) ≤ b1

...

gM(x) ≤ bM

x1 ≥ 0
...

xN ≥ 0
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We only need to modify Part (i) of Theorem M.K.2 to

∂f(x)
∂xn

≤
M'

m=1
λm

∂gm(x̄)
∂xn

, with equality if xn > 0.

Explanation Suppose we explicitly add the non-negativity constraints, −xn ≤ 0, n =

1, ..., N .

L(x, λ) = f(x) −
M'

m=1
λm(gm(x) − bm) +

N'

n=1
λM+nxn (or −

N'

n=1
λM+n(−xn − 0))

F.O.C for xn :
∂f(x)
∂xn

=
M'

m=1
λm

∂gm(x)
∂xn

− λM+n, where λM+n ≥ 0.

We also need to add another corresponding complementary slackness condition

−λM+nxn = 0.

(i) If xn = 0, then λM+n ≥ 0 & ∂f(x)
∂xn

≤
M(

m=1
λm

∂gm(x)
∂xn

;

(ii) If xn > 0, then λM+n = 0 & ∂f(x)
∂xn

=
M(

m=1
λm

∂gm(x)
∂xn

.

Combining the two cases, we have

∂f(x)
∂xn

≤
M'

m=1
λm

∂gm(x)
∂xn

, with equality if xn > 0.
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