
Chapter 1. Static Games of

Complete Information

Xiaoxiao Hu



1.A. What is Game Theory?

Game theory is a method of studying strategic situations.

Strategic situations are settings where the outcomes that affect

you depend on your own actions and the actions of others.
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What is Game Theory?

Example 1.A.1.

i. A monopolist is non-strategic. There are no competitors.

ii. Firms under perfect competition are non-strategic. Prices

are taken as given, so firms do not need to worry about

the actions of the competitors.

iii. Oligopolists are strategic. The actions of the firms affect

one another.

Game theory applies in economics, laws, biology, sports, etc.

We will discuss some applications in this course. 3



1.B. Normal-Form Representation of Games

Let us consider the Prisoners’ Dilemma Game.

• If neither prisoner confesses then both will be convicted

of a minor offense and sentenced to one month in jail.

• If both confess then both will be sentenced to jail for six

months.

• If one confesses but the other does not, then the con-

fessor will be released immediately but the other will be

sentenced to nine months in jail – six for the crime and a

further three for obstructing justice.
4



Prisoners’ Dilemma Game

• We label the two suspects Prisoner 1 and Prisoner 2. They

are the players of the game.

• The strategies each of the prisoners could take are

1. “Not confess” or Cooperate, denoted by C,

2. “Confess” or Defect, denoted by D.
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Outcome matrix for Prisoner 1

The information on the outcomes could be concisely recorded

in the tables.

Prisoner 1

Prisoner 2

C D

C 1 month in prison 9 months in prison

D released 6 months in prison

Prisoner 1’s Outcome
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Outcome matrix for Prisoner 2

Prisoner 1

Prisoner 2

C D

C 1 month in prison released

D 9 months in prison 6 months in prison

Prisoner 2’s Outcome
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Outcome matrix

Rather than drawing two tables, we could super-impose the

second table on top of the first table, forming the outcome

matrix.

P1

P2

C D

C (1 month, 1 month) (9 months, released)

D (released, 9 months) (6 months, 6 months)

Outcome Matrix
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Prisoners’ Dilemma Game

Question. What would you do if you were one of the prisoners?
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Prisoners’ Dilemma Game

To analyze the game, we are still missing the payoffs.

That is, we need to know what the players care about.

• In this prisoners’ dilemma game, we assume that the pris-

oners care about their own jail time, and they get utility

−1 for 1 month in prison.

Based on the outcome matrix, we could write down the payoff

matrix for the prisoners’ dilemma game.
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Payoff Matrix

Prisoner 1

Prisoner 2

C D

C (−1, −1) (−9, 0)

D (0, −9) (−6, −6)

Payoff Matrix

The payoff matrix contains all the information we need to ana-

lyze the prisoners’ dilemma game.

It is the normal-form representation of the game.
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Normal-form Representation of a Game

Formally, the normal-form representation of a game specifies:

1. the players in the game,

2. the strategies available to each player,

3. the payoffs received by each player for each combination

of strategies that could be chosen by the players.
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Notations

Notations in PD Game

Players Player i for i = 1, .., n Prisoner 1 and 2

Strategies

Si: i’s strategy space
{C, D} for i = 1, 2

(set of strategies of Player i)

si: a strategy for Player i C or D for i = 1, 2s

s = (s1, ...si, ..., sN):

e.g. (C, C)a strategy profile

(a play of the game)

Payoffs ui(s) = ui(s1, ...si, ..., sN) e.g. u1(C, C) = −1
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Normal-form Representation of a Game

Definition 1.B.1. The normal-form representation of an n-

player game specifies the players’ strategy space S1, ..., Sn and

their payoff functions u1, ..., un. We denote this game by G =

{S1, ..., Sn; u1, ..., un}.
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Remark: Timing vs. Information

To analyze a game, information (what does Player i know) is

more important than timing (when do the players move).

• For example, in the prisoners’ dilemma game, the prison-

ers do not need to move simultaneously, it suffices that

each prisoner choose his/her action without knowledge of

the other’s choices. This point will be addressed later in

the course.
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1.C. Iterated Elimination of Strictly

Dominated Strategies

To solve the prisoners’ dilemma game, we will use the idea that

a rational player will not play a strictly dominated strategy.

Definition 1.C.1. Strategy s′
i is strictly dominated by strategy

s′′
i if:

ui(s′
i, s−i) < ui(s′′

i , s−i) for all s−i,

where s−i = (s1, ...si−1, si+1, ..., sn) denotes a strategy profile

of all other players except i.
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Strict Domination

• Definition 1.C.1 tells us that strategy s′
i is strictly dom-

inated by strategy s′′
i if the payoff from strategy s′′

i is

strictly higher than that from strategy s′
i regardless of the

other players’ choices.

• We also say strategy s′′
i strictly dominates strategy s′

i.
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1.C.1. The Prisoners’ Dilemma Game

We apply the idea “a rational player will not play a strictly

dominated strategy” to PD game. For P1,

• If P2 chooses C, then C yields −1 and D yields 0;

• If P2 chooses D, then C yields −9 and D yields −6.

In either case, D is strictly better for P1.
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The Prisoners’ Dilemma Game

• P1’s strategy C is strictly dominated by strategy D, or

P1’s strategy D strictly dominates strategy C.

• P1 should choose D.

• Following the same logic, P2 should also choose D.

• Thus, (D, D) will be the solution of the game.
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The Prisoners’ Dilemma Game

Remark. The process is called elimination of strictly dominated

strategies.

Remark. The only individually rational solution (D, D) is Pareto

inefficient. That is, both prisoners would obtain higher payoffs

if they choose (C, C).
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The Prisoners’ Dilemma Game

The prisoners’ dilemma game has many applications, including

• arms race (D: high level of arms, C: low level of arms);

• price wars (D: undercut price, C: set high price);

• free-rider problem in the provision of public goods

• joint project (D: shirk, C: cooperate).
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The Prisoners’ Dilemma Game

Question. Can you think of any ways to make the good out-

come (C, C) happen?
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The Prisoners’ Dilemma Game

Question. Notice that direct communication between the play-

ers would not work. Why?
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1.C.2. Other Examples

Example 1.C.1. Consider the following game:

Player 1

Player 2

Left Right

Up (1, 0) (1, 2)

Down (0, 3) (0, 1)

• Players: Player 1 and Player 2;

• Strategy spaces: S1 = {Up, Down}, S2 = {Left, Right}.

• Payoffs: e.g. u1(Up, Left) = 1, u2(Up, Left) = 0.
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Example 1.C.1

Question. Is there any strategy that is strictly dominated?
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Example 1.C.1

For Player 1,

• “Up” strictly dominates “Down”.

• Rational Player 1 would not choose “Down”.

For Player 2,

• “Right” is better than “Left” if Player 1 plays “Up”;

• “Left” is better than “Right” if Player 1 plays “Down”.
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Example 1.C.1

Question. What would Player 2 do?

27



Example 1.C.1

If Player 2 knows that Player 1 is rational, then Player 2 could

eliminate “Down” from Player 1’s strategy space.

Player 1

Player 2

Left Right

Up (1, 0) (1, 2)

Then, rational Player 2 would choose “Right”.

Summing up, the solution of the game is (Up, Right).
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Example 1.C.1

Remark. Even though neither “Left” or “Right” is strictly dom-

inated for Player 2, by figuring out what Player 1 would do,

Player 2 would choose “Right” (as long as Player 2 is rational

and Player 2 knows that Player 1 is rational).
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Example 1.C.2

Example 1.C.2. Consider the following game:

Player 1

Player 2

Left Middle Right

Up (1, 0) (0, 1) (1, 2)

Down (0, 3) (2, 0) (0, 1)
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Example 1.C.2

For Player 1, neither “Up” or “Down” is strictly dominated:

• “Up” is better than “Down” if Player 2 plays “Left”;

• “Down” is better than “Up” if Player 2 plays “Middle”.

For Player 2, “Middle” is strictly dominated by “Right”:

• “Middle” is better than “Right” no matter whether

Player 1 plays “Up” or “Down”.

So, rational Player 2 would not play “Middle”.
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Example 1.C.2

• Thus, if P1 knows that P2 is rational, then P1 could

eliminate “Middle” from P2’s strategy space. The game

becomes the one in Example 1.C.1.

• Then, if P1 is rational (and P1 knows that P2 is rational)

then P1 will not play “Down”.

• Thus, if P2 knows that P1 is rational, and P2 knows

that P1 knows that P2 is rational, then P2 can eliminate

“Down” from P1’s strategy space.

• Then a rational P2 would choose “Right”.

• Therefore, the solution of the game is (Up, Right). 32



Iterated elimination of strictly dominated strategies

Remark. The process is called iterated elimination of strictly

dominated strategies.

Remark. Iterated elimination of strictly dominated strategies

has stronger predictive power.
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1.C.3. Application of Iterated Elimination of Strictly

Dominated Strategeis: Voting

• 2 candidates choose political positions for an election.

• 10 positions to choose from: 1 to 10.

• Voters uniformly distributed: 10% at each position.

• Voters will vote for the closest candidate.

• If there is a tie, voters of that position split evenly.

• Candidates’ objective is to maximize the share of votes.
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Voting

Question. Who are the players? What are the strategy spaces

and payoffs?
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Voting

Question. Suppose that one of the candidate is at position 2

and the other at position 6. What are their shares of votes?
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Voting: Analysis

We solve the game using Iterated Elimination of Strictly Dom-

inated Strategies.

Question. Does position 2 dominate position 1?

We need to work out the share of votes a candidate would

get if she chooses position 1 or position 2, against all different

positions the other candidate could choose.
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Voting: Analysis

Question. Does position 3 dominate position 2?

38



Voting: Analysis

Question. What if positions 1 and 10 are deleted (since they

are strictly dominated by position 2 and position 9 respectively)?

Does position 3 dominate position 2 then?

We need to check the share of votes Candidate 1 would get

if he/she chooses position 2 or position 3, against all different

positions except position 1 and 10.
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Voting: Analysis

• We delete positions 2 and 9 since they are strictly domi-

nated (after we delete positions 1 and 10).

• Then we could iterate once more and delete positions 3

and 8.

• And after that, we could delete positions 4 and 7.

• In the end, we are left with positions 5 and 6.

• So the prediction from our analysis is that the candidates

would both choose the center positions.
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Voting

Remark. In political science, it is called the Median Voter The-

orem.

Remark. This idea was introduced by Downs (1957) in political

science. Hotelling (1929) raised a similar idea in economics on

product positioning.
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1.C.4. Drawbacks of Iterated Elimination of Strictly

Dominated Strategies

1. To do the iterated elimination, we require a further as-

sumption on what the players know about each other’s

rationality;

2. The process is applicable to only a small fraction of games.
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Common Knowledge of Rationality

• Iterated Elimination requires further assumptions on what

the players know about each other’s rationality.

• To iterate an arbitrary number of rounds, we need to as-

sume not only that all the players are rational, but also

that all the players know that all the players are rational,

and that all the players know that all the players know

that all the players are rational, and so on, ad infinitum.

This is called common knowledge of rationality.
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Common Knowledge vs. Mutual Knowledge

An event is mutual knowledge if everyone knows it.

Example 1.C.3 (The Hat Puzzle). Two individuals wear hats

of two possible colors: black or white. Each individual observes

the color of the other individual’s hat but not the color of his

own hat. Suppose that both of them wear a white hat.

• Situation 1: An outsider says “I will count slowly. Raise

your hand if you know the color of your hat”.

• Situation 2: Before counting, the outsider mentions “At

least one of you wears a white hat”.
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Common Knowledge vs. Mutual Knowledge

• Situation 1: No one raises their hands and the counts go

on forever.

• Situation 2: Both players raise their hands in round 2.

“At least one of you wears a white hat” is mutual knowledge in

situation 1 and becomes common knowledge in situation 2.
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Prediction Power

Applying Iterated Elimination of Strictly Dominated Strategies,

we are only able to solve a limited number of games.

Example 1.C.4. The following game has no strictly dominated

strategies.

Player 1

Player 2

Left Right

Up (5, 1) (0, 2)

Middle (1, 3) (4, 1)

Down (4, 2) (2, 3)
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1.C.5. Weakly Dominated Strategies

Similar to strictly dominated strategies (Definition 1.C.1), we

define weakly dominated strategies as follows.

Definition 1.C.2. Strategy s′
i is weakly dominated by strategy

s′′
i if

ui(s′
i, s−i) ≤ ui(s′′

i , s−i) for all s−i;

ui(s′
i, s−i) < ui(s′′

i , s−i) for some s−i.

where s−i = (s1, ...si−1, si+1, ..., sn) denotes a strategy profile

of all other players except i.
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Weakly Dominated Strategies

Definition 1.C.2 tells us that strategy s′
i is weakly dominated by

strategy s′′
i if the payoff from strategy s′′

i is

• weakly higher than that from strategy s′
i for all of the

other players’ choices and

• strictly higher for some of the other players’ choices.

We also say strategy s′′
i weakly dominates strategy s′

i.
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Weakly Dominated Strategies

Question. Could we have “iterated elimination of weakly dom-

inated strategies”?

The problem with iterative elimination of weakly dominated

strategy is that the prediction may depend on the order in which

actions are eliminated.
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Weakly Dominated Strategies

Example 1.C.5. Consider the following game:

Player 1

Player 2

Left Middle Right

Up (0, 1) (1, 0) (0, 0)

Down (0, 0) (0, 0) (1, 0)

Figure 1.1: Example 1.C.5

For P2, “Middle” and “Right” are weakly dominated by “Left”.
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Example 1.C.5

If only “Right” is removed,

Left Middle

Up (0, 1) (1, 0)

Down (0, 0) (0, 0)

D weakly========⇒
dominated by U

Left Middle

Up (0, 1) (1, 0)

M strictly========⇒
dominated by L

Left

Up (0, 1)
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Example 1.C.5

If only “Middle” is removed,

Left Right

Up (0, 1) (0, 0)

Down (0, 0) (1, 0)

U weakly========⇒
dominated by D

Left Right

Down (0, 0) (1, 0)
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Example 1.C.5

If both “Right” and “Middle” are removed,

the prediction is
Left

Up (0, 1)

Down (0, 0)
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Let’s Play a Game!

Example 1.C.6 (Guessing Game).

• Everyone in the class pick an integer from [1, 100].

• The winner is the person whose number is closest to two-

thirds times the average in the class.
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1.C.6. Application of Weakly Dominated Strategies:

Second-Price Auction

• One indivisible good for sale

• Valuations of N potential buyers are independently drawn

from a uniform distribution with support [0, 1].

• Denote Buyer i’s valuation by vi.

55



Second-Price Auction

Auction rule:

• Buyers bid simultaneously: bi ∈ [0, +∞).

• Bidder with the highest bid wins the auction and pays the

second highest bid.

• If k buyers submit the same highest bid, then each of

the k buyers has 1/k chance of winning the good. The

payment is the highest bid (since there is a tie).
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Second-Price Auction

Question. How will you bid?
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Second-Price Auction: Analysis

Buyer i ’s payoff when submitting the bid bi is

ui =

!
"""""""#

"""""""$

0 if bi < maxj ∕=i bj

vi−maxj ∕=i bj

k
if bi = maxj ∕=i bj

vi − maxj ∕=i bj if bi > maxj ∕=i bj

where k is the number of buyers bidding bi when bi = maxj ∕=i bj.
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Second-Price Auction: Analysis

Claim. bi ∕= vi is weakly dominated by bi = vi.
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Second-Price Auction: Analysis

bidding b′′
i < vi bidding bi = vi bidding b′

i > vi

m > b′
i 0 0 0

m = b′
i 0 0 −(m − vi)/k

m ∈ (vi, b′
i) 0 0 −(m − vi)

m = v′
i 0 0 0

m ∈ (b′′
i , vi) 0 vi − m vi − m

m = b′′
i (vi − m)/k vi − m vi − m

m < b′′
i vi − m vi − m vi − m

where m = maxj ∕=i bj.
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1.D. Best Responses

1.D.1. Example 1.C.4 Revisited

Player 1

Player 2

Left Right

Up (5, 1) (0, 2)

Middle (1, 3) (4, 1)

Down (4, 2) (2, 3)

We already know that none of the strategies are strictly domi-

nated. 61



Example 1.C.4

Question. Suppose that you are Player 1.

• Could you justify the behavior of choosing “Up”?

• How about “Middle” and “Down”?
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Example 1.C.4

To answer this question, we need to consider your belief on P2’s

strategy.

• Let your belief on the probability that P2 would choose

“Right” be Pr (Right) = pr.

• Then you belief on the probability that Player 2 would

choose “Left” is 1 − pr.
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Example 1.C.4

“Up” dominates “Middle” when

5 · (1 − pr) + 0 · pr ≥ 1 · (1 − pr) + 4 · pr =⇒ pr ≤ 1
2;

“Up” dominates “Down” when

5 · (1 − pr) + 0 · pr ≥ 4 · (1 − pr) + 2 · pr =⇒ pr ≤ 1
3 .

• “Up” dominates both “Middle”,“Down” when pr ≤ 1
3 .

• The belief pr ≤ 1
3 justifies the choice of “Up”.

• Formally, “Up” is called a Best Response (BR) to the

belief pr ≤ 1
3 . 64



Best Response

Definition 1.D.1. Player i’s strategy ŝi is a Best Response

(BR) to the belief p about the other players’ choices if

Eui(ŝi, p) ≥ Eui(s′
i, p) for all s′

i ∈ Si,

or ŝi solves

max
si
Eui(si, p).
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Best Response

Remark. Definition 1.D.1 does not limit to two-player games.

Besides, each player could have any number of strategies.
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Example 1.C.4

Question. Under which belief is “Down” a Best Response?

How about “Middle”?
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Example 1.C.4

Dominance relationships could be more clearly shown in a figure.

Player 1’s expected payoffs from each strategy:

Eu1(Up, pr) = 5 · (1 − pr) + 0 · pr = 5 − 5pr

Eu1(Middle, pr) = 1 · (1 − pr) + 4 · pr = 1 + 3pr

Eu1(Down, pr) = 4 · (1 − pr) + 2 · pr = 4 − 2pr
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Example 1.C.4

0 pr

1

5

4

2

1

4

Middle

Down

Up

BR is MiddleBR is DownBR is Up

69



1.D.2. Penalty Kick Game

Example 1.D.1 (Penalty Kick Game). Consider the following

penalty kick game.

Shooter

Goalkeeper

Left (L) Right (R)

left (l) (4, −4) (9, −9)

middle (m) (6, −6) (6, −6)

right (r) (9, −9) (4, −4)
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Penalty Kick Game

The expected payoffs:

EuS(l, pR) = 4 · (1 − pR) + 9 · pR = 4 + 5pR

EuS(m, pR) = 6 · (1 − pR) + 6 · pR = 6

EuS(r, pR) = 9 · (1 − pR) + 4 · pR = 9 − 5pR
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Penalty Kick Game

0 pR

1

9

4

6 6

4

9
l

m

r

BR is lBR is r
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Penalty Kick Game

It is clear from the figure that m is not a best response to any

belief. Therefore, the shooter should not kick to the middle.

Remark. One should not choose a strategy that is never a Best

Response (BR) to any belief.
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1.D.3. Partnership Game

We will learn to apply the idea that “players do not choose a

strategy that is never a BR” in the following partnership game.

• 2 agents form a partnership.

• For partnership to work, each agent i = 1, 2 needs to put

in effort si ∈ Si = [0, 4].

• Cost of effort is −s2
i .

• Total profit from partnership is 4(s1 + s2 + bs1s2).

• Agents share profit equally, each obtaining 50%.
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Partnership Game: Analysis

Payoffs for the 2 agents are

u1(s1, s2) = 1
2[4(s1 + s2 + bs1s2)] − s2

1;

u2(s1, s2) = 1
2[4(s1 + s2 + bs1s2)] − s2

2.

Best responses ŝ1 and ŝ2 solves

max
s1

2(s1 + s2 + bs1s2) − s2
1;

max
s2

2(s1 + s2 + bs1s2) − s2
2.
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Partnership Game: Analysis

First Order Condition (FOC) gives

ŝ1 = 1 + bs2 = BR1(s2);

ŝ2 = 1 + bs1 = BR2(s1).
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Partnership Game: Analysis

The following graph illustrate the case with b = 1
4 .

0 s1

s2

1 2 4

4

1

2

BR2(s1)

BR1(s2)
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Partnership Game: Analysis

For each agent, si < 1 and si > 2 are never best responses.

Delete these strategies.

0 s1

s2

1 2 4

4

1

2

BR2(s1)

BR1(s2)

never BR never BR

never BR

never BR
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Partnership Game: Analysis

• We further delete those strategies that were never best

responses to the opponent’s strategies after the first round

of deletion.

• This procedure is similar to the Iterated Elimination of

Strictly Dominated Strategies we learned before.
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Partnership Game: Analysis

0 s1

s2

1 2 4

4

1

2

6
4

5
4

6/4
5/4 BR2(s1)

BR1(s2)
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Partnership Game: Analysis

• Again, we could delete all strategies that were never best

responses to the opponent’s strategies after the second

round of deletion.

• We could apply the same procedure again and again after

each round of deletion.

• Eventually, we will end up with the intersection:
!
"""#

"""$

s∗
1 = 1 + bs∗

2;

s∗
2 = 1 + bs∗

1.

=⇒ (s∗
1, s∗

2) = ( 1
1 − b

,
1

1 − b
).
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Partnership Game: Analysis

Remark. At the intersection, both players play best responses

to each other.
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Partnership Game: Social Optimum

• Suppose that there is a social planner who could decide

how much each agent should work in the partnership.

• Social planner’s objective is to maximize total profit net

of costs.

• Social planner solves

max
s1,s2

U(s1, s2) = max
s1,s2

4(s1 + s2 + bs1s2) − s2
1 − s2

2.

Let the optimal effort be s∗∗
1 and s∗∗

2 .
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Partnership Game: Social Optimum

Question. How does s∗
1 and s∗

2 compare to s∗∗
1 and s∗∗

2 ? Or

put it differently, do the agents work too much or too little in

the partnership compared to the social optimum?
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Partnership Game: Social Optimum

FOCs to the social planner’s problem (1.D.3) are
!
"""#

"""$

s∗∗
1 = 2 + 2bs∗∗

2

s∗∗
2 = 2 + 2bs∗∗

1

=⇒ (s∗∗
1 , s∗∗

2 ) = ( 2
1 − 2b

,
2

1 − 2b
)

It is not hard to check that s∗∗
1 > s∗

1 and s∗∗
2 > s∗

2.

• Agents work too little compared to the social optimum.

• Intuition: in partnership, at the margin, each agent bear

full cost for extra effort she puts in, but benefit is shared

with the other agent.
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Partnership Game: Social Optimum

Remark. There are three things that we usually do when we

face a problem (and also when we write an applied paper):

1. do the mathematical calculation,

2. draw figures,

3. understand the intuition.
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1.E. Nash Equilibrium

• We solve the partnership game in Section 1.D.3 by iter-

ated elimination of never best responses.

• In this particular game, we get convergence.

• At the intersection, both players play best responses to

each other.

• The property of mutual best responses gives rise to the

concept of a Nash Equilibrium, which is formally defined

in Definition 1.E.1.
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Nash Equilibrium

Definition 1.E.1. A strategy profile (s∗
1, s∗

2, ..., s∗
n) is a Nash

equilibrium if, for each player i, s∗
i is a best response to s∗

−i:

u(s∗
i , s∗

−i) ≥ u(si, s∗
−i)

for every feasible strategy si ∈ Si; or, s∗
i solves

max
si∈Si

u(si, s∗
−i).
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Nash Equilibrium

Remark (No Regret). At a Nash equilibrium, no player can do

strictly better by deviating, holding everyone else’s actions fixed.

Remark. A Nash equilibrium can be thought of as self-fulfilling

beliefs: Player i would play her Nash strategy if she believes

that the other players play their Nash strategies.
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Nash Equilibrium

Example 1.E.1. Find Nash equilibrium in the following game.

P1

P2

Left Center Right

Up (0, 4) (4, 2) (5, 3)

Middle (4, 0) (0, 4) (5, 3)

Down (3, 5) (3, 5) (6, 6)

• We underline the payoffs of P1’s (2’s) best responses to

each of P2’s (P1’s) strategies.

• NE is where best responses coincide: (Down, Right).
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Nash Equilibrium

Remark. This game could not be solved using Iterated Elimi-

nation of Strictly Dominated Strategies or using Iterated Elim-

ination of Never Best Responses.

For example, rational P1 could choose “Middle” because P1

thinks that P2 would choose “Left”. And P1 thinks that P2

would choose “Left” because P2 thinks that P1 would choose

“Up”. And P1 thinks that P2 thinks that P1 would choose

“Up” because P2 thinks that P1 thinks that P2 would choose

“Center”. And so on.
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1.E.1. Relationship between NE and Dominance

Strict Domination

Let us look again at PD Game:

Prisoner 1

Prisoner 2

C D

C (−1, −1) (−9, 0)

D (0, −9) (−6, −6)

1. For both P1 and P2, D strictly dominates C.

2. Nash equilibrium is (D, D).
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Strict Domination

Remark. No strictly dominated strategies would be played in a

Nash equilibrium.

• A strictly dominated strategy is not a best response to

any strategy of the opponent.

• In particular, it is not a best response to the opponent’s

strategy in the Nash equilibrium.
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Weak Domination

It is possible for a weakly dominated strategy to appear in a

Nash equilibrium.

Example 1.E.2. Consider the following game:

Player 1

Player 2

Left Right

Up (1, 1) (0, 0)

Down (0, 0) (0, 0)

One of the equilibria (Down, Right) involves the play of weakly

dominated strategies. 94



1.E.2. Coordination Game

Investment Game

• n investors, each could invest either $0 or $10.

• If Investor i invests $0, then she gets $0.

• If Investor i invests $10, then

– if at least 90% of the investors invest, Investor i gets

a profit of $15, or a net profit of $5;

– if less than 90% of the investors invest, Investor i

would lose her initial investment $10.

95



Investment Game: Analysis

• To look for Nash equilibrium, in principle, we need to

look at any possible outcome. For example, 1% of the

investors invests and 99% do not.

• There are infinitely many such combinations.

• In practice, we guess and check.

• Guess and check is a very useful method in these games

where there are many players, but not many strategies per

player.
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Investment Game: Analysis

Two Nash equilibria in this game:

1. All investors invest: If all other investors invest, then In-

vestor i’s best response is to invest.

2. No investor invests: If all other investors do not invest,

then Investor i’s best response is not to invest.
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Investment Game

Remark. The equilibrium where all investors invest Pareto dom-

inates the equilibrium where no investor invests: every investor

is better-off in the first equilibrium.

Remark. Nash equilibrium is a self-fulfilling outcome.

Remark. Unlike the Prisoners’ Dilemma game, pre-play com-

munication works in the coordination game.
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Investment Game

Remark. This model could help us understand bank runs.

• The good equilibrium: everyone has confidence in the

bank and leaves their deposits in the bank. The bank

could lend some of the money out on a higher interest

rate.

• The bad equilibrium: people lose confidence in the bank

and start drawing their deposits out. Then the bank does

not have enough cash to cover those deposits and be-

comes bankrupt.
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The Battle of the Sexes

Example 1.E.3.

• Alice and Bob are considering going out for the night.

• While at separate workplaces, Alice and Bob must choose

to attend either Opera or Movie without communication.

• Both of them prefer to be together.

• But as for the entertainment, Alice prefers Opera whereas

Bob prefers Movie.
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The Battle of the Sexes

Alice

Bob

Opera Movie

Opera (2, 1) (0, 0)

Movie (0, 0) (1, 2)
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The Battle of the Sexes

Two (pure strategy) Nash equilibria: (Opera, Opera) and (Movie,

Movie).

Remark. Unlike the investment game, there is a conflict of

interest between two players in the Battle of the Sexes game.
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1.F. Applications

1.F.1. Cournot Model of Duopoly

• Quantities (of a homogeneous product) produced by

firms 1 and 2: q1 and q2

• Market-clearing price when aggregate quantity is

Q = q1 + q2: P (Q) = a − Q.

• Total cost to a firm with qi: Ci(qi) = cqi, where c < a.

• Firms choose quantities simultaneously.
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Normal-Form Representation

• Players: Firm 1 and 2;

• Strategies: qi ∈ Si = [0, ∞) for Firm i;

• Payoffs: For Firm i,

πi(qi, qj) = qi[P (qi + qj) − c] = qi[a − (qi + qj) − c]

The other firm is denoted by j.
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Cournot Duopoly

We have learned three ways to solve the problem.

1. Nash equilibrium

2. Best response curves

3. Iterated elimination of never best responses
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Nash Equilibrium

(q∗
1, q∗

2) forms a Nash equilibrium if, for each firm i,

πi(q∗
i , q∗

j ) ≥ πi(qi, q∗
j ) for all feasible qi ∈ Si.

Equivalently, q∗
i solves

max
qi∈Si

πi(qi, q∗
j ) = max

qi∈[0,∞)
qi[a − (qi + q∗

j ) − c].

FOC yields

q∗
i = 1

2(a − q∗
j − c).
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Nash Equilibrium

For (q∗
1, q∗

2) to be a Nash equilibrium, we have
!
"""#

"""$

q∗
1 = 1

2(a − q∗
2 − c);

q∗
2 = 1

2(a − q∗
1 − c).

=⇒ (q∗
1, q∗

2) = (a − c

3 ,
a − c

3 ).

The profit of each firm is

πi(q∗
i , q∗

j ) = a − c

3

%
a − (a − c

3 + a − c

3 ) − c
&

= (a − c)2

9
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Best Response Curves

• We could also solve for the equilibrium graphically using

the best response curves.

• The two best response curves BR1(q2) and BR2(q1) in-

tersect once at the equilibrium quantity pair (q∗
1, q∗

2) =

(a−c
3 , a−c

3 ). (See next page)
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Best Response Curves

0 q1

q2

a−c
2

a − c

a − c

a−c
2

BR1(q2)

BR2(q1)

a−c
3

a−c
3

(a−c
3 , a−c

3 )
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Iterated Elimination of Never Best Responses

• Similar to our analysis of the partnership game, we could

apply iterated elimination of never best responses.

• In the first round, we eliminate the quantities higher than

the monopoly quantity, i.e., qi > qm = a−c
2 , since qi > qm

is never a best response against any qj ≥ 0.
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First Round Elimination

qi > qm is never a best response.

0 q1

q2

a−c
2

a − c

a − c

a−c
2

BR1(q2)

BR2(q1)

a−c
3

a−c
3

(a−c
3 , a−c

3 )

never BR

never BR
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Second Round Elimination

Given that q ≤ qm = a−c
2 , qi < a−c

4 is never a best response.

0 q1

q2

a−c
2

a − c

a − c

a−c
2

BR1(q2)

BR2(q1)

a−c
3

a−c
3

(a−c
3 , a−c

3 )

never BR

never BR
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Iterated Elimination of Never Best Responses

Repeating the arguments leads to the equilibrium quantity

(q∗
1, q∗

2) = (a−c
3 , a−c

3 ).
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Monopoly Case

• Monopolist chooses quantity q to maximize its profit.

• Marginal cost is still c.

• Monopolist’s problem is

max
q

q(a − q − c).

• The solution is
qm = a − c

2 .

• Total industry profit for the monopoly case is

π(qm) = a − c

2

%
a −

'
a − c

2

(
− c

&
= (a − c)2

4 .
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Monopoly Case

Graphically, intersection of Marginal Revenue (MR) curve and

Marginal Cost (MC) curve.

0 q

p

a

MR

Demand

a

c

qpc = a − cqm = a−c
2

pm
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Monopoly Case

• Monopoly quantity qm = a−c
2 is smaller than the total

quantity q∗
1 + q∗

2 = 2(a−c)
3 produced by Cournot duopoly.

• Monopoly price is higher since p = a − c − Q, and total

industry profit is higher:

π(qm) = (a−c)2

4 > 2(a−c)2

9 = π1(q∗
1, q∗

2) + π2(q∗
1, q∗

2).
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Cournot Duopoly

Question. Each firm in the Cournot duopoly would be better-

off sharing the monopoly profit by each producing half of the

monopoly quantity. Why don’t the firms do that?
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Iterated Elimination May not Yield a Unique Solution.

• Consider the three firm version of Cournot Model.

• Let Q−i be the sum of quantities of firms other than i.

• It is still true that any quantity higher than the monopoly

quantity qm = a−c
2 is never a best response.

• In the first round of elimination, we eliminate the quanti-

ties qi > qm for all firms.

• After the first round, we have Q−i ≤ qm + qm = a − c.
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Iterated Elimination May Not Yield a Unique Solution

• In this case, any qi ∈ [0, a−c
2 ] is a best response to some

Q−i ∈ [0, a − c].

• Specifically, BRi(Q−i) = 1
2(a − Q−i − c).

• Therefore, we could not further eliminate any quantities.

• As a result, iterated elimination leads to imprecise predic-

tion in this case.

Remark. The 3-firm Cournot model could still be solved using

Nash equilibrium.
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1.F.2. Bertrand Model of Duopoly with Differentiated

Products

• Prices chosen by firm 1 and 2: p1 and p2

• Quantity consumers demand from firm i:

qi(pi, pj) = a − pi + bpj, assume b < 2.

• Total cost: Ci(qi) = cqi where c < a.

• Firms act simultaneously.
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Normal-Form Representation

• Players: Firm 1 and 2;

• Strategies: pi ∈ Si = [0, ∞) for Firm i;

• Payoffs: For Firm i:

πi(pi, pj) = qi(pi, pj)(pi − c) = (a − pi + bpj)(pi − c).
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Nash Equilibrium

(p∗
i , p∗

j) forms a Nash equilibrium if, for each firm i, q∗
i solves

max
pi∈[0,∞)

πi(pi, p∗
j) = max

pi∈[0,∞)
(a − pi + bp∗

j)(pi − c).

The solution to this optimization problem is

p∗
i = 1

2(a + bp∗
j + c).

For (p∗
1, p∗

2) to be a Nash equilibrium, we have
!
"""#

"""$

p∗
1 = 1

2(a + bp∗
2 + c);

p∗
2 = 1

2(a + bp∗
1 + c).

=⇒ (p∗
1, p∗

2) =
)a + c

2 − b
,
a + c

2 − b

*
.
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Best Response Curves

The two best response curves BR1(p2) and BR2(p1) intersect

once at the equilibrium quantity pair (p∗
1, p∗

2) = (a+c
2−b

, a+c
2−b

).

0 p1

p2

a+c
2

a+c
2

a+c
2−b

a+c
2−b

BR1(p2)

BR2(p1)
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1.F.3. Candidate-Voter Model

This model is a simplified version of Osborne and Slivinski (1996).

• There are n voters, with positions 1, ..., n.

• Voters vote for the closest candidate.

• Unlike the previous voting model in Section 1.C.3:

1. The number of candidates is not fixed.

2. Candidates cannot choose their position. Each voter

is a potential candidate.
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Normal-Form Representation

• Players: Voters/Candidates;

• Strategies: to run or not to run;

• Payoffs:

– Prize if win = B, 1/k chances of winning if k can-

didates win;

– Cost of running = c, assuming B ≥ 2c;

– If Voter/Candidate i at position x and the winner is

at y, then i gets −|x − y|.
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Candidate-Voter Model: An example

Suppose that there are 11 voters.

• If Voter/Candidate at position 5 runs and is the sole win-

ner, then she gets B − c;

• If Voter/Candidate at position 5 runs and Voter/Candidate

at position 7 wins, then Voter/Candidate at position 5

gets −c − 2;

• If Voter/Candidate at position 5 does not run and

Voter/Candidate at position 7 wins, then Voter/Candidate

at position 5 gets −2.
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Nash Equilibrium

Question. Is there any NE where no candidate runs?
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Nash Equilibrium

No. If no candidate runs, every possible candidate would be

better-off running: 0 if not running v.s. B − c if running.
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Nash Equilibrium

Question. Is there any NE where one candidate runs?
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Nash Equilibrium

Yes if n is odd.

Only the center candidate running constitutes a NE:

• For center candidate, when no other candidate runs, her

BR is running: 0 if not running v.s. B − c if running.

• For other candidates, their BR are not running since they

would lose if running and running costs c.
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Nash Equilibrium

Question. Is there any NE where two candidates run?
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Nash Equilibrium

Yes. The two candidates needs to be of equal distance from the

center and cannot be too far apart.

• For example, in the 11-Voter/Candidate case, Voter/Candidate

5 and 7 running is a NE.

• We need to check the following three types of deviations:

– A Voter/Candidate from the outside enters (position

1 − 4 and 8 − 11).

– The Voter/Candidate in the middle enters (position

6).

– Voter/Candidate 5 and 7 choose not to run. 132



Nash Equilibrium

Remark. There are many NE in this Voter/Candidate Model.

And not all of the NE predict candidates “at the center”.
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1.F.4. Location Model

• There are two types of people in the society, namely, Tall

(T) and Short (S).

• The measure of T and S are both 1.

• There are two towns, namely, East (E) and West (W).

• Each town could hold measure 1 of people.

• All people simultaneously choose which town to live in.

• If more than measure 1 of people chooses one town, then

we randomly choose who could stay.
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Location Model

The payoff of everyone is the same.

0
Fraction of i’s Type

in i’s Town

i’s Utility

1
2

1

2

1
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Nash Equilibrium

There are three Nash Equilibria as follows (Guess and Check):

1. Two Segregated Equilibria

a) All T in E and All S in W;

b) All T in W and All S in E;

2. One Integrated Equilibrium: exactly 1
2 of T and 1

2 of S in

one town.
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Location Model

Remark. The two segregated equilibria are stable whereas the

integrated equilibrium is unstable.

• If starting from 99%/1% (a small deviation away from

the segregated equilibrium), the population will eventually

restore to the segregated equilibrium;

• If starting from 51%/49% (a small deviation away from

the integrated equilibrium), the population will eventually

become segregated.
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Location Model

Remark. Observing segregation does not imply people’s pref-

erence for segregation. In this location model, everyone prefers

integration: an individual obtains 2 in the integrated equilibrium

whereas in the segregated equilibrium, she only gets 1. How-

ever, segregation equilibria exist and are stable. This idea is

brought up by Schelling (1971).
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Location Model

Remark. Actually, according to the description of the game,

everyone choosing the same town and getting randomized is

also an equilibrium. Integration is attained.

Remark. The integration outcome could also be obtained via

individual randomization. This idea would be clearer after we

formally discuss Mixed Strategy Nash Equilibrium in the next

section.
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1.G. Mixed Strategy Nash Equilibrium

Example 1.G.1. Find Nash equilibrium in the Rock, Paper,

Scissors game.

Player 1

Player 2

Rock Paper Scissors

Rock (0, 0) (−1, 1) (1, −1)

Paper (1, −1) (0, 0) (−1, 1)

Scissors (−1, 1) (1, −1) (0, 0)

Applying previous definition of Nash Equilibrium, Definition 1.E.1,

there exists no (Pure Strategy) NE.
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Rock, Paper, Scissors

Question. How do you play the Rock, Paper, Scissors game?
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Mixed Strategy Nash Equilibrium

Definition 1.G.1 (Mixed Strategy). Suppose that Player i has

K pure strategies: Si = {si1, ..., siK}. Then a mixed strategy

for Player i is a probability distribution pi = (pi1, ..., piK) over

Si, where 0 ≤ pik ≤ 1 for k = 1, ..., K and pi1 + ... + piK = 1.

Remark. When pij = 1 and pik = 0 for all k ∕= j, the mixed

strategy pi = (pi1, ..., piK) is the pure strategy sij.
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Mixed Strategy Nash Equilibrium

Definition 1.G.2. A mixed strategy profile (p∗
1, p∗

2, ..., p∗
n) is a

mixed strategy Nash equilibrium if, for each player i, p∗
i is a best

response to p∗
−i.
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Rock, Paper, Scissors

• Formally, your mixed strategy for Rock, Paper, Scissors

game is (1
3 , 1

3 , 1
3).

• We show that the strategy profile ((1
3 , 1

3 , 1
3), (1

3 , 1
3 , 1

3)) is

a NE by showing that (1
3 , 1

3 , 1
3) is a best response to the

opponent’s strategy (1
3 , 1

3 , 1
3).

• Need to check: against (1
3 , 1

3 , 1
3), expected payoff from

(1
3 , 1

3 , 1
3) is (weakly) higher than expected payoff from any

other mix (p, q, 1 − p − q).
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Matching Pennies

Question. Could you check that
)
(1

2 , 1
2), (1

2 , 1
2)

*
is a (mixed

strategy) Nash equilibrium for the Matching Pennies game?

Player 1

Player 2

Head Tail

Head (−1, 1) (1, −1)

Tail (1, −1) (−1, 1)
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1.G.1. Finding Mixed Strategy Nash Equilibrium

Example 1.G.2. Let us revisit the Battle of the Sexes game:

Alice

Bob

Opera Movie

Opera (2, 1) (0, 0)

Movie (0, 0) (1, 2)
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The Battle of the Sexes

• Given Alice’s and Bob’s strategies, we could calculate

their payoffs.

• For example, consider Alice’s mixed strategy pA = (1
5 , 4

5)

and Bob’s mixed strategy pB = (1
2 , 1

2).

• Then Alice’s expected payoffs from Opera and Movie are

respectively

EUA(Opera, pB) = 1
2 · 2 + 1

2 · 0 = 1;

EUA(Movie, pB) = 1
2 · 0 + 1

2 · 1 = 1
2 .
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The Battle of the Sexes

• Alice’s expected payoff from mixed strategy p = (1
5 , 4

5) is

EUA(pA, pB) =1
5 · EUA(Opera, pB) + 4

5 · EUA(Movie, pB)

=1
5 · 1 + 4

5 · 1
2 = 3

5 .
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The Battle of the Sexes

Observation. Alice’s expected payoff from the mixed strategy

pA is the weighted average of the expected payoffs from each

of the pure strategies in the mix. And further, the weighted

average always lies in-between the lowest and the highest payoffs

involved in the mix.

• In our example, 3
5 = 1

5 · 1 + 4
5 · 1

2 ∈ [1
2 , 1].

• This observation is true in general.
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Finding Mixed Strategy Nash Equilibrium

Result. If a mixed strategy is a best response, then each pure

strategy in the mix must be best responses. In particular, each

must yield the same expected payoff.
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The Battle of the Sexes

Applying this idea, we would be able to find the mixed strategy

Nash equilibrium for the Battle of the Sexes game.

• Assume pA = (p, 1 − p) and pB = (q, 1 − q).

• Alice’s expected payoffs from Opera and Movie are

EUA(Opera, pB) = q · 2 + (1 − q) · 0 = 2q;

EUA(Movie, pB) = q · 0 + (1 − q) · 1 = 1 − q.

• For the mixed strategy to be a best response,

EUA(Opera, pB) = EUA(Movie, pB) =⇒ q = 1
3 .
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The Battle of the Sexes

• Similarly, for Bob
!
"""#

"""$

EUB(pA, Opera) = p · 1 + (1 − p) · 0 = p

EUB(pA, Movie) = p · 0 + (1 − p) · 2 = 2 − 2p

EUB(pA, Opera) = EUB(pA, Movie) =⇒ p = 2
3 .

• The mixed strategy Nash equilibrium is
'

pA = (2
3 ,

1
3), pB = (1

3 ,
2
3)

(
.
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The Battle of the Sexes

Remark. Notice that using Alice’s payoff and applying the indif-

ferent condition, we solve for Bob’s mixing, i.e., pB = (q, 1−q),

and similarly, using Bob’s payoff, we solve for Alice’s mixing, i.e.,

pA = (p, 1 − p).

Remark. A maybe easier to remember version: Bob’s equi-

librium mix makes Alice indifferent and Alice’s equilibrium mix

make Bob indifferent.
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Mixed Strategy Nash Equilibrium

• To check whether the mixed strategy is indeed a Nash

equilibrium, previously for the Rock, Paper, Scissors game,

we checked that there is no strictly profitable deviation to

all pure strategies and all other possible mixed strategies.

• Actually, checking all pure strategies are sufficient.

Question. Why is it that checking all pure strategies are suffi-

cient?
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1.G.2. Other Examples

Tax Paying Game

Auditor

Taxpayer

Honest Cheat

Audit (2, 0) (4, −10)

Not Audit (4, 0) (0, 4)
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Tax Paying Game

Let us first look for pure strategy Nash equilibrium.

Auditor

Taxpayer

Honest (H) Cheat (C)

Audit (A) (2, 0) (4, −10)

Not Audit (N) (4, 0) (0, 4)

There is no pure strategy Nash equilibrium in this game.
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Tax Paying Game

Next, we look for mixed strategy Nash equilibrium.

• Let the auditor’s mixed strategy be pA = (p, 1 − p) and

the taxpayer’s mixed strategy be pT = (q, 1 − q).

• We use the auditor’s payoff to find (q, 1 − q) = (2
3 , 1

3).

• We use the taxpayer’s payoff to find (p, 1 − p) = (2
7 , 5

7).
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Tax Paying Game

Question. What if we raise the fine to −20. Will such a policy

raise tax compliance rate q?

Question. What policies would raise tax compliance rate q?
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Penalty Kick Game

Shooter

Goalkeeper

Left (L) Right (R)

left (l) (4, −4) (9, −9)

middle (m) (6, −6) (6, −6)

right (r) (9, −9) (4, −4)

The mixed strategy Nash equilibrium is
'

pS = (1
2 , 0,

1
2), pG = (1

2 ,
1
2)

(
.
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Penalty Kick Game

Remark. Recall that when we first study the Penalty Kick Game

in Section 1.D.2, we have shown that m is never a best response

to any belief. Therefore, it should not be surprising that in the

mixed strategy equilibrium, m is not played.
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1.G.3. Dominance and Best Responses

• Recall that if si is strictly dominated, then there is no

belief that Player i could hold (about the other players’

strategies) such that it would be optimal to play si.

• The converse is also true for 2-player case, provided we

allow for mixed strategies.
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Dominance and Best Responses

We will illustrate the second result in an example.

• Consider the Penalty Kick Game.

• In the Penalty Kick Game, we know that m is never a

best response for Shooter.

• Now we show that there exists a (mixed) strategy that

strictly dominates m. Let such a strategy be (p, 0, 1−p).

162



Dominance and Best Responses

Playing against Goalkeeper’s strategy (q, 1 − q) for q ∈ [0, 1],

1. m gives 6;

2. the mixed strategy (p, 0, 1 − p) gives 4pq + 9p(1 − q) +

9(1 − p)q + 4(1 − p)(1 − q) = (−10p + 5)q + 5p + 4.

3. For the mixed strategy to dominate m for any q ∈ [0, 1],

we need

• 5p + 4 > 6 (when q = 0) and

• −10p + 5p + 9 > 6 (when q = 1).

Therefore, any mix with p ∈ (2
5 , 3

5) will do.
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1.G.4. Interpretations of Mixed Strategies

1. People literally randomizing: e.g., players in rock, paper

and scissors game and in penalty kick game.

2. Beliefs of others’ actions: e.g., in the battle of the sexes

game, we could think about Alice’s mixture as what Bob

believes that Alice is going to do. Holding such a belief,

Bob is indifferent between the two actions.

3. Proportion of players: e.g., taxpayer’s strategy (2
3 , 1

3) in

the tax paying game can be thought of as the proportion

of taxpayers being honest (2
3) and cheating (1

3) on taxes.
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