Advanced Microeconomics

Negative/positive (semi-)definite matrix and

bordered Hessian matrix

1.A. Negative/positive (semi-)definite matrix

The definiteness of matrices are related to the second order condition for the uncon-
strained problems. We have also encountered the definiteness of matrices for the proper-

ties of the Slutsky matrix.

Definition 1.A.1 (Negative Definite). A (symmetric) N x N matrix M is negative
definite if
y" My <0 (1)

for all non-zero y € RV,

Definition 1.A.2 (Negative Semi-definite). A (symmetric) N x N matrix M is negative

semi-definite if

y" My <0 (2)
for all y € RV,
-2 1 0 (%1
Example 1. M = | 1 —2 1 | is negative definite since for any non-zero y = |y, |,
0 1 —2 Y3
we have
-2 1 01 |m Y1

T
Yy My:[lh Y2 yg} 1 =2 1] |y :{—291+Z/2 Y1 —2Y2+ys Y2 — 23| | Y2

0 1 =2| |ys Y3
== [yf + (= y2)* + (o —ya)* + y?ﬂ <0.
This result is the negative of sum of squares, and therefore non-positive. Furthermore,

the result is zero only if y; = y» = y3 = 0 that is, when y is the zero vector. Therefore,

for any non-zero vector y, the result is always negative.
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Example 2. M = is negative semi-definite since for any y = , we have

I -1 Y2

-1 1 Y1 Y1
y' My = |:y1 y2} = |=v1tY2 v1— Y2 = —(y1 +12)* <0.
1 -1 Yo Y2

This result is the negative of sum of squares, and therefore non-positive. When y; = —ys,

for example y = , the result is 0.
-1

Note that a matrix M with all negative entries may not be negative definite. Example 3

illustrates the case where all entries in M is negative whereas M is not negative definite.

-1 -2 -1
Example 3. M = is not negative definite since for y = we have
-2 -1 1

T -1 -2 |-1 —1
yMy:{—l 1} :{_1 1] =2>0.
-2 —1 1 1

Similarly, we could define positive (semi-)definite matrices analogously.

Definition 1.A.3 (Positive Definite). A (symmetric) N x N matrix M is positive definite
if
y" My >0 (3)

for all non-zero y € RV,

Definition 1.A.4 (Positive Semi-definite). A (symmetric) N x N matrix M is positive

semi-definite if
y' My >0 (4)

for all y € RV.

Remark. A matrix that is not positive semi-definite and not negative semi-definite is

called indefinite.

There are various ways to check the definiteness of matrices. In Examples 1, 2 and

3, we have used the definition to check the definiteness. Below, we will introduce the
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determinantal test for definiteness. Before discussing the general theorem, we need to

learn some new concepts.

Definition 1.A.5 (Principal Submatrix and Principal Minor). Let M be a N x N matrix.
A k x k submatrix of M formed by deleting n — k rows and the same n — k columns of
M is called the k™ order principal submatrix of M. The determinant of a principal

submatrix is called the k' order principal minor of M.

aix G2 013
Example 4. For a general 3 X 3 matrix M = |qy; a9y as3]-
az1 a3z 0Gz3

1. There is one 3" order principal minor, namely, det M;

2. There are three 2"¢ order principal minors, namely,

apnn  ai2

a) det , formed by deleting the 3¢ row and the 3" column;
a21 Q22
a1 a3 . d d

b) det , formed by deleting the 2"* row and the 2™ column;
as1 ass
Q2o Q23 . ' '

c) det , formed by deleting the 1°* row and the 1" column.
gz 433

3. There are three 15 order principal minors, namely,
a) det |q, |, formed by deleting the 274 and 3" rows and colomns;

b) det |gy,|, formed by deleting the 15 and 3™ rows and colomns;

c) det | gy, formed by deleting the 1% and 274 rows and colomns.

Definition 1.A.6 (Leading Principal Submatrix and Leading Principal Minor). Let M
be a N x N matrix. The k*" order prinipal submatrix of M obtained by deleting the last
n — k rows and column of M is called the &' order leading principal submatrix of

M:; and its determinant is called the k™ order leading principal minor of M.
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Example 5. For the general 3 x 3 matrix in Example 4,

1. The 3" order leading principal minor is det M

d . . . . ai a2
2. The 2™ order leading principal minor is det ;
21 (22
3. The 1°* order leading principal minor is det |q,, |-

The following two theorems provide the algorithm for testing the definiteness of a sym-

metric matrix.
Theorem 1.A.1. Let M be an N x N symmetric matriz. Then
1. M is positive definite if and only if all its leading principal minors are positive;
2. M is negative definite if and only if all its leading principal minors of odd order are
negative; and all its leading principal minors of even order are positive.
Theorem 1.A.2. Let M be an N x N symmetric matriz. Then
1. M 1is positive semi-definite if and only if all its principal minors are non-negative;
2. M is negative semi-definite if and only if all its principal minors of odd order are
non-positive ; and all all its principal minors of even order are non-negative.

Remark. Please note that to check the semi-definiteness of matrices, we must unfortu-

nately check not only the leading principal minors, but all principal minors.

Remark. The second-order partial derivative matrix, F,,, is called Hessian Matrix.

1.B. Bordered Hessian matrix

As is mentioned in class, we could use bordered Hessian matriz to check the second-order

condition.
Definition 1.B.1. The matrix

0 -G,
_GzT Fa::c - /\sz

is called Bordered Hessian Matrizx.
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To check the second-order sufficient condition, we need to look at n — m of the bordered
Hessian’s leading principal minors. Intuitively, we can think of the m constraints as
reducing the problem to one with n — m free variables.! The smallest minor we consider
consisting of the truncated first 2m + 1 rows and columns, the next consisting of the
truncated first 2m + 2 rows and columns, and so on, with the last being the determinant
of the entire bordered Hessian. A sufficient condition for a local maximum of F is that
the smallest minor has the same sign as (—1)™"! and that the rest of the principal minors

alternate in sign. The result is summarized in Theorem 1.B.1 below.

Theorem 1.B.1 (Second-order Sufficient Condition for Constrained Maximization Prob-
lem). If the last n — m leading principal minors of the bordered Hessian matriz at the
proposed optimum x* is such that the smallest minor (the (2m+ 1) minor) has the same
sign as (—1)™* and the rest of the principal minors alternate in sign, then x* is the local

mazimum of the constrained maximization problem.

Example 6. Consider the following maximization problem with three variables (n = 3)

and two constraints (m = 2):
max F(z,y,z) =z

st. Glz,y,2)=c+y+2=12

G*(z,y,2) =2 +y* —2=0

The Lagrangian is L(z,y,2,\, 1) = 2+ AN12 —x —y — 2) + p(—2? — y* + 2).
The first-order necessary conditions are
OL)0x = =X\ —2ux =0
OL/0y = =X —2uy =0
OL/z=1—-A+u=0
OL/JON=12—x—y—2=0

oL/ =—2* —y* +2=0

The stationary points are (z*,y*, 2", A\, 1) = (2,2,8, 3, —1) and (-3,-3,18, 2, ).

!For example, the maximization problem: max, , . x +y? + z subject to z +y+z = 1 can be reduced
to max, ,  + y? + (1 — 2 — y) with no constraint.
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The bordered Hessian matrix is

0 0 ¢ e | o 0o 1 1 4
0 0 -G -G; -G 0 0 -2z -2y 1
-Gl -G? Ly Ly Li|=|-1 -2z -2u 0 0
—Gz,l, —GZ Lo Lo Lo -1 =2y 0 —2p 0
~Gl —G?* L3 L3 L33 -1 1 0 0 0
We need to check n — m = 1 leading principal minors, i.e., we only need to check

the determinant of the bordered Hessian. For local maximum, the sign requirement is

(—1)m+ = (=1) < 0.

1. For the first proposed optimum (z*,y*, 2%, \, u) = (2, 2,8, %, —%), the determinant
of the bordered Hessian is 20;
2. For the second proposed optimum (z*,y*, z*, A\, u) = (=3, -3, 18, g, %), the deter-

minant of the bordered Hessian is —20.

Thus, the 2"¢ proposed optimum (z*, y*, 2%, \, p) = (=3, —3, 18, g, %) is a local maximum.

Example 7. Consider the following maximization problem with three variables (n = 3)

and one constraint (m = 1):
rglgi(F(:v,y,z) =r+tytz

st. GHa,y,2) =22 +2 +22=3

The Lagrangian is £(z,y,2,\) =z +y + 2z + A\(3 — 2% — y* — 2?).
The first-order necessary conditions are
OL/0r =1—2)x =0
OL/Oy=1—-2\y =0
OL/0z=1—2\z=0

OLION=3 2> — > =22 =0

The stationary points are (z*,y*,2*,\) = (—=1,—1,—1,—3) and (1,1,1, ).
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The bordered Hessian matrix is

0o -G, -G, -G! 0 -2z —2y -2z
-G Ly Ly L3 —2r =2\ 0 0
=G, Ly Ly Lo -2y 0 —=2x 0
~Gl Ly Ly L 2: 0 0 -2\

We need to check n — m = 2 leading principal minors, i.e., the 3" order and the entire
bordered Hessian. For local maximum, the sign requirement is (—1)""! = (—1)? > 0 for

the 3" order leading principal minor and < 0 for the entired bordered Hessian.

1. For the first proposed optimum (z*,y*, z*,\) = (—1,—1,—1, —%), the 3" order
leading principal minor is —8 < 0 and the determinant of the bordered Hessian is
—12 < 0;

1), the 3" order leading

2. For the second proposed optimum (z*,y*, 2%, A) = (1,1,1, 5

principal minor is 8 > 0 and the determinant of the bordered Hessian is —12 < 0.

1

Thus, the 2" proposed optimum (z*,y*, 2%, \) = (1,1, 1, 5) is a local maximum.



