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M.J. Unconstrained Maximization (p.954)

Consider f : RN → R

Definition M.J.1. The vector x ∈ RN is a local maximizer

of f(·) if there is an open neighborhood of x, A ⊂ RN , s.t.

f(x) ≥ f(x) for every x ∈ A. If f(x) ≥ f(x) for every x ∈ RN ,

then x is a global maximizer of f(·).
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Unconstrained Maximization

Theorem M.J.1. Suppose that f(·) is differentiable and that

x ∈ RN is a local maximizer or local minimizer of f(·) . Then
∂f(x)
∂xn

= 0 for every n, or more concisely

∇f(x) =

!

""""""#

∂f(x)
∂x1

...
∂f(x)
∂xN

$

%%%%%%&
= 0.
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Unconstrained Maximization

Remark. ∇f(x) = 0 is only a necessary condition for local

maximizer or local minimizer.
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Unconstrained Maximization

Theorem M.J.2. Suppose that the function f : RN → R is

twice continuously differentiable (C2) and that ∇f(x) = 0.

(i) If x ∈ RN is a local maximizer, then the (symmetric)

N × N matrix D2f(x) is negative semidefinite.

(ii) If D2f(x) is negative definite, then x is a local maximizer.

Remark. Replacing “negative” by “positive”, the same is true

for local minimizer.
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Unconstrained Maximization

Remark. We rely on the assumption of z · D2f(x)z < 0.

z ·D2f(x)z ≤ 0 is not enough to guarantee local maximization.

To see this, consider the example, f(x) = x3.

D2f(0) is negative semidefinite because d2f(0)/dx2 = 0, but

x = 0 is neither a local maximizer nor a local minimizer.
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Unconstrained Maximization

Theorem M.J.3. Any critical point x (i.e., any x satisfying

∇f(x) = 0) of a concave function f(·) is a global maximizer of

f(·).
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M.K. Constrained Maximization

Case I: Equality Constraints

We first study the maximization problem with M equality con-

straints, given by (C.M.P.1) below.

max
x∈RN

f(x) (C.M.P.1)

s.t. g1(x) = b1

...

gM(x) = bM

8



Equality Constraints

Constraint Set is

C = {x ∈ RN : gm(x) = bm for m = 1, ..., M}.

Assumption. N ≥ M (Generically, solution doesn’t exist if

M > N.)

9



Equality Constraints

Theorem M.K.1. Suppose that the objective and constraint

functions of problem (C.M.P.1) are differentiable and that x ∈

C is a local constrained maximizer. Assume also that the M×N

matrix !

""""""#

∇g1(x)T

...

∇gM(x)T

$

%%%%%%&
=

!

""""""#

∂g1(x)
∂x1

· · · ∂g1(x)
∂xN

... . . . ...
∂gM (x)

∂x1
· · · ∂gM (x)

∂xN

$

%%%%%%&

has rank M. (This is called constraint qualification: It says

that the constraints are independent at x.)
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Equality Constraints

Theorem M.K.1 (continued).

Then, there are numbers λm ∈ R (Not R+), one for each con-

straint, such that

∂f(x)
∂xn

=
M'

m=1
λm

∂gm(x)
∂xn

for every n = 1, ..., N, (M.K.2)

Or, equivalently,

∇f(x) =
M'

m=1
λm∇gm(x). (M.K.3)

The numbers λm are referred to as Lagrange multipliers. 11



How to understand Theorem M.K.1?

Two-variable, one-constraint Cases

Example M.K.1. Consider the following two-variable, one-

constraint example.

max
(x1,x2)∈R2

x1 + x2

s.t. x2
1 + x2

2 = 1
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Two-variable, One-constraint Example
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Two-variable, One-constraint Example
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Two-variable, One-constraint Example

More generally, for two-variable, one-constraint cases, the max-

imum must be obtained where the level set of the objective

function is tangent to the constraint set.
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Three-variable, one-constraint cases
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Three-variable, two-constraint cases

Constraint set: C = {x ∈ R3 : g1(x) = b1 and g2(x) = b2}
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Three-variable, two-constraint cases

Similar to previous cases, the maximum must occur when the

level set of the objective function (which is a surface in this

case) is tangent to the constraint set.
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Three-variable, two-constraint cases

∇f(x), ∇g1(x) and ∇g2(x) are all orthogonal to Line T , im-

plying that they lie on the same plane.

Therefore, ∃λ1, λ2 such that ∇f(x) = λ1∇g1(x) + λ2∇g2(x),

if ∇g1(x) and g2(x) are linearly independent (“Constraint

Qualification”).
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More variables

Theorem M.K.1 says that ∇f(x) lies on the hyperplane spanned

by ∇gm(x) for m = 1, ..., M , if the constraints gm(x) are

linearly independent (“Constraint Qualification”). The

same intuition from previous simple cases apply.
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What happens when Constraint Qualification fails?

Example. Consider the case ∇g1(x) = −α∇g2(x).

Although x is a local maximizer, ∇f(x) cannot be written as

λ1∇g1(x) + λ2∇g2(x). 21



How to use Theorem M.K.1?

Alternative presentation of Theorem M.K.1:

Define Lagrangian function:

L(x, λ) = f(x) −
M'

m=1
λm(gm(x) − bm)

The constrained maximization problem can be rewritten as the

following unconstrained maximization problem:

max
x∈RN ,λ∈RM

L(x, λ).
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Lagrangian Function

First Order Condition (F.O.C.) gives:

∂f(x)
∂xn

−
M'

m=1
λm

∂gm(x)
∂xn

= 0, for n = 1, ..., N ;

gm(x) − bm = 0, for m = 1, ..., M.
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Remark

• In practice, failure of Constraint Qualification is rarely

a problem. However, you should be alerted and check

Constraint Qualification if you find the above standard

methods problematic.

• If you find no solution, it may be that the maximization

problem itself has no solution, or Constraint Qualification

may fail so that F.O.C is not applicable.
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Lagrangian Function

Example. Apply Theorem M.K.1 to solve Example M.K.1:

max
(x1,x2)∈R2

x1 + x2

s.t. x2
1 + x2

2 = 1
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Second Order Condition

• F.O.C. is only a necessary condition for local maximum.

• We also need to check Second Order Condition.
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Second Order Condition

If x is a local maximizer, then

D2
xL(x, λ) = D2f(x) −

M'

m=1
λmD2gm(x)

is negative semidefinite on the subspace

{z ∈ RN : ∇gm(x) · z = 0 for all m}.

The other direction also applies, i.e., negative definiteness on

the subspace implies local maximization.
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Second Order Condition

Example. Apply Second Order Condition to the solutions of

Example M.K.1.:

max
(x1,x2)∈R2

x1 + x2

s.t. x2
1 + x2

2 = 1

Method.

• Use the condition in the previous slide directly.

• Use Bordered Hessian Matrix 28



What does λm measure?

Claim. λm measures the sensitivity of f(x∗) to a small increase

in bm, i.e., λm = ∂f(x∗(b))
∂bm

.

• In class, we consider maximization problem with one con-

straint only.

• For more constraints, the calculation is similar.

(See Lecture Notes)
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Case II: Inequality Constraints

max
x∈RN

f(x) (C.M.P.2)

s.t. g1(x) ≤ b1

...

gM(x) ≤ bM

Remark. Problem (C.M.P.2) is a simplified version of Problem

(M.K.4) in MWG. Here, the coexistence of equality constraints

is ignored.
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Inequality Constraints

Constraint Set is

C = {x ∈ RN : gm(x) ≤ bm for m = 1, ..., M}.

Similar to Theorem M.K.1, we require

Constraint Qualification:

∇gm(x) with the binding constraints are linearly independent.
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Kuhn-Tucker Conditions

Theorem M.K.2 (Kuhn-Tucker Conditions). Suppose that x ∈

C is a local maximizer of problem (C.M.P.2). Assume also that

the constraint qualification is satisfied. Then, there are mul-

tipliers λm ∈ R+ (Not R), one for each inequality constraint,

such that

(i) For every n = 1, ..., N,

∂f(x)
∂xn

=
M'

m=1
λm

∂gm(x)
∂xn

or ∇f(x) =
M'

m=1
λm∇gm(x)
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Kuhn-Tucker Conditions

Theorem M.K.2 (continued).

(ii) For every m = 1, ..., M,

λm(gm(x) − bm) = 0

i.e., λm = 0 for any constraint k that doesn’t hold with

equality.

Condition (ii) is called “complementary slackness” condition:

one of the two inequalities λm ≥ 0 and gm(x) ≤ bm is binding.
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Kuhn-Tucker Conditions

Explanation of Kuhn-Tucker Condition (i)
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Kuhn-Tucker Conditions

Explanation of Kuhn-Tucker Condition (ii)

When gm(x) < bm, the constraint is not binding.

So it doesn’t affect the F.O.C locally =⇒ λm = 0.
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How to use Theorem M.K.2?

Define Lagrangian function:

L(x, λ) = f(x) −
M'

m=1
λm(gm(x) − bm)
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How to use Theorem M.K.2?

Kuhn-Tucker conditions give:

∂f(x)
∂xn

−
M'

m=1
λm

∂gm(x)
∂xn

= 0, for n = 1, ..., N (FOC for xn)

gm(x) − bm ≤ 0, for m = 1, ..., M (Constraints)

λm ≥ 0, for m = 1, ..., M (Non-negativity of λ)

λm(gm(x) − bm) = 0, for m = 1, ..., M

(Complementary slackness)
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Second Order Condition

Second order conditions for inequality problems (C.M.P.2) is

exactly the same as those for equality problems (C.M.P.1). The

only adjustment is that the constraints that count are those

that bind, that is, those that hold with equality at the point x

under consideration.
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Example of Inequality Constraints

Example M.K.2. Use Theorem M.K.2 to solve the following

problem:

max
(x1,x2)∈R2

x2
1 − x2

s.t. x2
1 + x2

2 ≤ 1
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Example M.K.2
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Adding Non-negativity Constraints

max
x∈RN

f(x)

s.t. g1(x) ≤ b1

...

gM(x) ≤ bM

x1 ≥ 0
...

xN ≥ 0
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Adding Non-negativity Constraints

We only need to modify Part (i) of Theorem M.K.2 to

∂f(x)
∂xn

≤
M'

m=1
λm

∂gm(x)
∂xn

, with equality if xn > 0.
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