Review of Maximization Problem

Xiaoxiao Hu

M.J. Unconstrained Maximization (p.954)

Consider $f : \mathbb{R}^N \to \mathbb{R}$

Definition M.J.1. The vector $\overline{x} \in \mathbb{R}^N$ is a local maximizer of $f(\cdot)$ if there is an open neighborhood of \overline{x} , $A \subset \mathbb{R}^N$, s.t. $f(\overline{x}) \ge f(x)$ for every $x \in A$. If $f(\overline{x}) \ge f(x)$ for every $x \in \mathbb{R}^N$, then \bar{x} is a global maximizer of $f(.)$.

Theorem M.J.1. *Suppose that* $f(\cdot)$ *is differentiable and that* $x \in \mathbb{R}^N$ *is a local maximizer or local minimizer of* $f(\cdot)$ *. Then ∂f*(*x*) *[∂]xⁿ* = 0 *for every n, or more concisely*

$$
\nabla f(\overline{x}) = \begin{bmatrix} \frac{\partial f(\overline{x})}{\partial x_1} \\ \vdots \\ \frac{\partial f(\overline{x})}{\partial x_N} \end{bmatrix} = 0.
$$

Remark. $\nabla f(\overline{x}) = 0$ is only a necessary condition for local maximizer or local minimizer.

Theorem M.J.2. *Suppose that the function* $f : \mathbb{R}^N \to \mathbb{R}$ *is twice continuously differentiable* (C^2) *and that* $\nabla f(\overline{x}) = 0$ *.*

(i) If $\overline{x} \in \mathbb{R}^N$ *is a local maximizer, then the (symmetric)* $N \times N$ *matrix* $D^2 f(\overline{x})$ *is negative semidefinite.*

(ii) If $D^2 f(\overline{x})$ *is negative definite, then* \overline{x} *is a local maximizer.*

Remark. Replacing "negative" by "positive", the same is true for local minimizer.

Remark. We rely on the assumption of $z \cdot D^2 f(\overline{x}) z < 0$.

 $z \cdot D^2 f(\overline{x}) z \leq 0$ is not enough to guarantee local maximization.

To see this, consider the example, $f(x) = x^3$.

 $D^2 f(0)$ is negative semidefinite because $d^2 f(0)/dx^2 = 0$, but

 $\overline{x} = 0$ is neither a local maximizer nor a local minimizer.

Theorem M.J.3. Any critical point \overline{x} (i.e., any \overline{x} satisfying $\nabla f(\overline{x}) = 0$) of a concave function $f(\cdot)$ is a global maximizer of $f(\cdot)$.

M.K. Constrained Maximization

Case I: Equality Constraints

We first study the maximization problem with *M* equality constraints, given by ([C.M.P.1\)](#page-7-0) below.

$$
\max_{x \in \mathbb{R}^N} f(x) \qquad \qquad \text{(C.M.P.1)}
$$
\n
$$
\text{s.t. } g_1(x) = \overline{b}_1
$$
\n
$$
\vdots
$$
\n
$$
g_M(x) = \overline{b}_M
$$

Equality Constraints

Constraint Set is

$$
C = \{x \in \mathbb{R}^N : g_m(x) = \overline{b}_m \text{ for } m = 1, ..., M\}.
$$

Assumption. $N \geq M$ *(Generically, solution doesn't exist if* $M > N$.

Equality Constraints

Theorem M.K.1. *Suppose that the objective and constraint functions of problem* (*C.M.P.1*) are *differentiable* and *that* $\overline{x} \in$ C *is* a *local constrained maximizer.* Assume also that the $M \times N$

matrix

$$
\begin{bmatrix}\n\nabla g_1(\overline{x})^T \\
\vdots \\
\nabla g_M(\overline{x})^T\n\end{bmatrix} = \begin{bmatrix}\n\frac{\partial g_1(\overline{x})}{\partial x_1} & \cdots & \frac{\partial g_1(\overline{x})}{\partial x_N} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_M(\overline{x})}{\partial x_1} & \cdots & \frac{\partial g_M(\overline{x})}{\partial x_N}\n\end{bmatrix}
$$

has rank M. (This is called constraint qualification: It says

that the constraints are independent at \overline{x} *.*) 10

Equality Constraints

Theorem M.K.1 (continued).

Then, there are numbers $\lambda_m \in \mathbb{R}$ *(Not* \mathbb{R}^+ *), one for each constraint, such that*

$$
\frac{\partial f(\overline{x})}{\partial x_n} = \sum_{m=1}^{M} \lambda_m \frac{\partial g_m(\overline{x})}{\partial x_n} \text{ for every } n = 1, ..., N, \quad \text{(M.K.2)}
$$

Or, equivalently,

$$
\nabla f(\overline{x}) = \sum_{m=1}^{M} \lambda_m \nabla g_m(\overline{x}).
$$
 (M.K.3)

The numbers *λ^m* are referred to as **Lagrange multipliers**. 11

How to understand Theorem [M.K.1?](#page-9-0)

Two-variable, one-constraint Cases

Example M.K.1. Consider the following two-variable, oneconstraint example.

$$
\max_{(x_1, x_2) \in \mathbb{R}^2} x_1 + x_2
$$

s.t. $x_1^2 + x_2^2 = 1$

Two-variable, One-constraint Example

Two-variable, One-constraint Example

Two-variable, One-constraint Example

More generally, for two-variable, one-constraint cases, the maximum must be obtained where the level set of the objective function is tangent to the constraint set.

Three-variable, one-constraint cases

Three-variable, two-constraint cases

Constraint set: $C = \{x \in \mathbb{R}^3 : g_1(x) = \overline{b}_1 \text{ and } g_2(x) = \overline{b}_2\}$

Three-variable, two-constraint cases

Similar to previous cases, the maximum must occur when the level set of the objective function (which is a surface in this case) is tangent to the constraint set.

Three-variable, two-constraint cases

 $\nabla f(\overline{x})$, $\nabla g_1(\overline{x})$ and $\nabla g_2(\overline{x})$ are all orthogonal to Line *T*, implying that they lie on the same plane.

Therefore, $\exists \lambda_1, \lambda_2$ such that $\nabla f(\overline{x}) = \lambda_1 \nabla g_1(\overline{x}) + \lambda_2 \nabla g_2(\overline{x})$, **if** $\nabla g_1(\overline{x})$ and $g_2(\overline{x})$ are linearly independent ("Constraint **Qualification")**.

More variables

Theorem [M.K.1](#page-9-0) says that $\nabla f(x)$ lies on the hyperplane spanned by $\nabla g_m(x)$ for $m = 1, ..., M$, if the constraints $g_m(x)$ are **linearly independent ("Constraint Qualification")**. The same intuition from previous simple cases apply.

What happens when *Constraint Qualification* **fails?**

Example. Consider the case $\nabla q_1(\overline{x}) = -\alpha \nabla q_2(\overline{x})$.

Although \bar{x} is a local maximizer, $\nabla f(\bar{x})$ cannot be written as $\lambda_1 \nabla g_1(\overline{x}) + \lambda_2 \nabla g_2(\overline{x})$. 21

How to use Theorem [M.K.1](#page-9-0)?

Alternative presentation of Theorem [M.K.1](#page-9-0):

Define *Lagrangian function*:

$$
\mathcal{L}(x,\lambda) = f(x) - \sum_{m=1}^{M} \lambda_m (g_m(x) - \overline{b}_m)
$$

The constrained maximization problem can be rewritten as the

following *unconstrained maximization problem:*

$$
\max_{x \in \mathbb{R}^N, \lambda \in \mathbb{R}^M} \mathcal{L}(x, \lambda).
$$

Lagrangian Function

First Order Condition (F.O.C.) gives:

$$
\frac{\partial f(x)}{\partial x_n} - \sum_{m=1}^{M} \lambda_m \frac{\partial g_m(x)}{\partial x_n} = 0, \text{ for } n = 1, ..., N;
$$

$$
g_m(x)-\overline{b}_m=0, \text{ for } m=1,...,M.
$$

Remark

- *•* In practice, failure of *Constraint Qualification* is rarely a problem. However, you should be alerted and check *Constraint Qualification* if you find the above standard methods problematic.
- *•* If you find no solution, it may be that the maximization problem itself has no solution, or *Constraint Qualification* may fail so that F.O.C is not applicable.

Lagrangian Function

Example. Apply Theorem [M.K.1](#page-9-0) to solve Example [M.K.1:](#page-11-0)

$$
\max_{(x_1, x_2) \in \mathbb{R}^2} x_1 + x_2
$$

s.t. $x_1^2 + x_2^2 = 1$

- *•* F.O.C. is only a necessary condition for local maximum.
- We also need to check Second Order Condition.

If \overline{x} is a local maximizer, then

$$
D_x^2 L(\overline{x}, \lambda) = D^2 f(\overline{x}) - \sum_{m=1}^{M} \lambda_m D^2 g_m(\overline{x})
$$

is negative semidefinite on the subspace

$$
\{z \in \mathbb{R}^N : \nabla g_m(\overline{x}) \cdot z = 0 \text{ for all } m\}.
$$

The other direction also applies, i.e., negative definiteness on the subspace implies local maximization.

Example. Apply Second Order Condition to the solutions of Example [M.K.1.](#page-11-0):

$$
\max_{(x_1,x_2)\in\mathbb{R}^2} x_1+x_2
$$

$$
\text{ s.t. } x_1^2 + x_2^2 = 1
$$

Method.

- *•* Use the condition in the previous slide directly.
- *•* Use *Bordered Hessian Matrix* ²⁸

What does *λ^m* **measure?**

Claim. λ_m measures the sensitivity of $f(x^*)$ to a small increase \overline{b}_m , i.e., $\lambda_m = \frac{\partial f(x^*(b))}{\partial \overline{b}_m}$.

- *•* In class, we consider maximization problem with one constraint only.
- *•* For more constraints, the calculation is similar.
	- (See Lecture Notes)

Case II: Inequality Constraints

$$
\max_{x \in \mathbb{R}^N} f(x) \qquad \qquad \text{(C.M.P.2)}
$$
\n
$$
\text{s.t. } g_1(x) \le \overline{b}_1
$$
\n
$$
\vdots
$$
\n
$$
g_M(x) \le \overline{b}_M
$$

Remark. Problem ([C.M.P.2\)](#page-29-0) is a simplified version of Problem (M.K.4) in MWG. Here, the coexistence of equality constraints is ignored.

Inequality Constraints

Constraint Set is

$$
C = \{x \in \mathbb{R}^N : g_m(x) \le \overline{b}_m \text{ for } m = 1, ..., M\}.
$$

Similar to Theorem [M.K.1](#page-9-0), we require

Constraint Qualification:

 $\nabla g_m(\overline{x})$ with the binding constraints are linearly independent.

Theorem M.K.2 (Kuhn-Tucker Conditions). Suppose that $\overline{x} \in$ *C is a local maximizer of problem [\(C.M.P.2\)](#page-29-0). Assume also that the constraint qualification is satisfied. Then, there are multipliers* $\lambda_m \in \mathbb{R}_+$ *(Not* \mathbb{R} *), one for each inequality constraint, such that*

(i) For every
$$
n = 1, ..., N
$$
,
$$
\frac{\partial f(\overline{x})}{\partial x_n} = \sum_{m=1}^{M} \lambda_m \frac{\partial g_m(\overline{x})}{\partial x_n} \text{ or } \nabla f(\overline{x}) = \sum_{m=1}^{M} \lambda_m \nabla g_m(\overline{x})
$$

Theorem M.K.2 (continued).

(ii) For every
$$
m = 1, ..., M
$$
,
\n
$$
\lambda_m(g_m(\overline{x}) - \overline{b}_m) = 0
$$

i.e., $\lambda_m = 0$ *for any constraint k that doesn't hold with equality.*

Condition [\(ii\)](#page-32-0) is called "*complementary slackness*" condition: one of the two inequalities $\lambda_m > 0$ and $q_m(\overline{x}) < \overline{b}_m$ is binding. 33

Explanation of Kuhn-Tucker Condition [\(i\)](#page-31-0)

Explanation of Kuhn-Tucker Condition [\(ii\)](#page-32-0)

When $g_m(\overline{x}) < \overline{b}_m$, the constraint is not binding. So it doesn't affect the F.O.C locally $\implies \lambda_m = 0$.

How to use Theorem [M.K.2](#page-31-1)?

Define *Lagrangian function*:

$$
\mathcal{L}(x,\lambda) = f(x) - \sum_{m=1}^{M} \lambda_m (g_m(x) - \overline{b}_m)
$$

How to use Theorem [M.K.2](#page-31-1)?

Kuhn-Tucker conditions give:

$$
\frac{\partial f(x)}{\partial x_n} - \sum_{m=1}^{M} \lambda_m \frac{\partial g_m(x)}{\partial x_n} = 0, \text{ for } n = 1, ..., N \text{ (FOC for } x_n)
$$

$$
g_m(x) - \overline{b}_m \le 0, \text{ for } m = 1, ..., M \text{ (Constraints)}
$$

$$
\lambda_m \ge 0, \text{ for } m = 1, ..., M \text{ (Non-negativity of } \lambda)
$$

$$
\lambda_m (g_m(x) - \overline{b}_m) = 0, \text{ for } m = 1, ..., M \text{ (Complementary slackness)}
$$

Second order conditions for inequality problems [\(C.M.P.2](#page-29-0)) is exactly the same as those for equality problems $(C.M.P.1)$ $(C.M.P.1)$ $(C.M.P.1)$. The only adjustment is that the constraints that count are those that bind, that is, those that hold with equality at the point \overline{x} under consideration.

Example of Inequality Constraints

Example M.K.2. Use Theorem [M.K.2](#page-31-1) to solve the following problem:

$$
\max_{(x_1, x_2) \in \mathbb{R}^2} x_1^2 - x_2
$$

s.t. $x_1^2 + x_2^2 \le 1$

Example [M.K.2](#page-38-0)

Adding Non-negativity Constraints

Adding Non-negativity Constraints

We only need to modify Part [\(i\)](#page-31-0) of Theorem [M.K.2](#page-31-1) to

$$
\frac{\partial f(\overline{x})}{\partial x_n} \le \sum_{m=1}^M \lambda_m \frac{\partial g_m(\overline{x})}{\partial x_n}
$$
, with equality if $\overline{x}_n > 0$.