Convex sets and (quasi)-concave/convex functions

1.A. Convex Sets

Definition 1.A.1 (Convex Set)**.** A set *S* of points in *n*-dimensional space is called *convex* if, given any two points $x^a = (x_1^a, x_2^a, ..., x_n^a)$ and $x^b = (x_1^b, x_2^b, ..., x_n^b)$ in S and any real number $\alpha \in [0, 1]$, the point $\alpha x^a + (1 - \alpha)x^b = (\alpha x_1^a + (1 - \alpha)x_1^b, ..., \alpha x_n^a + (1 - \alpha)x_n^b)$ is also in *S*.

A geometric test of convexity is that given any two points of the set, the whole line segment joining them should lie in the set.

Figure [1](#page-0-0) and [2](#page-0-1) are examples of *convex* sets. Please be aware that to apply the geometric test of convexity, we need to ensure that for *any* two points of the set, the whole line segment lie in the set.

Figure 1: Convex Set (a) Figure 2: Convex Set (b)

Figure [3](#page-1-0) and [4](#page-1-1) are examples of *non-convex* sets. The sets are *non-convex*, since there exist points x^a and x^b and a real number α , such that the point $\alpha x^a + (1 - \alpha)x^b$ is not inside the set.

Figure 3: Non-Convex Set (a) Figure 4: Non-Convex Set (b)

1.B. Quasi-convex/concave functions

Definition 1.B.1 (Quasi-convex Function). A function $f : \mathcal{S} \to \mathbb{R}$, defined on a convex set $S \subset \mathbb{R}^N$, is *quasi-convex* if the set $\{x | f(x) \le c\}$ is convex for all $c \in \mathbb{R}$, or equivalently, if

$$
f(\alpha x^{a} + (1 - \alpha)x^{b}) \le \max\{f(x^{a}), f(x^{b})\},\tag{1}
$$

for all x^a , x^b and for all $\alpha \in [0, 1]$.

We show the equivalence of

- (a) The set $\{x | f(x) \le c\}$ is convex for all $c \in \mathbb{R}$;
- (b) $f(\alpha x^a + (1 \alpha)x^b) \le \max\{f(x^a), f(x^b)\}\$, for all x^a, x^b and for all $\alpha \in [0, 1]$.

Proof. [\(a\)](#page-1-2) \implies [\(b\):](#page-1-3) Since (a) holds for all $c \in \mathbb{R}$, for any x^a and x^b , we could set $c = \max\{f(x^a), f(x^b)\}\$. Then since $f(x^a) \leq \max\{f(x^a), f(x^b)\} = c, f(x^b) \leq$ $\max\{f(x^a), f(x^b)\} = c$, by [\(a\),](#page-1-2) we have $f(\alpha x^a + (1 - \alpha)x^b) \le c = \max\{f(x^a), f(x^b)\}$ [for](#page-1-3) any $\alpha \in [0, 1]$. Thus, [\(b\)](#page-1-3) holds.

[\(b\)](#page-1-3) \implies [\(a\)](#page-1-2): Equivalently, we show "not (a) \implies not (b)".

If [\(a\)](#page-1-2) fails, then there exists x^a , x^b , c and $\alpha \in [0,1]$ such that $f(x^a) \leq c$ and $f(x^b) \leq c$ but $f(\alpha x^a + (1 - \alpha)x^b) > c$. Then $f(\alpha x^a + (1 - \alpha)x^b) > c \ge \max\{f(x^a), f(x^b)\}\$. Thus, [\(b\)](#page-1-3) fails for these values of x^a , x^b and α . \Box

The definition of *quasi-concave* is given in Definition [1.B.2](#page-2-0) below.

Definition 1.B.2 (Quasi-concave Function). A function $f : \mathcal{S} \to \mathbb{R}$, defined on a convex set $S \subset \mathbb{R}^N$, *quasi-concave* if the set $\{x | f(x) \ge c\}$ is convex for all $c \in \mathbb{R}$, or equivalently, if $f(\alpha x^a + (1 - \alpha)x^b) \ge \min\{f(x^a), f(x^b)\}\$, for all x^a, x^b and for all $\alpha \in [0, 1]$.

1.C. *Quasi-convexity* **(***quasi-concavity***) and** *convexity* **(***concavity***)**

The *quasi* in Definition [1.B.1](#page-1-4) and [1.B.2](#page-2-0) serves to distringuish them from stronger properties of *convexity* and *concavity*. Formally, we define convexity as follows.

Definition 1.C.1 (Convex Function). A function $f : \mathcal{S} \to \mathbb{R}$, defined on a convex set $\mathcal{S} \subset \mathbb{R}^N$, is *convex* if

$$
f(\alpha x^{a} + (1 - \alpha)x^{b}) \leq \alpha f(x^{a}) + (1 - \alpha)f(x^{b}),
$$
\n(2)

for all x^a , x^b and for all $\alpha \in [0, 1]$.

([2](#page-2-1)) *convexity* implies [\(1](#page-1-5)) *quasi-convexity* since

$$
f(\alpha x^{a} + (1 - \alpha)x^{b}) \leq \alpha f(x^{a}) + (1 - \alpha)f(x^{b})
$$

\n
$$
\leq \alpha \max\{f(x^{a}), f(x^{b})\} + (1 - \alpha) \max\{f(x^{a}), f(x^{b})\}
$$

\n
$$
= \max\{f(x^{a}), f(x^{b})\}.
$$

In other words, a convex function must be quasi-convex.

Similarly, we could define concavity and compare it with *quasi-concavity*.

Definition 1.C.2 (Concave Function). A function $f : \mathcal{S} \to \mathbb{R}$, defined on a convex set S ⊂ \mathbb{R}^N , is *concave* if

$$
f(\alpha x^{a} + (1 - \alpha)x^{b}) \geq \alpha f(x^{a}) + (1 - \alpha)f(x^{b}),
$$
\n(3)

for all x^a , x^b and for all $\alpha \in [0, 1]$.

Following the same logic, we could show that a concave function must be quasi-concave. Figure [5](#page-3-0) provides a graphical illustration of a *concave* function for the one-variable case. The red dot (LHS of ([3\)](#page-2-2)) is always higher than the green dot (RHS of ([3](#page-2-2))).

Figure 5: Concave Function

The graph of the function lies on or above the chord joining any two points of it.

1.D. More on concave functions

An alternative interpretation of a concave function is sometimes useful. Consider the $(n + 1)$ -dimensional space consisting of points like (x, v) where x is an *n*-dimensional vector and *v* is a scalar. Define the set $\mathcal{F} = \{(x, v) | v \leq f(x) \}.$

Then, we make the following claim:

Claim. f is a concave function if and only if F is a convex set.

Proof. " \implies ": To prove that *F* is a convex set, we need to show that for all (x^a, v^a) and (x^b, v^b) that satisfy $v^a \le f(x^a)$ and $v^b \le f(x^b)$ and any real number $\alpha \in [0, 1]$, we have $\alpha v^a + (1 - \alpha)v^b \le f(\alpha x^a + (1 - \alpha)x^b)$.

By concavity of *f*, we know that for all x^a and x^b and for all $\alpha \in [0,1]$, [\(3](#page-2-2)) holds.

Therefore, for all (x^a, v^a) and (x^b, v^b) that satisfy $v^a \le f(x^a)$ and $v^b \le f(x^b)$ and any real number $\alpha \in [0, 1]$,

$$
\alpha v^{a} + (1 - \alpha)v^{b} - \left[f(\alpha x^{a} + (1 - \alpha)x^{b})\right]
$$

$$
\leq \alpha v^{a} + (1 - \alpha)v^{b} - \left[\alpha f(x^{a}) + (1 - \alpha)f(x^{b})\right]
$$

$$
\leq \alpha v^{a} + (1 - \alpha)v^{b} - \left[\alpha v^{a} + (1 - \alpha)v^{b}\right] = 0
$$

$$
v^{a} \leq f(x^{a}) \text{ and } v^{b} \leq f(x^{b})
$$

Therefore, $\alpha v^a + (1 - \alpha)v^b \le f(\alpha x^a + (1 - \alpha)x^b)$ and convexity of set *F* follows.

" \Longleftarrow ": To prove that *F* is concave, we need to show that for all x^a , x^b and all $\alpha \in [0,1]$, ([3](#page-2-2)) holds.

For any x^a and x^b , set $v^a = f(x^a)$ and $v^b = f(x^b)$, so that $v^a \le f(x^a)$ and $v^b \le f(x^b)$ are satisfied, i.e., $(x^a, v^a) \in \mathcal{F}$ and $(x^b, v^b) \in \mathcal{F}$. Then by convexity of set \mathcal{F} , for any real number $\alpha \in [0, 1]$, we have $\alpha v^a + (1 - \alpha)v^b \le f(\alpha x^a + (1 - \alpha)x^b)$ = $\alpha f(x^a) + (1 \alpha f(x) \longrightarrow \alpha f(x)$
 $v^a = f(x^a), v^b = f(x^b)$ **∶** $a(f(x^b)) \le f(\alpha x^a + (1 - \alpha)x^b)$, and concavity of the function *f* follows. \Box

The claim could be more easily understood graphically. Figure [6](#page-4-0) illustrates the case with a scalar variable x. The function f is the red curve. The set $\mathcal F$ is the area shaded in orange. The claim means that the concave function f traps a convex set $\mathcal F$ underneath its graph. And it is clear from Figure [6.](#page-4-0)

Figure 6: Concave Function

For differentiable functions, the concavity property could be interpreted in terms of firstorder derivatives. We have also shown a similar graph to Figure [7](#page-5-0) below, and interpreted *concavity* graphically: the graph of the function lies on or above the chord joining any two points of it. To express the concavity of $f(x)$ in terms of its derivative, we now draw the tangent to $f(x)$ at x^a . The requirement of concavity says that the graph of the function should lie on or below the tangent. Or expressed differently,

$$
f_x(x^a)(x^b - x^a) \ge f(x^b) - f(x^a),
$$

where $f_x(x^a)$ is the slope of the tangent to $f(x)$ at x^a .

Figure 7: Concave Function

Such an expression holds for higher dimensions. The result is summarized in Proposition [1.D.1](#page-5-1) below.

Proposition 1.D.1 (Concave Function). *A* differentiable function $f : \mathcal{S} \to \mathbb{R}$, defined *on a convex set* $S \subset \mathbb{R}^N$ *, is concave if and only if*

$$
f_x(x^a)(x^b - x^a) \ge f(x^b) - f(x^a),\tag{7.1}
$$

for all $x^a, x^b \in S$.

For twice continusouly differentiable functions, this concavity property could be interpreted in terms of second-order derivatives.

Proposition 1.D.2. The *(twice continuously differentiable) function* $f : S \rightarrow \mathbb{R}$ *is* concave if and only if f_{xx} is negative semi-definite for every $x \in S$. If f_{xx} is negative *definite for every* $x \in S$ *, then the function is strictly concave.*