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Dynamic Games of Complete Information

• In dynamic games, players move sequentially.

• Information is more important than timing.

– Player who moves second knows what the previ-

ous player has done before he moves.

– The previous player knows that this is the case.

• Complete information: players’ payoff functions are

common knowledge
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Dynamic Games of Complete Information

• In Section 2.A, we study games of perfect information:

games in which the player who is to move knows the

full history of the play of the game.

• In Section 2.B, we study games of imperfect informa-

tion.

• In Section 2.C, we study repeated games.
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2.A. Dynamic Games of Complete and

Perfect Information

2.A.1. Backward Induction

Example 2.A.1. Consider the 2-player investment game.

• Player 1 chooses to invest 0, 1, or 3.

• After observing Player 1’s choice, Player 2 can either

match, i.e., add the same amount, or take the cash.
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Investment Game: Payoffs

For Player 1,

• if invests 0, gets 0;

• if invests 1, doubles if matched and loses 1 if not;

• if invests 3, doubles if matched and loses 3 if not.

For Player 2,

• if takes, gets Player 1’s investment;

• if matches 1, gets 2.5 back;

• if matches 3, gets 5 back.
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Investment Game

This is a sequential-move game.

• Player 2 observes how much Player 1 has invested be-

fore making the matching or taking decision.

• Player 1 knows that this is the case.
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Investment Game

Question.

• Suppose you are Player 1, how much would you invest?

• Suppose you are Player 2, would you match 1? How

about 3?
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Investment Game

The game could be more clearly organized in the game tree:

P1

(0, 0)

not invest

P2

(1, 1.5)

match

(−1, 1)

take

1

P2

(3, 2)

match

(−3, 3)

take

3
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Investment Game

• The solid nodes are called decision nodes, besides which

we write down the player whose turn it is to move.

• The hollow nodes are called end nodes or terminal

nodes, besides which we write the players’ payoffs.
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Investment Game

Let us now work out what the players would do in this game.

• P1 would anticipate what P2 would do following each

of his own choice, and then work backwards.

– If P1 chooses not to invest, she would get 0.

– If P1 chooses to invest 1, she knows P2 would

match and she will double her money and get 1.

– If P1 chooses to invest 3, she knows P2 would take

the cash and she will lose her investment of 3.
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Investment Game

• P1 is essentially choosing among the payoffs of 0 (not

investing), 1 (investing 1) and −3 (investing 3).

• P1 would choose to invest 1.

• To complete the analysis, we write out P2’s choice.

• Seeing that P1 chooses 1, P2 would indeed match.
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Investment Game: Backward Induction

P1

(0, 0)

not invest

P2

(1, 1.5)

match

(−1, 1)

take

1

P2

(3, 2)

match

(−3, 3)

take

3

12



Backward Induction

This idea of starting at the player who moves last, solving

out what they would do and then work back through the tree

is called Backward Induction.

13



Investment Game

Remark. Note that the mutually beneficial outcome (3, 2)

is not played out.

Question. Can you think of ways to reach the good out-

come?
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Change the Division

Change the division of the net gain of 5 after the matched

investment of 3.

P1

(0, 0)

not invest

P2

(1, 1.5)

match

(−1, 1)

take

1

P2

(1.9, 3.1)

match

(−3, 3)

take

3

Remark. P1 also likes such change since now she gets 1.9

instead of 1. 15



Collateral

Ask P2 to make a collateral: imposing an extra negative

return to P2

P1

(0, 0)

not invest

P2

(1, 1.5)

match

(−1, 1−collateral)

take

1

P2

(3, 2)

match

(−3, 3−collateral)

take

3

Remark. Collateral lowers the payoff to P2 at some point

of the tree, yet it makes P2 better off.
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Dynamic Games of Complete and Perfect Information

Abstracting from the concrete example, the dynamic games

of complete and perfect information takes the following form:

1. Player 1 chooses an action a1 from the feasible set A1;

2. Player 2 observes a1 and then chooses an action a2 from

the feasible set A2.

3. Payoffs are u1(a1, a2) and u2(a1, a2).

These games could be more clearly represented in game trees

as we did in the investment game (Example 2.A.1).
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Dynamic Games of Complete and Perfect Information

The key features of these games are

1. the moves occur in sequence;

2. all previous moves are observed before the next move

is chosen (perfect information);

3. the players’ payoffs from each feasible combination of

moves are common knowledge (complete information).
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Dynamic Games of Complete and Perfect Information

This class of games are solved by Backward Induction:

1. In the second stage, given a1 previously chosen by P1,

P2 solves
max
a2∈A2

u2(a1, a2).

Denote the solution R2(a1).

This is P2’s reaction (or best response) to P1’s action.

2. In the first stage, P1 would anticipate P2’s reaction to

each a1 that P1 might take, so P1 solves

max
a1∈A1

u1(a1, R2(a1)).

(a∗
1, R2(a∗

1)) is the backward-induction outcome.
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Backward Induction

Remark. The backward-induction outcome does not involve

non-credible threats.

• P1 anticipates that P2 would respond optimally to any

a1 that P1 might choose, i.e., P2 would play R2(a1).

• P1 gives no credence to threats that will not be in P2’s

self-interest when the second stage arrives.

For example, in the original game of Example 2.A.1, P2’s

claim that he would always match P1’s investment would

not be believed by P1.
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Extensive-Form Representation

Our description of the game corresponds to the Extensive-

Form Representation that specifies

1. the players in the game,

2. a) when each player has the move,

b) what each player can do at each of her opportu-

nities to move,

c) what each player knows at each of her opportuni-

ties to move,

3. the payoffs received by each player for each combina-

tion of moves that could be chosen by the players.
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Extensive-Form and Normal-Form Representation

Graphically, the extensive-form representation is shown as

the game tree.

Recall the normal-form representation of a game specifies

1. the players in the game,

2. the strategies available to each player, and

3. the payoffs received by each player for each combina-

tion of strategies that could be chosen by the players.

Graphically, the normal-form representation is shown as the

payoff matrix.
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Extensive-Form and Normal-Form Representation

• It is convenient to represent dynamic games in exten-

sive form and static games in normal form.

• However, notice that any game could be represented in

either normal or extensive form.

• For the last point, we will discuss in detail later on.
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Backward Induction: Example

Example 2.A.2. P1 and P2 are two armies in a battle.

P1

P2

(0, 0)

Fight

(2, 1)

Run Away

Fight

P2

(1, 2)

Fight

(1, 1)

Run Away

Run Away
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Example 2.A.2

Question. P2 likes outcome (Run Away, Fight) the most.

To make P1 run away, P2 claims that he would choose to

fight no matter P1 fights or not.

Will such a threat be believed by P1?

25



Backward Induction

The game is solved by backward induction.

P1

P2

(0, 0)

Fight

(2, 1)

Run Away

Fight

P2

(1, 2)

Fight

(1, 1)

Run Away

Run Away

P1 would “Fight”.

Following this action, P2 would “Run Away”.
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Burning the Ship

We add the option “Burn the Ship” for Player 2.

• If P2 does not choose to “Burn the Ship”, then the

game goes on as in the original example.

• If P2 chooses to “Burn the Ship”, then P2 has elimi-

nated his own option “Run Away”.
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Burning the Ship

P2

P1

P2

(0, 0)

F

F

P2

(1, 2)

F

RA

Burn the Ship

P1

P2

(0, 0)

F

(2, 1)

RA

F

P2

(1, 2)

F

(1, 1)

RA

RA

Not Burn
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Burning the Ship: Backward Induction

Still, we use backward induction to solve the game.

P2

P1

P2

(0, 0)

F

F
P2

(1, 2)

F

RA

Burn the Ship

P1

P2

(0, 0)

F

(2, 1)

RA

F
P2

(1, 2)

F

(1, 1)

RA

RA

Not Burn

P2 chooses to “Burn the Ship”, followed by P1 “Run Away”.

At last, P2 “Fight”. 29



Burning the Ship

Remark. P2 is better off by getting rid of his own option

“Run Away”.

• Essentially, by burning the ship, P2 commits not to

run away, and thus makes the action “Fight” credible.

• This commitment strategy is similar to the collateral

case in the investment example (Example 2.A.1).
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Burning the Ship

Remark. Another important aspect is that P1 must know

that P2 has burned the ship. Otherwise, the game tree in

P1’s mind is still the original one and as a result P1 would

“Fight”.
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Lion Game

Example 2.A.3 (The Lion Game).

• n lions and 1 sheep

• Lion society is hierarchical: only the head lion can eat

the sheep.

• However, after the head lion has eaten the sheep, he

would fall into postprandial stupor and could be eaten

by the second largest lion.

• After the second largest lion has eaten the head lion,

he could be eaten by the third largest lion...

Question. Should the head lion eat the sheep? 32



2.A.2. Stackelberg Model of Duopoly

Stackelberg (1934) proposed a dynamic model of duopoly in

which a dominant (or leader) firm moves first and a subor-

dinate (or follower) firm moves second.
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Stackelberg Model of Duopoly

The timing of the game is as follows:

1. Firm 1 chooses a quantity q1 ≥ 0;

2. Firm 2 observes q1 and then chooses a quantity q2 ≥ 0.

Payoff to Firm i is given by

πi(qi, qj) = qi[P (Q) − c] = qi[a − qi − qj − c].
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Backward Induction

1. At Stage 2, observing q1, Firm 2 solves

max
q2≥0

π2(q1, q2) = max
q2≥0

q2[a − q1 − q2 − c]

=⇒ q2 = a − q1 − c

2 = BR2(q1).

2. Knowing BR2(q1), at Stage 1, Firm 1 solves

max
q1≥0

π1(q1, BR2(q1)) = max
q1≥0

q1

!
a − q1 − c

2

"

=⇒ q∗
1 = a − c

2 .

Plugging into BR2(q1) gives q∗
2 = a−c

4 .

35



Comparison with Cournot Outcome

Question. Compared to Cournot outcome, is Firm 1 better-

off? How about Firm 2?
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Comparison with Cournot Outcome

Recall that the Nash equilibrium of the Cournot game is

qc
1 = qc

2 = a − c

3 .

• In Stackelberg game, Firm 1 produces more than Cournot

quantity whereas Firm 2 produces less.

• In terms of aggregate quantity, the firms produces more

in Stackelberg game (a−c
2 + a−c

4 > a−c
3 + a−c

3 ).

• Since p(Q) = a−Q, price is lower in Stackelberg game.
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Comparison with Cournot Outcome

• We could directly calculate Firm 1 and Firm 2’s prof-

its in Stackelberg game and Cournot game and make

comparisons.

• Instead, here we provide an argument without detailed

calculations.
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Comparison with Cournot Outcome

Question. In Stackelberg game, what would Firm 2 do if

Firm 1 chooses Cournot quantity?
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Comparison with Cournot Outcome

• Firm 2 would best respond with Cournot quantity.

• Thus, Firm 1 could have achieved its Cournot profit

level by choosing Cournot quantity.

• But Firm 1 chooses some other quantity a−c
2 .

• Firm 1’s profit in Stackelberg game must exceed its

profit in Cournot game.

• For Firm 2, we have already established that in Stack-

elberg game, Firm 2’s quantity is lower and the price

p(Q) is lower.

• Firm 2 is worse-off in the Stackelberg game.
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Comparison with Cournot Outcome

Remark. Compared to Cournot game, in Stackelberg game,

Firm 2 has more information (Firm 2 observes q1 before

choosing q2) and yet it is worse-off.

Remark. The fact that Firm 1 knows that Firm 2 has more

information is important.
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Spy

• Two firms both privately deciding quantities to pro-

duce. (Cournot game)

• Firm 2 sends a spy to Firm 1.

• Moreover, Firm 1 knows that there is a spy even though

they do not know who is the spy.

Question. What would Firm 1 do?
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First-mover/Second-mover Advantage

The Stackelberg game is a game with First-mover Advantage.

Question. Can you think of games with Second-mover Ad-

vantage? And games with neither First-mover nor Second-

mover Advantage?
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First-mover/Second-mover Advantage

1. Rock, Paper, Scissors is a game with Second-mover

Advantage.

2. “I split, you choose” is a game with neither First-mover

nor Second-mover Advantage.
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First-mover/Second-mover Advantage

Example 2.A.4.

• Two players play with two piles of stones.

• Players move sequentially.

• In each turn, the player whose turn it is to move picks

one of the two piles and removes some (≥ 1) of the

stones.

• The person who gets the last stone wins.

Question. Is it a game of First-mover or Second-mover ad-

vantage?
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Zermelo’s Theorem

Theorem (Zermelo’s Theorem). Consider a finite two-person

game with perfect information. Assume that there are three

outcomes: a win for Player 1, a loss for Player 1, and a tie.

Then, either Player 1 can force a win, or Player 1 can at

least force a tie, or Player 2 can force a loss on Player 1.

Originally, Zermelo’s Theorem concerns the game of chess.
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2.A.3. Sequential Bargaining

Ultimatum Game

• Player 1 and Player 2 are dividing one dollar.

• P1 can make “take-it-or-leave-it” offer to P2: (s, 1−s).

• “Take-it-or-leave-it” means:

– If P2 accepts the offer, then payoffs are (s, 1 − s).

– If P2 rejects the offer, then payoffs are (0, 0).
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Ultimatum Game

• By backward induction, P2 should accept any amount

(1 − s) ≥ 0.

• Knowing this, P1 would keep all 1 to herself.

• The equilibrium division is (1, 0).
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Two-stage bargaining

• Player 1 and Player 2 are bargaining over one dollar.

• They alternate in making offers.

• Both players discount payoffs received in later periods

by δ < 1 per period.

• The bargain will last for two periods at most.
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Two-stage bargaining

1. P1 makes an offer to P2: (s1, 1 − s1)

• If P2 accepts offer, then game ends and payoffs

are (s1, 1 − s1).

• If P2 rejects offer, then game goes on to stage 2.

2. P2 makes an offer to P1: (s2, 1 − s2)

• If P1 accepts offer, then game ends and payoffs

are (s2, 1 − s2).

• If P1 rejects offer, then game ends and payoffs are

(0, 0).
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Two-stage bargaining

• Still, we solve this game by backward induction.

• Stage 2 game is the same as Ultimatum game:

P1 would accept any amount, so P2 would offer 0 to

P1 and keep 1 to himself.

• In Stage 1, P2 would accept offer if and only if 1−s1 ≥

δ · 1, i.e., s1 ≤ 1 − δ.

• P1 should keep 1 − δ to herself and leave δ to P2.
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More Stages

Now consider the sequential bargaining game with more stages:

1. P1 makes an offer (s1, 1 − s1).

2. If offer is rejected by P2, P2 makes an offer (s2, 1−s2).

3. If offer is rejected by P1, P1 makes an offer (s3, 1−s3).

4. and so on...

5. The game ends in Period T . If offer is rejected, then

payoffs are (0, 0).

We could solve the game by backward induction.
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More Stages

0 u1

u2

1

1

δ

δ

δ2

δ2

3 Stages

2 Stages

1 Stage
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More Stages

Offerer Receiver

1 Stage 1 0

2 Stages 1 − δ δ

3 Stages 1 − δ(1 − δ) δ(1 − δ)
... ... ...

2n Stages 1−δ2n

1+δ
δ+δ2n

1+δ

2n + 1 Stages 1+δ2n+1

1+δ
δ−δ2n+1

1+δ

• When n → ∞, P1 gets 1
1+δ

and P2 gets δ
1+δ

.

• When δ → 1, both players get 1
2 .
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Sequential Bargaining

Remark. In the sequential bargaining game, the first offer

is accepted.

Remark. Even split if

(i) n → ∞ (potentially bargaining forever) and

(ii) δ → 1 (no discounting or rapid offers).
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2.A.4. Normal-Form Representations and Credible

Threat

Definition 2.A.1 (Pure Strategy). A Pure Strategy for

Player i in a game of perfect information is a complete plan

of actions: it specifies which action Player i will take at each

of its decision nodes.
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Strategy

Example 2.A.5.

P1

(2, 0)

L
P2

(1, 1)

L’
P1

(3, 0)

L”

(0, 2)

R”

R’

R
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Strategy

According to Definition 2.A.1,

• Player 2’s strategies: L’ and R’

• Player 1’s strategies: [R, L”], [R, R”], [L, L”], [L, R”]
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Backward Induction

We could solve the game by backward induction.

P1

(2, 0)

L
P2

(1, 1)

L’
P1

(3, 0)

L”

(0, 2)

R”

R’

R

Player 1 chooses “L” and the game ends.
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Normal-Form Representation

Player 1

Player 2

L’ R’

[R, L”] (1, 1) (3, 0)

[R, R”] (1, 1) (0, 2)

[L, L”] (2, 0) (2, 0)

[L, R”] (2, 0) (2, 0)

Two Nash equilibria: ([L, L”], L’) and ([L, R”], L’).
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Normal-Form Representation

• ([L, L”], L’) is in accordance with the backward induc-

tion outcome whereas ([L, R”], L’) is not.

• ([L, R”], L’) seems weird since when Player 1’s second

decision node is reached, it does not make sense for her

to choose R”.

– [L, R”] can be an equilibrium strategy because in

P1’s view, it doesn’t matter what she chooses in

her second decision node because it is never going

to be reached as long as P2 chooses L’.
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Normal-Form Representation

Remark. Nash Equilibrium may not be a good solution con-

cept for dynamic games: it may involve actions that is not

rational when some node is actually reached.
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Entry Game

Example 2.A.6. Consider the entry game.

Entrant

(0, 3)

Out
Incumbent

(1, 1)

Not Fight

(−1, 0)

Fight

In
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Backward Induction

Backward induction outcome of the game is:

Entrant

(0, 3)

Out
Incumbent

(1, 1)

Not Fight

(−1, 0)

Fight

In

Entrant chooses “In” and Incumbent “Not Fight”.
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Normal-Form Representation and Nash Equilibrium

Entrant

Incumbent

Fight Not Fight

In (−1, 0) (1, 1)

Out (0, 3) (0, 3)

Two Nash equilibria: (In, Not Fight) and (Out, Fight).

• The first one is in accordance with the backward in-

duction outcome, whereas the second one is not.

• The second equilibrium relies on believing a non-credible

threat. 65



2.B. Dynamic Games of Complete but

Imperfect Information

• Previous games are all games of perfect information:

the player who is to move knows the full history of the

play of the game.

• We now study games of imperfect information.
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Dynamic Game of Imperfect Information

Example 2.B.1.
P1

P2

(0, 0)

left

(1, 2)

right

Left

(4, 0)

up

(0, 4)

down

Middle

(0, 4)

up

(4, 0)

down

Right

P2

• The dashed circle is an information set: P2 cannot

distinguish “Middle” and “Right”.

• Player 1 would mix between “Middle” and “Right”.
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Dynamic Game of Perfect Information

Example 2.B.2. Consider the game in Example 2.B.1 with-

out information set.
P1

P2

(0, 0)

left

(1, 2)

right

Left

P2

(4, 0)

up

(0, 4)

down

Middle

P2

(0, 4)

up

(4, 0)

down

Right

We could solve this game by backward induction.

BI outcome is: P1 chooses “Left” and P2 chooses “right”.68



Information Set

Definition 2.B.1. An information set of Player i is a col-

lection of Player i’s decision nodes among which Player i

cannot distinguish.
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Information Set: Not Allowed

Based on Definition 2.B.1, the following scenarios are NOT

allowed.

P1

P2

P1

left right up down
P2

Distinct Actions
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Information Set: Not Allowed

P1

P2 P2

P1

Imperfect Recall

Perfect Recall: players remember their previous actions
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Perfect/Imperfect Information Games

Definition 2.B.2 (Perfect/Imperfect Information Games).

A game is with perfect information if all the information sets

in the game tree is singleton.

A game is with imperfect information if it is not a game with

perfect information.

Definition 2.B.3. A Pure Strategy for Player i is

a complete plan of actions: it specifies which action Player i

will take at each of its information sets.
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Game with Imperfect Information: Example

Example 2.B.3.

P1

(−1, −1)

left

(−9, 0)

right

Left

(0, −9)

left

(−6, −6)

right

Right

P2
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Example 2.B.3

Question. Do you find this game familiar? What is this

game?
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Example 2.B.3

It is the Prisoners’ Dilemma game! It is more obvious after

we transform the game tree into normal-form representation.

P1

P2

left right

Left (−1, −1) (−9, 0)

Right (0, −9) (−6, −6)
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Normal-Form Representation

Remark. A normal-form representation could have multiple

extensive-form representations.

• For example, PD game above could be equivalently

represented in the following extensive form:

P2

(−1, −1)

Left

(0, −9)

Right

left

(−9, 0)

Left

(−6, −6)

Right

right

P1
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2.B.1. Subgame Perfect Equilibrium (SPE)

Example 2.B.4.

P1

(4, 2)

left

P1

(0, 0)

Up

(1, 4)

Down

right

Left

(0, 0)

left

(2, 4)

right

Right

P2
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Nash Equilibria

• We represent the game in normal form and look for

mutual best responses.

• According to Definition 2.B.3,

– Player 1’s strategies: [L, U], [L, D], [R, U], [R, D]

– Player 2’s strategies: l, r
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Nash Equilibria

The normal-form representation of the game is

Player 1

Player 2

l r

[L, U] (4, 2) (0, 0)

[L, D] (4, 2) (1, 4)

[R, U] (0, 0) (2, 4)

[R, D] (0, 0) (2, 4)

Three Nash equilibria: ([L, U], l), ([R, U], r) and ([R, D], r).

79



Subgame Perfect Equilibrium

• ([L, U], l) and ([R, U], r) do not seem reasonable: if P1

were to move at her second decision node, she would

choose D rather than U.

• To make more reasonable predictions, we should solve

the game backwards.

• However, we could not proceed backward induction

since in the games of imperfect information, the in-

formation set may involve multiple decision nodes.
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Subgame Perfect Equilibrium

• Let us try to solve the previous game in Example 2.B.4

and then generalize the idea to other games of imper-

fect information.

• Solving the game backwards, at P1’s second decision

node, she would choose D.

• Players obtain payoffs (1, 4).
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Subgame Perfect Equilibrium

Substituting the payoffs into the original game, the game

becomes

P1

(4, 2)

left

(1, 4)

right

Left

(0, 0)

left

(2, 4)

right

Right

P2

This is a game with simultaneous move.
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Subgame Perfect Equilibrium

• The game is more conveniently represented in normal

form.

Player 1

Player 2

l r

L (4, 2) (1, 4)

R (0, 0) (2, 4)

• The solution of the game is (R, r).

• When we solve the game backwards, only one equilib-

rium remains: ([R, D], r).
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Subgame Perfect Equilibrium

To summarize what we did to solve the game:

• We work backwards through the extensive form until

we encounter a non-singleton information set.

• Then, we skip over it and proceed up the tree until a

singleton information set is found.

• What we do is to solve for Subgame Perfect Equilib-

rium.

• The definitions of Subgame and Subgame Perfect Equi-

librium are given below.
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Subgame Perfect Equilibrium

Definition 2.B.4. A subgame in an extensive-form game

1. begins at a decision node n that is a singleton infor-

mation set,

2. includes all the decision and terminal nodes following

n in the game tree, and

3. does not cut any information sets.

Definition 2.B.5. (Selten 1965): A Nash equilibrium is a

Subgame Perfect Equilibrium (SPE) if the players’ strategies

constitute a Nash equilibrium in every subgame.
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Subgame Perfect Equilibrium

Example 2.B.5. Consider the following three-player game:

P1

(1, 0, 0)

Up

P2

(0, 1, 1)

left

(0, 0, 2)

right

Left

(0, 0, −1)

left

(2, 1, 0)

right

Right

Down

P3
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Subgame Perfect Equilibrium

• There is one subgame involving Player 2 and Player 3.

• It is a simultaneous move game and we represent the

game in normal form:

Player 2

Player 3

l r

L (1, 1) (0, 2)

R (0, −1) (1, 0)

• The solution of the subgame is (R, r).
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Subgame Perfect Equilibrium

• In the original game, when (R, r) is played out in the

subgame, the three players obtain payoffs (2, 1, 0).

• Substituting the payoffs into the original game, the

original game becomes
P1

(1, 0, 0)

Up

(2, 1, 0)

Down

• Player 1 would choose D.

• SPE of the game is (D, R, r). 88



Subgame Perfect Equilibrium

Example 2.B.6. Consider the following matchmaking game.

• The first player is the matchmaker who could introduce

Alice to Bob.

• If the matchmaker introduces Alice to Bob, the couple

would play the battle of the sexes game:

Alice

Bob

Opera Movie

Opera (2, 1) (0, 0)

Movie (0, 0) (1, 2)
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Example 2.B.6

• As for the matchmaker, if the couple successfully meet,

she gets 1; and if the couple fail to meet, she gets −1.

• All three players get 0 if Alice is not introduced to Bob.
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Example 2.B.6

Matchmaker

(0, 0, 0)

Not

Alice

(1, 2, 1)

Opera

(−1, 0, 0)

Movie

Opera

(−1, 0, 0)

Opera

(1, 1, 2)

Movie

Movie

Introduce

Bob
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Example 2.B.6

• To obtain SPE, we first look at the subgame where

Alice and Bob play the Battle of the Sexes game.

• We already know that there are two pure-strategy Nash

equilibria and one mixed-strategy Nash equilibrium in

this subgame.
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Example 2.B.6: Pure Strategy NE

• Consider pure-strategy NE.

• Substituting the payoffs into the original game,

Matchmaker

(0, 0, 0)

Not

(1, 2, 1) or (1, 1, 2)

Introduce

• Matchmaker would choose “Introduce”.

• Two SPEs: (Introduce, Opera, Opera) and (Introduce,

Movie, Movie).
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Example 2.B.6: Mixed Strategy NE

• Consider mixed strategy NE, namely,
#
(2

3 , 1
3), (1

3 , 2
3)

$
.

• The expected values for the three players are

– Matchmaker: EM

#
(2

3 , 1
3), (1

3 , 2
3)

$
= −1

9

– Alice: EA

#
(2

3 , 1
3), (1

3 , 2
3)

$
= 2

3

– Bob: EB

#
(2

3 , 1
3), (1

3 , 2
3)

$
= 2

3

94



Example 2.B.6: Mixed Strategy NE

• Substituting the expected payoffs into the original game,

Matchmaker

(0, 0, 0)

Not

(− 1
9 , 2

3 , 2
3 )

Introduce

• Matchmaker would choose “Not”.

• Third SPE:
#
Not, (2

3 , 1
3), (1

3 , 2
3)

$
.
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2.B.2. Bank Runs

• Two investors have each deposited D with a bank.

• Bank has invested these deposits in a long-term project:

– If bank is forced to liquidate its investment before

project matures, a total of 2r can be recovered,

where D > r > D/2.

– If bank allows the investment to reach maturity,

project will pay out a total of 2R, where R > D.
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Bank Runs

• Two dates at which the investors can make withdrawals:

date 1 is before maturity and date 2 is after.

• Assume that there is no discounting.
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Bank Runs

At date 1,

• If both investors make withdrawals, game ends.

– Each investor receives r.

• If only one investor makes a withdrawal, game ends.

– That investor receives D,

– the other investor receives 2r − D.

• If neither investor makes a withdrawal, project matures

and investors make withdrawal decisions at date 2.
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Bank Runs

At date 2 (if the game does not already ends),

• If both investors make withdrawals, game ends.

– Each investor receives R.

• If only one investor makes a withdrawal, game ends.

– That investor receives 2R − D,

– the other investor receives D.

• If neither investor makes a withdrawal, game ends.

– Bank returns R to each investor.
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Bank Runs: Analysis

The game could be represented in a game tree.

P1

(r, r)

W

(D, 2r − D)

N

W

(2r − D, D)

W
P1

(R, R)

W

(2R − D, D)

N

W

(D, 2R − D)

W

(R, R)

N

N

N

N

P2

P2
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Bank Runs: Analysis

To obtain SPE, we first look at the subgame at date 2.

P1

P2

Withdrawal Not

Withdrawal (R, R) (2R − D, D)

Not (D, 2R − D) (R, R)

Date 2 Subgame

• NE in this subgame is (Withdrawal, Withdrawal).

• Payoffs for players are (R, R).
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Bank Runs: Analysis

Substituting payoffs of date 2 subgame into original game,

P1

(r, r)

W

(D, 2r − D)

N

W

(2r − D, D)

W

(R, R)

N

N

P2
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Bank Runs: Analysis

The game is more conveniently represented in matrix form,

P1

P2

Withdrawal Not

Withdrawal (r, r) (D, 2r − D)

Not (2r − D, D) (R, R)

Two pure strategy Nash equilibria:

1. both investors withdraw, leading to payoffs of (r, r);

2. both investors do not withdraw, leading to payoffs of

(R, R).
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Bank Runs: Analysis

The original game has two subgame perfect outcomes:

1. both investors withdraw at date 1, leading to payoffs

of (r, r);

2. both investors do not withdraw at date 1 and with-

drawal at date 2, leading to payoffs of (R, R).

First outcome can be interpreted as bank runs.
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Bank Runs: Analysis

Remark. There is also a mixed strategy Nash equilibrium

for the first-period game:
#
(R−D

R−r
, D−r

R−r
), (R−D

R−r
, D−r

R−r
)
$
.

Thus, there is another SPE:
#%

(R−D
R−r

, D−r
R−r

), W
&

,
%
(R−D

R−r
, D−r

R−r
), W

&$
.

Remark. Diamond and Dybvig (1983) provide a richer model

of bank runs.

105



2.B.3. Wars of Attrition

• Consider two-period version of Wars of Attrition.

• Two players choose to “Fight (F)” or “Quit (Q)” in

each period.

• Game ends as soon as at least one player chooses Q.

• Assume no discounting.
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Wars of Attrition

Payoffs to players are as follows:

• If one of the players quits first,

– the player who does not quit win a prize v and

– the player who quits gets 0;

• If both players quit at once, both get 0;

• At each period in which both players choose F, each

player pay a cost c(< v).
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Wars of Attrition: Analysis

The game could be represented in a game tree.
P1

(0, 0)

Q

(0, v)

F

Q

(v, 0)

Q

P1

(−c + 0, −c + 0)

Q

(−c + 0, −c + v)

F

Q

(−c + v, −c + 0)

Q

(−c − c, −c − c)

F

F

F

F

P2

P2
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Wars of Attrition: Result

Five SPEs

• Two SPEs with pure strategies in each period: ([F,F],

[Q,Q]) and ([Q,Q], [F,F])

• One SPE with mixed strategies in each period:
'!

(p∗
Q = c

v + c
, p∗

F = v

v + c
), (p∗

Q, p∗
F )

"
,
%
(p∗

Q, p∗
F ), (p∗

Q, p∗
F )

&(

• Two other SPEs:
#%

F, (p∗
Q, p∗

F )
&

,
%
Q, (p∗

Q, p∗
F )

&$
and

#%
Q, (p∗

Q, p∗
F )

&
,
%
F, (p∗

Q, p∗
F )

&$
.
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2.C. Repeated Games

• Repeated games are games that consist of repetitions

of some base game (called a stage game).

• We will first focus on repeated games with stage games

being static games of complete information where play-

ers move simultaneously.

• In Example 2.C.3 and Section 2.C.4, we study games

where players move sequentially in stage game.

• When studying repeated games, we are particularly in-

terested in the issue of cooperation.
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2.C.1. Finitely Repeated Games

We will first learn finitely repeated games, where the stage

game is repeated for a fixed number of periods.

Definition 2.C.1. Given a stage game G, let G(T ) denote

the finitely repeated game in which G is played T times with

• the outcomes of all preceding plays observed before the

next play begins and

• no discounting: the payoffs of G(T ) are simply the sum

of the payoffs from the T stage games.
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Two-stage PD Game

Example 2.C.1. Suppose PD game played twice.

P1

P2

Cooperate (C) Defect (D)

Cooperate (C) (2, 2) (−1, 3)

Defect (D) (3, −1) (0, 0)

• The outcome of the first play is observed before the

second play begins.

• Assume no discounting.
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Two-stage PD game

Question. Could (C, C) be sustained?
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Two-stage PD game: SPE

• Second stage: (D, D)

• First stage:

P1

P2

Cooperate (C) Defect (D)

Cooperate (C) (2 + 0, 2 + 0) (−1 + 0, 3 + 0)

Defect (D) (3 + 0, −1 + 0) (0 + 0, 0 + 0)

Nash equilibrium for the first-stage game is (D, D).

• SPE outcome of the two-stage PD game is that both

players play D for the two stages.
114



More stages

Question. What if the Prisoners’ Dilemma is played 3 times,

4 times, or more generally, N times?
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More stages

Remark. It seems that when the relationship has a known

end, cooperation is not sustainable. But this is NOT true.
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An Example

Example 2.C.2. Suppose the following game played twice.

P1

P2

L M R

L (4, 4) (0, 5) (0, 0)

M (5, 0) (1, 1) (0, 0)

R (0, 0) (0, 0) (3, 3)

• The outcome of the first play is observed before the

second play begins.

• Assume no discounting
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Example 2.C.2

Question. Could the good outcome (L, L) be sustained?
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Example 2.C.2

• NE of the one-shot game: (M, M) and (R, R).

• Since (L, L) is not a Nash equilibrium, we could not

sustain (L, L) in the second stage.

• However, (L, L) could be sustained in the first stage.

• Consider the following strategy:

– In the first stage, play L, and then

– In the second stage,

∗ Play R if (L, L) is played in the first stage;

∗ Play M otherwise.
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Finitely Repeated Games

Remark. In ongoing relationships, the promise of future

rewards and the threat of future punishments may sometimes

provide incentives for good behavior today.

For this to work, the stage game needs to have more than

one Nash equilibrium.
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Finitely Repeated Games

Remark. The play of different equilibria in the second stage

following different first-stage outcomes may seem unreason-

able. Here, punishing the deviator involves the punishment

of the punisher. There may be a problem of renegotiation.
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Finitely Repeated Games: Entry Game

Example 2.C.3. Let us reconsider the following entry game:

Entrant

(0, 3)

Out
Incumbent

(1, 1)

Not Fight

(−1, 0)

Fight

In
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Entry Game

• Now suppose that incumbent is active in N markets.

• In each market, incumbent faces a different entrant.

• Entrants decides whether to enter market sequentially.

• Each of the subsequent entrants observes the choices

by the previous entrants and by the incumbent.
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Entry Game

• This game could be solved by backward induction.

• BI outcome is:

– Every entrant chooses “In”;

– Incumbent “Not Fight”.
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Entry Game

• Next, suppose that there is 1% chance that the incum-

bent is crazy and enjoys fighting.

• For example, the crazy incumbent gets a payoff of 5

when choosing “Fight”.
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Entry Game

If there is only one market, then

• entrant would still choose “In” and

• incumbent would choose “Not Fight” if it is not crazy.
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Entry Game

However, the outcome would be different if there are more

markets.

• It is not an equilibrium that sane incumbent always

chooses “Not Fight”.

– Sane incumbent could deter entry by fighting: act

as if it is crazy.

Remark 2.1. It is also not an equilibrium that the sane

incumbent always “Fight”.
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2.C.2. Infinitely Repeated Games

• Next, we will turn to infinitely repeated games, where

the stage game is repeated infinitely.

• Analysis for the infinitely repeated games would be

rather different, since there is no last stage in the in-

finitely repeated games.

• Result is different too: in the infinitely repeated games,

even if the stage game has a unique Nash equilibrium,

as in the PD game, there may be subgame-perfect out-

comes in which no stage’s outcome is a NE of the stage

game.
128



Infinitely Repeated Games

Example 2.C.4. Suppose PD Game played infinitely.

P1

P2

Cooperate (C) Defect (D)

Cooperate (C) (2, 2) (−1, 3)

Defect (D) (3, −1) (0, 0)

• The outcomes of all previous plays are observed before

the next play begins.

• The discount factor is δ ∈ (0, 1).

129



Grim-Trigger Strategy

• play C in the first period; and

• from the second period onwards

– play C if no player has played D in the past;

– play D otherwise.

A player would cooperates until someone fails to cooperates

and then a switch to defection forever is triggered.

Question. Does both players playing Grim-Trigger Strategy

constitute a SPE?
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Grim-Trigger Strategy

• To check whether a strategy profile is a SPE, we need

to check whether there exists profitable deviations in

every subgame.

• Given that both players follow Grim-Trigger strategy,

all subgames belong to one of the two types:

1. it is the first period or D has never been observed

in the past;

2. D has been observed in the past.
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Grim-Trigger Strategy

• Players have no incentive to deviate in second type of

subgames.

• For first type of subgames:

– Follow the strategy:

V C = 2 + δ · 2 + δ2 · 2 + ... = 2
1 − δ

– Deviate to D: V D = 3 + δ · 0 + δ2 · 0 + ... = 3.

– No deviation requires V C ≥ V D =⇒ δ ≥ 1
3 .
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Grim-Trigger Strategy

For first type of subgames, we have only checked a special

type of deviation: Player 1 deviates once and then revert to

the equilibrium strategy.

Question. How about other types of deviations? For ex-

ample, playing D for one period, followed by C and then

playing D forever.
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One-shot Deviation Principle

Definition. A strategy profile does not have profitable one-

shot deviations if no player can increase his payoff in any

subgame through a one-shot deviation: a deviation from the

strategy profile only in the first period of the subgame.

Proposition (The one-shot deviation principle). A strategy

profile is subgame perfect if and only if there are no profitable

one-shot deivations.
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Always Cooperate Strategy

Consider the following strategy which also prescribe (C, C)

forever as the equilibrium outcome:

• cooperate in the first period and

• continue cooperating forever no matter what the other

player does.

Question. Does both players playing Alway Cooperate Strat-

egy constitute a SPE?
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Always Cooperate Strategy

• Follow the strategy, outcome is (C, C) forever.

V C = 2
1 − δ

= 2 + δ
2

1 − δ
;

• Deviate to D (one-shot), outcome is (D, C) and then

(C, C) forever.

V D = 3 + δ
2

1 − δ
.

• Since V D > V C for all δ ∈ (0, 1), it is never a SPE.
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One-period Punishment Strategy

• play C in the first period; and

• from the second period onwards

– play C if either (C, C) or (D, D) was played in

the last period;

– play D if either (C, D) or (D, C) was played in

the last period.

Question. Does both players playing the One-period Pun-

ishment Strategy constitute a SPE?

137



One-period Punishment Strategy

Given that both players follow the One-period Punishment

strategy, all subgames belong to one of the two types:

1. it is the first period or either (C, C) or (D, D) was

played in the last period;

2. either (C, D) or (D, C) was played in the last period.
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One-period Punishment Strategy

For first type of subgames,

• Follow the strategy, outcome is (C, C) forever.

V C = 2
1 − δ

.

• Deviate to D (one-shot), outcome is (D, C), (D, D) and

then (C, C) forever.

V D = 3 + δ · 0 + δ2 2
1 − δ

.

• No deviation requires V C ≥ V D =⇒ δ ≥ 1
2 .
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One-period Punishment Strategy

For second type of subgames,

• Follow the strategy, outcome is (D, D) and then (C, C)

forever.

V 1 = 0 + δ · 2
1 − δ

= 2 + δ2 2
1 − δ

.

• Deviate to C (one-shot), outcome is (C, D), (D, D) and

then (C, C) forever.

V 2 = (−1) + δ · 0 + δ2 2
1 − δ

= −1 + δ2 2
1 − δ

.

• Since V 1 > V 2 for all δ, no incentive to deviate.
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One-period Punishment Strategy

Putting together the no-deviation conditions for the two

types of subgames, we need δ ≥ 1
2 .

Note that

• Cutoff for One-period Punishment strategy (1
2) is higher

than cutoff for Grim-Trigger strategy (1
3).

• For a shorter punishment to work, the players need to

care more about the future.
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Tit-for-Tat Strategy

• play C in the first period; and

• from the second period onwards

– play C if the opponent plays C in the last period;

– play D if the opponent plays D in the last period.

Tit-for-tat is a very effective strategy and it is the winning

program of the Alexlrod Tournament.

Question. Does both players playing Tit-for-Tat Strategy

constitute a SPE?
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Tit-for-Tat Strategy

Given that both players follow the Tit-for-Tat strategy, all

subgames belong to one of the four types:

1. it is the first period or (C, C) was played in the last

period;

2. (D, D) was played in the last period;

3. (C, D) was played in the last period;

4. (D, C) was played in the last period.
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Tit-for-Tat Strategy

For first type of subgames,

• Follow the strategy, outcome is (C, C) forever.

V C = 2
1 − δ

.

• Deviate to D (one-shot), outcome is (D, C), (C, D) re-

peated forever.

V D = 3 + δ · (−1) + δ2 · 3 + δ3 · (−1) + ... = 3 − δ

1 − δ2 .

• No deviation requires V C ≥ V D =⇒ δ ≥ 1
3 .
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Tit-for-Tat Strategy

For second type of subgames,

• Follow the strategy, outcome is (D, D) forever.

V 1 = 0.

• Deviate to C (one-shot), outcome is (C, D), (D, C) re-

peated forever.

V 2 = (−1) + δ · (3) + δ2 · (−1) + δ3 · 3 + ... = −1 + 3δ

1 − δ2 .

• No deviation requires V 1 ≥ V 2 =⇒ δ ≤ 1
3 .
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Tit-for-Tat Strategy

For third type of subgames,

• Follow the strategy, outcome is (D, C), (C, D) repeated

forever.

V 3 = 3 − δ

1 − δ2 .

• Deviates to C (one-shot), outcome is (C, C) forever.

V 4 = 2
1 − δ

.

• No deviation requires V 3 ≥ V 4 =⇒ δ ≤ 1
3 .
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Tit-for-Tat Strategy

For fourth type of subgames,

• Follow the strategy, outcome is (C, D), (D, C) repeated

forever.

V 5 = −1 + 3δ

1 − δ2 .

• Deviate to D (one-shot), outcome is (D, D) forever.

V 6 = 0.

• No deviation requires V 5 ≥ V 6 =⇒ δ ≥ 1
3 .
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Tit-for-Tat Strategy

Putting together the no-deviation conditions for all four types

of subgames, we need δ = 1
3 .
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2.C.3. Collusion between Cournot Duopolists

• Quantities (of a homogeneous product) produced by

firms 1 and 2: q1 and q2

• Market-clearing price when aggregate quantity is

Q = q1 + q2: P (Q) = a − Q.

• Total cost to a firm with qi: Ci(qi) = cqi, where c < a.

• Firms choose quantities simultaneously.

149



Collusion between Cournot Duopolists

Previous results:

• Nash equilibrium of Cournot game: (q∗
1, q∗

2) = (a−c
3 , a−c

3 ).

• Each firm’s profit: πi(q∗
i , q∗

j ) = (a−c)2

9 .

• Monopoly quantity: qm = a−c
2 < q∗

1 + q∗
2.

• Monopoly profit: π(qm) = (a−c)2

4 > πi(q∗
i , q∗

j )+πj(q∗
i , q∗

j ).

150



Collusion between Cournot Duopolists

Now

• We view the game as stage game, played infinitely.

• Discount factor is δ.

We are interested in whether the repeated interactions could

help the firms achieve q1 = q2 = qm

2 .
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Collusion between Cournot Duopolists

Question. What is the required value of δ for which it is a

SPE for both firms to play the following trigger strategy?

• produce qm

2 in the first period; and

• from the second period onwards,

– produce qm

2 if both firms have produced qm

2 in each

of the previous periods;

– produce Cournot quantity (qc = a−c
3 ) otherwise.
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Collusion between Cournot Duopolists

Given that both firms follow trigger strategy, all subgames

belong to one of the two types:

1. it is the first period or both firms have produced qm

2 in

each of the previous period;

2. at least one firm has produced some quantity other

than qm

2 in any of the previous period.
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Collusion between Cournot Duopolists

For first type of subgames,

• Follows the strategy, outcome is ( qm

2 , qm

2 ) forever.

V C = 1
1 − δ

· π(qm)
2 = (a − c)2

8(1 − δ) .
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Collusion between Cournot Duopolists

For first type of subgames (continue),

• Deviate to qd (best deviation quantity):

max
qd

(a − qd − qm

2 − c)qd =⇒ qd = 3(a − c)
8 .

– One-shot profit: πd = (a−qd − qm

2 −c)qd = 9(a−c)2

64 .

– Afterwards, πc = (a−c)2

9 in every period.

– Present-discounted payoff:

V D = πd + δ
πc

1 − δ
=

% 9
64 + δ

9(1 − δ)
&
(a − c)2.
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Collusion between Cournot Duopolists

For first type of subgames (continue),

• No deviation requires

V C ≥ V D =⇒ δ ≥ 9
17 .
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Collusion between Cournot Duopolists

For the second type of subgames,

• Follow the strategy, outcome is (qc, qc) forever.

V 1 = πc

1 − δ
= πc + δ

πc

1 − δ
.

• Deviation to some quantity q̂ (one-shot),

– Deviation profit: π̂ < πc

– Afterwards, πc = (a−c)2

9 in every period.

– Present-discounted payoff: V 2 = π̂ + δ πc

1−δ
.

• Since V 1 > V 2 for all δ, no incentive to deviate.
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Collusion between Cournot Duopolists

Putting together the no-deviation conditions for the two

types of subgames, we need δ ≥ 9
17 .
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2.C.4. Repeated Moral Hazard: Outsource

Stage Game

• Outsource to foreign country with cheaper labor

• normal wage in foreign country 1

• If outsource, investment 1; return from investment

– 4 if worker works

– 0 otherwise

• need to determine wage w

• Worker may cheat: take investment of 1 and sell on

the market, then go away and just work in normal job
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Repeated Moral Hazard: Outsource

You

(0, 1)

Not Invest

Worker

(−1, 2)

cheat

(3 − w, w)

honest

Invest and Set w
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Repeated Moral Hazard: Outsource

By backward induction, the worker would be honest if and

only if w ≥ 2, and you would invest and set w = 2.
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Repeated Interaction

Now

• Repeatedly invest in foreign country if investment works

well.

• Discount factor is δ ∈ (0, 1).

Question. How would you set the wage?
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Repeated Interaction

For the worker to work, it requires

w

1 − δ
≥ 2 + δ · 1

1 − δ
=⇒ w ≥ 2 − δ.

Therefore, it is optimal to set w = 2 − δ.

Remark 2.2. Note that this wage level is in-between 1 and

2, i.e., the normal wage in the foreign country and the re-

quired wage in the one-shot game.
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