
3.A Static Games of Incomplete Information

Chapter 3. Games of Incomplete Information

In this chapter, we will study games of incomplete information, also called Bayesian

games. In such games, at least one player is uncertain about another player’s payoff

function.

3.A. Static Games of Incomplete Information

In this section, we will study the simultaneous-move game of incomplete information, also

called the static Bayesian game. We will first look at the incomplete information Cournot

duopoly model in Section 3.A.1. Then we develop the normal-form representation of the

general static Bayesian game and the corresponding solution concept Bayesian Nash

Equilibrium in Section 3.A.2. Lastly, we will study several applications in Sections 3.A.3

to 3.A.6.

3.A.1. Cournot Competition under Asymmetric Information

Game Setup. Consider the Cournot duopoly model where the two firms choose their

quantities simultaneously. Let q1 and q2 denote the quantities (of a homogeneous product)

produced by firms 1 and 2, respectively. Let P (Q) = a − Q be the market-clearing price

when the aggregate quantity on the market is Q = q1 + q2. Firm 1’s cost function is

C1(q1) = cq1. Firm 2’s cost function is

• C2(q2) = cHq2 with probability θ, and

• C2(q2) = cLq2 with probability 1 − θ,

where cL < cH . Furthermore, information is asymmetric:

• Firm 2 knows both its own cost function (i.e, the realization of the marginal cost

cH , cL) and Firm 1’s cost function, but

• Firm 1 knows its own cost function and only that Firm 2’s marginal cost is cH with

probability θ and cL with probability 1 − θ.

Analysis. Naturally, Firm 2 may choose different quantities depending on whether its

marginal cost is high or low. Moreover, Firm 1 should anticipate this. Let

• q∗
2(cH) and q∗

2(cL) denote Firm 2’s equilibrium quantity choice;

• q∗
1 denote Firm 1’s equilibrium quantity choice.
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Then, q∗
2(cH) solves

max
q2

!
(a − q∗

1 − q2) − cH

"
q2.

Similarly, q∗
2(cL) solves

max
q2

!
(a − q∗

1 − q2) − cL

"
q2.

Finally, q∗
1 solves

max
q1

θ
!
(a − q1 − q∗

2(cH)) − c
"
q1 + (1 − θ)

!
(a − q1 − q∗

2(cL)) − c
"
q1

=⇒ max
q1

!
a − q1 −

#
θq∗

2(cH) + (1 − θ)q∗
2(cL)

$
− c

"
q1

FOCs of the three optimization problem give

q∗
2(cH) = a − q∗

1 − cH

2
q∗

2(cL) = a − q∗
1 − cL

2

q∗
1 =

a −
#
θq∗

2(cH) + (1 − θ)q∗
2(cL)

$
− c

2

The solution is (assuming that the solutions are all positive)

q∗
2(cH) = a − 2cH + c

3 + 1 − θ

6 (cH − cL);

q∗
2(cL) = a − 2cL + c

3 − θ

6(cH − cL);

q∗
1 = a − 2c + θcH + (1 − θ)cL

3 .

Note that q∗
2(cH) > a−2cH+c

3 and q∗
2(cL) < a−2cL+c

3 : Firm 2 not only tailors its quantity to

its cost but also responds to the fact that Firm 1 cannot do so. For example, consider

the case where Firm 2 has high marginal cost. If Firm 1 knows that and could adjust

its quantity accordingly, Firm 1 would respond by choosing the quantity a−2c+cH

3 , which

is higher than q∗
1. Therefore, when Firm 1 cannot tailor its quantity (and chooses the

smaller quantity q∗
1), Firm 2 would produce more, i.e., q∗

2(cH) > a−2cH+c
3 .

3.A.2. Static Bayesian Games and Bayesian Nash Equilibrium

To characterize the static Bayesian games, we want to capture the idea that

1. each player knows his/her own payoff function;

2. each player may be uncertain about the other players’ payoff functions.
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Harsanyi (1967) introduced type spaces to model the players’ information on payoff-

relevant parameters.

Type and Belief. Player i’s payoff functions is represented by

ui(a1, ...., an; ti),

where ti is called Player i’s type and belongs to Ti, the set of possible types, or type space.

For the Cournot competition model in Section 3.A.1,

• Firm 2 has two types and its type space is T2 = {cL, cH};

• Firm 1 has only one type and its type space is T1 = {c}.

Given this definition of types,

1. “Player i knows his/her own payoff function” is equivalent to “Player i knows his/her

own type”.

2. “Player i may be uncertain about the other players’ payoff functions” is equivalent to

“Player i maybe uncertain about the types of other players, t−i = {t1, ..., ti−1, ti+1, ..., tn}”.

We use T−i to denote the set of possible types of other players. And we use pi(t−i | ti)

to denote Player i’s belief about t−i when his/her own type is ti. The belief is computed

by Bayes’ rule from the prior probability distribution p(t):

pi(t−i | ti) = p(t−i, ti)
p(ti)

= p(t−i, ti)%
t−i∈T−i

p(t−i, ti)
.

For concrete examples of applications of Bayes’ rule, see the following examples.

Example 3.A.1. Consider a two player game where both players have two types. Player

1’s types are denoted as A and B; Player 2’s types C and D. The prior distribution of

types are given below.

Player 1

Player 2

Type C Type D

Type A 30% 40%

Type B 10% 20%

Question 3.1. What is the posterior probability p1(C | A)?

We use Bayes’ rule to calculate the probability:

p1(C | A) = p(C, A)
p(A) = p(C, A)

p(C, A) + p(D, A) = 30%
30% + 40% = 3

7 .
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Example 3.A.2. A certain disease affects about 1 out of 10,000 people. There is a

screening test to check whether a person has the disease. The test is quite accurate. In

particular, we know that

• When a person has the disease, it gives a positive result 99% of the time.

• When a person does not have the disease, it gives a negative result 98% of the time.

Question 3.2. A random person gets tested for the disease and the result comes back

positive. What is the probability that the person has the disease?

Let D be the event that the person has the disease and T be the event that the test is

positive. Accordingly, Dc is the event that the person does not have the disease and T c

be the event that the test is negative.

We know that

p(D) = 1
10, 000;

p(T | D) = 99
100 & p(T c | D) = 1

100;

p(T | Dc) = 2
100 & p(T c | Dc) = 98

100 .

And we want to calculate p(D | T ). By Bayes’ rule:

p(D | T ) = p(D, T )
p(T ) = p(D, T )

p(D, T ) + p(Dc, T ) = p(T | D)p(D)
p(T | D)p(D) + p(T | Dc)p(Dc) = 0.0049

Normal-form Representation. The normal-form representation of n-player static Bayesian

game specifies

• players’ action spaces A1, ..., An;

• their type spaces T1, ..., Tn;

• their beliefs p1(t−1 | t1), ..., pn(t−n | tn);

• their payoff functions ui(a1, ..., an; ti) for all i.1

Following Harsanyi (1967), the timing of a static Bayesian game is as follows:

1. nature draws a type vector t = (t1, ..., tn) where ti is drawn from the set of possible

types Ti;

2. nature reveals ti to Player i but not to any other player;

3. players simultaneously choose actions, Player i choosing ai ∈ Ai; and then
1More generally, a player’s payoff function could also depend on the other players’ types. In this case,

we write ui(a1, ..., an; t1, ..., tn).
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4. payoffs ui(a1, ..., an; ti) are received.

Remark 3.1. Note that by introducing the fictional moves by nature, the incomplete

information game is transformed to the imperfect information game.

Here, Player i does not know the complete history of the game when actions are chosen

in Step 3. In particular, Player i does not know what nature has revealed to the other

players.

Bayesian Nash Equilibrium.

Definition 3.A.1 (Strategy). In the static Bayesian game, a strategy for Player i is a

function si(ti) that specifies the action ai ∈ Ai when the type ti ∈ Ti is drawn by nature.

For the Cournot competition model in Section 3.A.1,

• Firm 2’s strategy is (q∗
2(cH), q∗

2(cL));

• Firm 1’s strategy is q∗
1.

Next, we define the solution concept in a static Bayesian game, called Bayesian Nash

Equilibrium. The central idea is the same: each player’s strategy must be a best response

to the other players’ strategies.

Definition 3.A.2 (Bayesian Nash Equilibrium). In the static Bayesian game, the strate-

gies s∗ = (s∗
1, ..., s∗

n) are a (pure strategy) Bayesian Nash Equilibrium (BNE) if for

each player i and for each of i’s type ti ∈ Ti, s∗
i (ti) solves

max
ai∈Ai

&

t−i∈T−i

ui(s∗
1(t1), ...s∗

i−1(ti−1), ai, s∗
i+1(ti+1), ..., s∗

n(tn); t)pi(t−i | ti).

3.A.3. Mixed Strategies Revisited

A mixed-strategy Nash equilibrium in a game of complete information can (almost always)

be interpreted as a pure-strategy Bayesian Nash equilibrium in a closely related game with

a little bit of incomplete information.

Example 3.A.3. Consider the following battle of the sexes game:
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Alice

Bob

Opera Movie

Opera (2 + ta, 1) (0, 0)

Movie (0, 0) (1, 2 + tb)

Figure 3.1: The Battle of the Sexes

where ta is privately known by Alice; tb is privately known by Bob; and ta and tb are

independently drawn from a uniform distribution on [0, x].

In terms of static Bayesian game,

• action spaces: Aa = Ab = {Opera, Movie};

• type spaces: Ta = Tb = [0, x];

• beliefs: pa(tb | ta) = 1/x for all ta ∈ [0, x] and tb ∈ [0, x], pb(ta | tb) = 1/x for all

ta ∈ [0, x] and tb ∈ [0, x];

• payoff functions: see the payoff matrix Figure 3.1.

We construct a pure-strategy Bayesian Nash equilibrium in which

• Alice plays “Opera” if ta exceeds a critical value a, and plays “Movie” otherwise.

• Bob plays “Movie” if tb exceeds a critical value b, and plays “Opera” otherwise.

In such an equilibrium, Alice plays “Opera” with probability x−a
x

and “Movie” with

probability a
x
; Bob plays “Opera” with probability b

x
and “Movie” with probability x−b

x
.

Given Bob’s strategy, Alice’s expected payoffs from playing “Opera” and “Movie” are

respectively

Eua(Opera, ( b

x
,
x − b

x
)) = b

x
(2 + ta);

and Eua(Movie, ( b

x
,
x − b

x
)) = x − b

x
.

Thus, playing “Opera” is optimal if and only if

b

x
(2 + ta) ≥ x − b

x
=⇒ ta ≥ x

b
− 3 = a. (3.A.1)

Similarly, given Alice’s strategy, Bob’s expected payoffs from playing “Opera” and “Movie”
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are respectively

Eub(Opera, (x − a

x
,
a

x
)) = x − a

x
;

and Eub(Movie, (x − a

x
,
a

x
)) = a

x
(2 + tb).

Thus, playing “Movie” is optimal if and only if

a

x
(2 + tb) ≥ x − a

x
=⇒ tb ≥ x

a
− 3 = b. (3.A.2)

Equations (3.A.1) and (3.A.2) imply

a = b = −3 +
√

9 + 4x

2 .

The probability that Alice plays “Opera” (i.e., x−a
x

) and Bob plays “Movie” (i.e., x−b
x

)

both equal

1 − −3 +
√

9 + 4x

2x
= 1 − 2

3 +
√

9 + 4x
,

which approaches 2/3 as x approaches 0. Recall that the mixed strategy Nash equi-

librium of the complete information battle of the sexes game (i.e., ta = tb = 0) is
#
(2

3 , 1
3), (1

3 , 2
3)

$
. Thus, as the incomplete information disappears, the players’ behavior

in this pure-strategy Bayesian Nash equilibrium of the incomplete-information game ap-

proaches their behavior in the mixed-strategy Nash equilibrium in the original game of

complete information.

3.A.4. First-Price Sealed-Bid Auction

We have learned second-price auction in Chapter 1. Recall that second-price auction is

dominant strategy solvable: bidding one’s own valuation is a weakly dominant strategy.

Now, we will study first-price auction. Note that first-price and second-price auctions

only differ in winner’s payments. We will consider a simple version of first-price auction

with only two bidders.

Game Setup. There is one indivisible good for sale. The valuations of two potential

buyers are independently drawn from a uniform distribution with support [0, 1]. Denote

Buyer i’s valuation by vi. The auction rule is as follows:

• Buyers bid simultaneously and each submits a bid bi ∈ [0, +∞).

7



3.A Static Games of Incomplete Information

• The bidder with the highest bid wins the auction and pays his/her own bid.

• If the two buyers submit the same highest bid, then each of the buyers has 1/2

chance of winning the good. The payment is the highest bid (since there is a tie).

Normal-form Representation.

• Buyer i’s action is to submit a bid bi. The action space is Ai ∈ [0, ∞).

• Buyer i’s type is her valuation vi. The type space is Ti = [0, 1].

• Since the valuations are independent, Buyer i’s belief about Buyer j’s type vj is

that vj is uniformly distributed on [0, 1], given any vi.

• Buyer i’s payoff when submitting the bid bi is

ui =

'
((((((()

(((((((*

0 if bi < bj

vi−bi

2 if bi = bj

vi − bi if bi > bj

Bayesian Nash Equilibrium. A strategy for Buyer i is a function bi(vi). In a Bayesian

Nash equilibrium, Buyer 1’s strategy b1(v1) is a best response to Buyer 2’s strategy b2(v2),

and vice versa. Thus, bi(vi) solves

max
bi

(vi − bi)Prob{bi > bj(vj)} + 1
2(vi − bi)Prob{bi = bj(vj)}.

We focus on symmetric Bayesian Nash equilibrium where the two players adopt the same

strictly increasing, continuous and differentiable bidding strategy b(·).

Suppose Buyer j adopts b(·). Then

• Prob{bi = b(vj)} = 0 since vj is uniformly distributed and b(·) is strictly increasing.

• Prob{bi > b(vj)} = Prob{b−1(bi) > vj} = b−1(bi) since vj is uniformly distributed

on [0, 1] and b(·) is strictly increasing, continuous and differentiable.

So Buyer i solves

max
bi

(vi − bi)b−1(bi).

FOC gives

−b−1(bi) + (vi − bi)
db−1(bi)

dbi

= 0.

For b(·) to be a symmetric Bayesian Nash equilibrium, the solution to the above FOC is
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bi = b(vi), which gives

− vi + (vi − b(vi))
1

b′(vi)
= 0

=⇒ b′(vi)vi + b(vi) = vi =⇒ d(b(vi)vi)
dvi

= vi

=⇒ b(vi)vi = 1
2v2

i + c, where c is a constant.

Using the boundary condition b(0) = 0,2 we obtain c = 0. Thus, the equilibrium bidding

strategy is

b(vi) = 1
2vi.

3.A.5. Common Value Auction

In a common value auction, the value of good for sale is the same for all bidders. “Oil

well” is an often cited example of common value auctions.

Jar of coins. Let us play the following auction game. There is a jar with some coins.

Every bidder bids for the coins in the jar. Rules of the auction are as follows:

• Do not open the jar.

• The winner is the bidder with the highest bid.

• The winner pays his/her own bid and gets the coins in the jar.

This is a common value auction: the amount of money in the jar is certain.

Question 3.3. What is your bidding strategy? Should you bid less or more than your

estimate?

Winner’s curse. In the common value auctions, the winning bid tends to be higher

than the true value of the good. Such a phenomenon is called winner’s curse.

Question 3.4. Why winner’s curse exists?

Let v be the common value, and bi be Bidder i’s bid. Then Bidder i’s payoff is
'
(()

((*

v − bi if bi is the highest bid;

0 otherwise.

2No player should bid more than his/her valuation, i.e., b(vi) ≤ vi for every vi. In particular, b(0) ≤ 0.
Besides, bids are non-negative. So b(0) = 0.
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Bidders only have estimates of the value of the good. Let yi be Player i’s estimate:

yi = v + ε̃i,

where ε̃i is Bidder i’s estimation error. yi is also Bidder i’s type. Suppose that on average

bidders estimate correctly. Then around half of the bidders overestimate. If the bidders

bid roughly the same as their estimate, the winner would be the bidder with the largest

ε̃i. Then, the winning bid would be higher (actually much higher) than the true value.

Question 3.5. After learning winner’s curse, how should you bid?

1. If everyone bids roughly their own estimates, then when you (Player i) win, you

know that yj < yi for all j.

2. You only care how many coins are in the jar if you win.

So, you should bid based not only on your initial estimate yi but also on the fact that

yi > yj for all j. Put differently, you should bid as if you know you win.

3.A.6. Double Auction

Game Setup. There is one good for sell. The buyer’s valuation for the good is vb,

and the seller’s is vs. These valuations are private information and are drawn from

independent uniform distributions on [0, 1]. To trade, the seller names an asking price,

ps, and the buyer simultaneously names an offer price, pb.

• If pb ≥ ps, then trade occurs at price p = (pb + ps)/2;

• if pb < ps, then no trade occurs.

The players’ payoffs are as follows:

• If the buyer gets the good for price p, then the buyer’s utility is vb − p; if there is

no trade, then the buyer’s utility is 0.

• If the seller sells the good for price p, then the seller’s utility is p − vs; if there is

no trade, then the seller’s utility is 0.

Analysis. Buyer’s strategy is a function pb(vb) specifying the price Buyer will offer for

each of Buyer’s possible valuations. Likewise, Seller’s strategy is a function ps(vs) speci-

fying the price Seller will demand for each of Seller’s valuations.

10



3.A Static Games of Incomplete Information

In a Bayesian Nash equilibrium, Buyer’s strategy pb(vb) is a best response to Seller’s

strategy ps(vs), and vice versa. Thus, for each vb ∈ [0, 1], pb(vb) solves

max
pb

+

vb − pb + E[ps(vs) | pb ≥ ps(vs)]
2

,

Prob{pb ≥ ps(vs)}; (3.A.3)

for each vs ∈ [0, 1], ps(vs) solves

max
ps

+
ps + E[pb(vb) | pb(vb) ≥ ps]

2 − vs

,

Prob{pb(vb) ≥ ps}. (3.A.4)

There are many Bayesian Nash equilibria of this game.

One-price equilibrium Consider the one-price equilibrium in which trade occurs at

a single price x ∈ [0, 1] if it occurs at all.

• Buyer’s strategy: offer x if vb ≥ x and offer 0 otherwise;

• Seller’s strategy: demand x if vs ≤ x and demand 1 otherwise.

Question 3.6. Can you check that the above strategy profile constitutes a Bayesian

Nash equilibrium?

In this equilibrium, trade occurs for the (vs, vb) pairs indicated in Figure 3.2; trade would

be efficient for all (vs, vb) pairs such that vb > vs, but does not occur in the two shaded

regions of the figure.

vs

vb

1

1

x

x

Trade

No
Trade

No
Trade

Figure 3.2: One-price Equilibrium
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Linear equilibrium Suppose Seller’s and Buyer’s strategies are

ps(vs) = as + csvs; (3.A.5)

and pb(vb) = ab + cbvb. (3.A.6)

Then ps is uniformly distributed on [as, as +cs]; pb is uniformly distributed on [ab, ab +cb].

Equations (3.A.3) and (3.A.4) become:

max
pb

+

vb −
pb + as+pb

2
2

, -
pb − as

cs

.
;

and max
ps

+
ps + ab+cb+ps

2
2 − vs

, -
ab + cb − ps

cb

.
.

First-order conditions imply

pb = 2
3vb + 1

3as; (3.A.7)

and ps = 2
3vs + 1

3(ab + cb). (3.A.8)

Solving from Equations (3.A.5) to (3.A.8), we have

ps(vs) = 2
3vs + 1

4;

and pb(vb) = 2
3vb + 1

12 .

Trade occurs when

pb(vb) ≥ ps(vs) =⇒ vb ≥ vs + 1
4 .

vs

vb

1/4

1

13/4

Trade

No
Trade

Figure 3.3: Linear-price Equilibrium
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3.B. Dynamic Games of Incomplete Information

In this section, we will first study three specific models of dynamic games of incom-

plete information: asymmetric information Cournot model with verifiable information

in Section 3.B.1, job market signaling model in Section 3.B.2 and a screening model in

Section 3.B.3. Then, we will study the theory and formally define the solution concept

Perfect Bayesian Equilibrium in Section 3.B.4. Finally, we will discuss refinements of

Perfect Bayesian Equilibrium in Section 3.B.5.

3.B.1. Asymmetric Cournot with Verifiable Information

Game Setup. Consider the Cournot duopoly model where the two firms choose their

quantities simultaneously. Let q1 and q2 denote the quantities (of a homogeneous product)

produced by firms 1 and 2, respectively. Let P (Q) = a − Q be the market-clearing price

when the aggregate quantity on the market is Q = q1 + q2. Firm 1’s cost function is

C1(q1) = cMq1.

Firm 2’s cost function is

C2(q2) =

'
((((((()

(((((((*

cHq2 = (cM + x)q2 with probability 1/3

cMq2 with probability 1/3

cLq2 = (cM − x)q2 with probability 1/3

Furthermore, information is asymmetric:

• Firm 2 knows both its own cost function (i.e, the realization of the marginal cost)

and Firm 1’s cost function, but

• Firm 1 knows its own cost function and only that Firm 2’s marginal cost is cH , cM

or cL, each with 1/3 probability.

Before the firms choose quantities, Firm 2 can costlessly and verifiably reveal its cost

information to Firm 1.

Question 3.7. Should Firm 2 reveal its cost information?

Perhaps it is easier to first consider the following question:

Question 3.8. Would Firm 2 want Firm 1 to know if it has high, middle, or low cost?
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First, notice that in the Cournot model, one firm’s profit would be higher if the other firm

produces less. Then the question becomes “would Firm 1 produce less if it knows that

Firm 2 has high, middle or low cost?” To answer this question, we could solve for Firm 1’s

equilibrium quantities under different scenarios. It is also clear from the reaction curves

in Figure 3.4. The result is: compared to not knowing Firm 2’s cost, Firm 1 produces

0 q1

q2

a−cM

2

a − cM

a−cL

2

a − cL

a−cH

2

a − cHa−cM

2

a − cM

BR1(q2)

BRL
2 (q1)

BRM
2 (q1)

BRH
2 (q1)

Figure 3.4: Cournot Duopoly

less (more) if it knows that Firm 2 has low (high) cost. Thus, Firm 2 would want Firm

1 to know if it has low cost. That is, Firm 2 with low cost would reveal its cost

information.

But the above argument is not over. Let us now consider whether Firm 2 should reveal

its cost information when it has middle cost. You might think that Firm 2’s decision

depends on what Firm 1 thought. However, if Firm 2 doesn’t reveal that it has middle

cost, then Firm 1 knows that the cost is not low. This is because Firm 2 would reveal

its cost information if it has low cost, as is argued in the previous paragraph. Put it

differently, Firm 1 knows that the cost is either middle or high. As a result, Firm 2 with

middle cost would want Firm 1 to know it so that Firm 1 would produce less. That is,

Firm 2 with middle cost would also reveal its cost information.

Then, for Firm 2 with high cost, it really doesn’t matter whether it reveals

or not. Because even if it does not reveal, since Firm 2 with middle or low costs would

reveal, the fact of no revealing reveals that Firm 2 has high cost.

Remark 3.2. The same argument goes through if Firm 2 has more types.

This idea is called information unraveling.
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3.B.2. Job-Market Signaling

Suppose that there are two types of workers, high-ability and low-ability. They differ

in productivity: high-ability worker has productivity of 100 whereas low-ability worker

has productivity of 60. In the population, 20% of workers are high-ability and 80% are

low-ability.

Productivity Proportion
High-ability Worker 100 20%
Low-ability Worker 60 80%

Suppose that firms are competitive. Thus, firms would offer 100 to a high-ability worker

and 60 to a low-ability worker if they could identify the worker’s types. If firms cannot

identify the worker’s types, they would offer 100 ∗ 20% + 60 ∗ 80% = 68.

Question 3.9. Suppose that you are a high-ability worker, how can you make the firms

know it? In particular, would it work if you simply tell the firms “I am a high-ability

worker”?

Spence (1973) brings up the idea that “education” could be used as a costly signal to dif-

ferentiate high-ability workers from low-ability ones. The crucial assumption in Spence’s

model is that low-ability workers find education more costly than high-ability workers.

Suppose it costs high-ability workers 9 for a year of education and low-ability workers 21.

Cost
High-ability Worker 9
Low-ability Worker 21

When three-year graduate education is available, we argue that there exists an equilibrium

where

• High-ability workers take the education but low-ability workers do not.

• Employers identify those workers with graduate degrees as high-ability workers and

those without degrees as low-ability workers. Employers offer 100 to a worker with

degree and 60 to a worker without degree.

We have not gone through the solution concept Perfect Bayesian Equilibrium (PBE).3 In

essence, PBE requires
3See Section 3.B.4 for a detailed discussion of PBE.
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1. the strategies to be best responses given the belief system, and

2. the beliefs to be consistent with the strategy profile.

For this particular game, we need to check

1. Both types of workers would not deviate in their respective education choices.

2. Employers’ beliefs are consistent with the equilibrium behavior.

The second point is obvious. For the first point,

• A high-ability worker obtains 100 − 9 ∗ 3 = 73 if he/she takes the education and 60

if not.

• A low-ability worker obtains 100 − 21 ∗ 3 = 37 if he/she takes the education and 60

if not.

Thus, a high-ability worker would not deviate to not taking the education and a low-

ability worker would not deviate to taking the education.

Remark 3.3. This is called a separating equilibrium because in equilibrium the types

separate and get identified.

Question 3.10. What if the education program only takes two years? How about one

year?

Remark 3.4. For the separation to work, there must be enough differences in costs for

the two types of workers.

Remark 3.5. If the standard of obtaining education becomes lower, then probably we

will see qualification inflation.

Remark 3.6. Education increases inequality: Compared to the no education outcome,

a three-year education program makes high-ability workers better-off (73 > 68) and low-

ability workers worse-off (60 < 68).

Remark 3.7. It is possible that high-ability workers are also worse-off. To see this,

consider a four-year education program. The separating equilibrium exists in this case.

Recall that in the separating equilibrium, no education is interpreted as evidence of low

ability. So, high-ability workers still have the incentive to get educated, obtaining a payoff

of 64 (< 68).
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3.B.3. Screening

In the last section, we have seen a signaling model in which the informed parties (i.e., the

workers) move first. Signaling models are closely related to screening models, in which

the uninformed parties take the lead. Classic references of screening models concern the

context of insurance markets. In this course, we still take the job market as an example.

Job market example. In the previous signaling model, the workers choose education

first. And after observing the education choices, the firms offer wages accordingly. Now

consider the following timing, which corresponds to a screening setting:

1. Two firms simultaneously announce a menu of contracts specifying the required

years of education and the wage offer (e, w).

2. Given these contracts, the workers choose which contract to accept, if any.

The productivity and proportion of workers, as well as the cost of a year of education to

each types of workers are all the same as in the signaling case.

Question 3.11. Is it an equilibrium that both firms offer the same two contracts (eH =

3, wH = 100) and (eL = 0, wL = 60)? The outcome is the same as a three-year education

program in the signaling model.

For the workers, similar arguments as in the signaling model apply. Both types of workers

would self-select the contracts designed for them.

• A high-ability worker obtains 100 − 9 ∗ 3 = 73 if he/she takes the contract (eH =

3, wH = 100) and 60 if takes (eL = 0, wL = 60).

• A low-ability worker obtains 100 − 21 ∗ 3 = 37 if he/she takes the contract (eH =

3, wH = 100) and 60 if takes (eL = 0, wL = 60).

But for the firms, if the contracts (eH = 3, wH = 100) and (eL = 0, wL = 60) are offered

and accepted by the respective types of workers, each firm obtains a payoff of 0 since

the wages and the productivities are the same. A firm could be better-off by offering

(e′
H = 2, w′

H = 95) and (eL = 0, wL = 60).

• The high-ability workers prefer (e′
H = 2, w′

H = 95) to (eH = 3, wH = 100): they

obtain 95 − 9 ∗ 2 = 77 (> 73) if taking (e′
H = 2, w′

H = 95).

• The low-ability workers would not take (e′
H = 2, w′

H = 95): they obtain 95−21∗2 =

53 (< 60) if taking (e′
H = 2, w′

H = 95).
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Thus, by deviating to offering (e′
H = 2, w′

H = 95) and (eL = 0, wL = 60), the firm obtains

(100 − 95) ∗ 20% = 1 > 0.

Question 3.12. How about both firms offer the same two contracts (eH = 2, wH = 100)

and (eL = 0, wL = 60)?

Similar to the previous argument, if such contracts are offered, workers would self-select

the contract designed for them.

For the firms, a firm could deviate to offering contracts that each attracts only one types

of workers or offering a contract that attracts both types of workers. Moreover, when

a contract attracts only one types of workers, offering wL > 60 or wH > 100 results

in a loss. On the other hand, for a contract with a lower wage to be accepted by the

workers, the education requirement must be lower. Therefore, a firm could not benefit

from offering a contract that attracts the low-ability workers alone. And we only need to

consider the following two types of deviations:

1. A firm could deviate to an offer (e′
H = 1, w′

H < 100) to attract the high-ability

workers. The high-ability workers prefer (e′
H = 1, w′

H) to (eH = 2, wH = 100) if

w′
H −9 ≥ 100−9∗2 =⇒ w′

H ≥ 91 . However, when this is the case, the low-ability

workers also prefer (e′
H = 1, w′

H) since w′
H − 21 ≥ 70 (> 60). Then the firm obtains

(100−w′
H)∗20%+(60−w′

H)∗80% = 68−w′
H < 0. And thus this is not a profitable

deviation.

2. Another possible deviation is to offer (e = 0, w) and attract both types of workers.

The low-ability workers would accept this contract as long as w ≥ 60 and the high-

ability workers would accept this contract is w ≥ 100 − 9 ∗ 2 = 82. Thus, the lowest

wage is 82 and the firm obtains 68 − 82 < 0.

Therefore, it is an equilibrium that both firms offer the two contracts (eH = 2, wH = 100)

and (eL = 0, wL = 60).

Remark 3.8. Separating equilibria do not always exist. For example, if we change the

proportion of high-ability workers to 80%, then there will be no separating equilibria.

3.B.4. Perfect Bayesian Equilibrium

The solution concept associated with dynamic games of incomplete information is the

Perfect Bayesian Equilibrium (PBE). Perfect Bayesian equilibrium was invented in order
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to refine Bayesian Nash equilibrium in a similar way that subgame perfect equilibrium

refined Nash equilibrium. BNE also fails to capture the idea that threats and promises

should be credible.

A complementary perspective is that perfect Bayesian equilibrium strengthens the re-

quirements of subgame perfect equilibrium by explicitly analyzing the players’ beliefs,

as in Bayesian Nash equilibrium. We will introduce the features of perfect Bayesian

equilibrium from this complementary perspective.

Example 3.B.1. Consider the following game:

P1

[p]

(2, 1)

L′

(0, 0)

R′

L

[1 − p]

(0, 2)

L′

(0, 1)

R′

R

(1, 3)O

P2

Question 3.13. What are the pure-strategy Nash equilibria of this game?

Answer: To solve for Nash equilibrium, we transform this extensive-form representation

into the normal-form representation:

Player 1

Player 2

L′ R′

L (2, 1) (0, 0)

R (0, 2) (0, 1)

O (1, 3) (1, 3)

There are two pure strategy Nash equilibria: (L, L′) and (O, R′).

Question 3.14. Are these Nash equilibria subgame perfect?

Answer: Yes. There are no proper subgames of this game.4 Hence, every NE is a SPE.

4Any subgame other than the entire game itself is called a proper subgame.
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Example 3.B.2. Consider the following modified game:

P1

P1

(2, 1)

L′

(0, 0)

R′

L

(0, 2)

L′

(0, 1)

R′

R

I

(1, 3)O

P2

Question 3.15. What are the pure strategy Nash equilibria of this game? Are these

Nash equilibria subgame perfect?

Answer: Again, to solve for Nash equilibrium, we use the normal-form representation:

Player 1

Player 2

L’ R’

[I, L] (2, 1) (0, 0)

[I, R] (0, 2) (0, 1)

[O, L] (1, 3) (1, 3)

[O, R] (1, 3) (1, 3)

There are three Nash equilibria: ([I, L], L′), ([O, L], R′) and ([O, R], R′).

There is one proper subgame. So, to solve for subgame perfect Nash equilibrium, we

solve for the Nash equilibrium in this subgame first:

Player 1

Player 2

L’ R’

L (2, 1) (0, 0)

R (0, 2) (0, 1)

The only Nash equilibrium is (L, L′) and the players’ payoffs are (2, 1). Then in player 1’s

first decision node, he/she would choose I. Therefore, there is only one subgame perfect

equilibrium: ([I, L], L′).
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Question 3.16. Are the games in Examples 3.B.1 and 3.B.2 really different?

Question 3.17. Is the equilibrium (O, R′) in Example 3.B.1 reasonable?

Answer: No. It depends on a non-credible threat: when player 2 gets the move, then

playing L′ dominates playing R′. So, player 1 should not be induced to play R by

player 2’s threat to play R′ if given the move.

To rule out the unreasonable prediction (O, R′), we impose the sequential rationality

requirement:

Requirement 1 (Sequential rationality). At each information set, the action taken

by the player with the move (and the player’s subsequent strategy) must be optimal given

the player’s belief at the information set and other players’ subsequent strategies.

Let us apply the sequential rationality requirement to the (O, R′) equilibrium in Ex-

ample 3.B.1. Let p denote player 2’s belief that L has been chosen when the game

reaches the information set. Given this belief, the expected payoff from choosing R′ is

p·0+(1−p)·1 = 1−p, while the expected payoff from choosing L′ is p·1+(1−p)·2 = 2−p.

Since 2 − p > 1 − p for any value of p, it is never sequentially rational for player 2 to

choose R′.

We have only claimed that player 2 should have beliefs and act optimally given the belief.

However, we have not yet discussed what beliefs are reasonable. In order to impose such

requirements, we first need to distinguish information sets on the equilibrium path and

off the equilibrium path.

Definition 3.B.1. For a given equilibrium in a given extensive-form game, an informa-

tion set is on the equilibrium path if it will be reached with positive probability if the

game is played according to the equilibrium strategies, and is off the equilibrium path if it

is certain not to be reached if the game is played according to the equilibrium strategies.

Then we impose the following two Belief consistency requirements:

Requirement 2 (Belief consistency (on the equilibrium path)). At information

sets on the equilibrium path, beliefs are determined by Bayes’ rule and the players’

equilibrium strategies.
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Requirement 3 (Belief consistency (off the equilibrium path)). At information

sets off the equilibrium path, beliefs are determined by Bayes’ rule and the players’

equilibrium strategies where possible.

Let us apply the belief consistency requirements to the (L, L′) equilibrium in Exam-

ple 3.B.1. Player 2’s belief must be p = 1: given player 1’s equilibrium strategy (namely,

L), player 2 knows which node in the information set has been reached.

As an illustration, suppose that in Example 3.B.1 there were a mixed-strategy equilib-

rium in which player 1 plays L with probability q1, R with probability q2, and O with

probability 1 − q1 − q2. Then belief consistency requires player 2’s belief to be p = q1
q1+q2

.

Next, we formally define the solution concept Perfect Bayesian Equilibrium.

Definition 3.B.2 (Perfect Bayesian Equilibrium). A Perfect Bayesian Equilibrium

(PBE) is a strategy profile σ and a belief system µ = (µ1, µ2, ..., µn) where µi specifies

Player i’s belief at each of his/her information sets, satisfying Requirements 1 to 3.5

Note that because perfect Bayesian equilibrium makes the players’ beliefs explicit, such

an equilibrium often cannot be constructed by working backwards through the game tree,

as we did to construct a subgame perfect equilibrium.

Example 3.B.3 (Signaling game). Consider the following signaling game:

Nature

t2[1 − p]

(2, 4)
u

(0, 1)

d

L

[1 − q]

(1, 2)

d

(1, 0)
u

R

0.5

t1[p]

(1, 3)
u

(4, 0)

d

L [q]

(0, 0)

d

(2, 1)
u

R

0.5

Receiver Receiver

5In simple economic applications, such as Example 3.B.3, Requirements 1 and 2 is enough. In richer
economic applications, however, more requirements need to be imposed to eliminate implausible equi-
libria. See Section 3.B.5 for details. Different authors have used different definitions of perfect Bayesian
equilibrium. All definitions include Requirements 1 and 2; most also include Requirement 3; some impose
further requirements.
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• Sender’s type space: T = {t1, t2};

• Sender’s action space: M = {L, R} for both t1 and t2;

• Receiver’s action space: A = {u, d}, independent of the sender’s message.

Recall that (in any game) a player’s strategy is a complete plan of action–a strategy

specifies a feasible action in every contingency in which the player might be called upon

to act. In a signaling game, therefore, a pure strategy for the Sender is a function

m(ti) specifying which message will be chosen for each type that nature might draw, and

a pure strategy for the Receiver is a function a(mj) specifying which action will be

chosen for each message that the Sender might send.

In this game, there are four possible pure-strategy perfect Bayesian equilibria based on

Sender’s pure strategy:

1. pooling on L;

2. pooling on R;

3. separation with t1 playing L and t2 playing R; and

4. separation with t1 playing R and t2 playing L.

We analyze these possibilities in turn.

Pooling on L Suppose there is an equilibrium in which Sender’s strategy is (L, L).6

Then the Receiver’s information set corresponding to L is on the equilibrium path and

p = 0.5. Given this belief, Receiver’s best response to L is u. To determine whether both

Sender types are willing to choose L, we need to specify how Receiver would react to R.

• If Receiver’s response to R is u, then t1’s payoff from playing R is 2, which exceeds

t1’s payoff of 1 from playing L.

• If Receiver’s response to R is d, then t1 and t2 earn payoffs of 0 and 1 from playing

R, whereas they earn 1 and 2 from playing L.

Thus, if there is an equilibrium in which Sender’s strategy is (L, L), then Receiver’s re-

sponse to R must be d. So Receiver’s strategy is (u, d).7 It remains to consider Receiver’s

belief at the information set corresponding to R. For playing d to be optimal, we require

q · 0 + (1 − q) · 2 ≥ q · 1 + (1 − q) · 0 =⇒ q ≤ 2/3. Thus, ((L, L), (u, d), p = 0.5, q) is a

pooling perfect Bayesian equilibrium for any q ≤ 2/3.

6The first entry denotes type t1’s action and the second denotes t2’s action.
7The first entry denotes Receiver’s action following L and the second denotes Receiver’s action fol-

lowing R.
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Pooling on R Suppose Sender’s strategy is (R, R). Then q = 0.5. Receiver’s best

response to R is d. Again we need to specify Receiver’s reaction to L. However, since t1

can at least obtain 1 from playing L, which is higher than t1’s payoff of 0 from playing

R, there is no equilibrium in which Sender plays (R, R).

Separation, with t1 playing L and t2 playing R If the Sender plays the separating

strategy (L, R), then both of Receiver’s information sets are on the equilibrium path, so

p = 1 and q = 0. Receiver’s best response is (u, d). It remains to check whether Sender’s

strategy is optimal given Receiver’s strategy (u, d). It is not: if t2 deviates by playing L

rather than R, then Receiver responds with u, earning t2 a payoff of 2, which exceeds t2’s

payoff of 1 from playing R.

Separation, with t1 playing R and t2 playing L If the Sender plays the separating

strategy (R, L), then p = 0 and q = 1. Receiver’s best response is (u, u). It remains to

check whether Sender’s strategy is optimal given Receiver’s strategy (u, u).

• If t1 deviates by playing L rather than R, then Receiver responds with u, earning

t1 a payoff of 1, which is lower than t1’s payoff of 2 from playing R.

• If t2 deviates by playing R rather than L, then Receiver responds with u, earning

t2 a payoff of 1, which is lower than t2’s payoff of 2 from playing L.

Thus, ((R, L), (u, u), p = 0, q = 1) is a separating perfect Bayesian equilibrium.

3.B.5. Refinement of Perfect Bayesian Equilibrium

We briefly discuss the refinement of perfect Bayesian equilibrium (on beliefs off the equi-

librium path) in signaling games through two examples.

Example 3.B.4. Consider the following signalling game:
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Nature

t2[1 − p]

(1, 0)
u

(1, 1)

d

L

[1 − q]

(0, 0)

d

(2, 1)
u

R

0.5

t1[p]

(3, 2)
u

(2, 0)

d

L [q]

(0, 1)

d

(1, 0)
u

R

0.5

Receiver Receiver

Question 3.18. Can you find the pure-strategy perfect Bayesian equilibria of this game?

Answer: There are two pure-strategy perfect Bayesian equilibria:

• one pooling equilibrium: ((L, L), (u, d), p = 0.5, q) for any q ≥ 1/2;

• one separating equilibrium: ((L, R), (u, u), p = 1, q = 0).

Question 3.19. Is the pooling equilibrium reasonable? In particular, is the off-the-

equilibrium-path belief q ≥ 1/2 reasonable?

Answer: No. Note that it makes no sense for t1 to play R: if t1 plays L, the lowest payoff

is 2; whereas if t1 plays R, the highest payoff is 1. However, the belief q ≥ 1/2 means

Receiver believes that a deviation to R is very likely from t1.

To eliminate such unreasonable predictions, we impose the following requirement:

Requirement 4 (Signalling). If the information set following mj is off the equilibrium

path and mj is dominated for type ti, then (if possible) the Receiver’s belief µ(ti | mj)

should place zero probability on type ti.

The definition of a message being dominated for a type in the requirement is as follows:

Definition 3.B.3. In a signaling game, the message mj from M is dominated for

type ti from T if there exists another message mj′ from M such that ti’s lowest possible

payoff from mj′ is greater than ti’s highest possible payoff from mj:

min
ak∈A

US(ti, mj′ , ak) > max
ak∈A

US(ti, mj, ak).
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Applying Requirement 4 to the pooling equilibrium in Example 3.B.4, we require q = 0.

Since the pooling equilibrium is a perfect Bayesian equilibrium only if q ≥ 1/2, this

equilibrium cannot satisfy Requirement 4. On the other hand, the separating equilibrium

satisfies Requirement 4 trivially.

Example 3.B.5 (Beer and Quiche). In the “Beer and Quiche” signaling game, Sender

is one of two types:

• t1 – “wimpy” (with probability 0.1) and

• t2 – “surly” (with probability 0.9).

Sender’s message is the choice of whether to have beer or quiche for breakfast;

Receiver’s action is the choice of whether or not to duel with Sender.

The qualitative features of the payoffs are

• wimpy type would prefer to have quiche for breakfast,

• surly type would prefer to have beer,

• both types would prefer not to duel with Receiver (and care about this more than

about which breakfast they have), and

• Receiver would prefer to duel with wimpy type but not to duel with surly type.

The game tree is as follows:

Nature

t2

(surly)

[1 − p]

(0, −1)
duel

(2, 0)

not

Quiche

[1 − q]

(3, 0)

not

(1, −1)
duel

Beer

0.9

(wimpy)

t1[p]

(1, 1)
duel

(3, 0)

not Quiche

[q]

(2, 0)

not

(0, 1)
duel

Beer

0.1

Receiver Receiver

Figure 3.5: Beer and Quiche

Question 3.20. Can you find the pure-strategy perfect Bayesian equilibria of this game?

Answer: There are two pure-strategy perfect Bayesian equilibria, both are pooling:
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• ((Quiche, Quiche), (not, duel), p = 0.1, q) for any q ≥ 1/2;

• ((Beer, Beer), (duel, not), p, q = 0.1) for any p ≥ 1/2.

Question 3.21. Do these equilibria satisfy Requirement 4?

Answer: Yes. Because both Beer and Quiche are not dominated for either Sender type.

Question 3.22. The first pooling equilibrium requires Receiver to believe that Sender

is very likely to be of surly type (q ≥ 1/2) if the off-the-equilibrium-path message Beer

is observed. Is it reasonable?

Answer: No. Because:

1. wimpy type cannot possibly improve on the equilibrium payoff of 3 by having Beer

rather than Quiche, while

2. surly type could improve on the equilibrium payoff of 2 as surly type would receive

the payoff of 3 if Receiver held a belief q < 1/2.

To eliminate such unreasonable predictions, we impose the following requirement:

Requirement 5 (“The Intuitive Criterion”, Cho and Kreps (1987)). If the information

set following mj is off the equilibrium path and mj is equilibrium-dominated for type ti,

then (if possible) the Receiver’s belief µ(ti | mj) should place zero probability on type ti.

The definition of a message being equilibrium-dominated for a type in the requirement

is as follows:

Definition 3.B.4. Given a perfect Bayesian equilibrium in a signaling game, the message

mj from M is equilibrium-dominated for type ti from T if ti’s equilibrium payoff,

denoted by U∗(ti), is greater than ti’s highest possible payoff from mj:

U∗(ti) > max
ak∈A

US(ti, mj, ak).

Applying Requirement 5 to the first pooling equilibrium in Example 3.B.5, we require

q = 0. Since the pooling equilibrium is a perfect Bayesian equilibrium only if q ≥ 1/2,

this equilibrium cannot satisfy Requirement 5. On the other hand, the second pooling

equilibrium satisfies Requirement 5.

Remark 3.9. Arguments in the spirit of Requirement 5 are sometimes said to use forward

induction, because in interpreting a deviation—that is, in forming the belief µ(ti | mj)—

Receiver asks whether Sender’s past behavior could have been rational.
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