
Advanced Microeconomics

Convex sets and (quasi)-concave/convex functions

1.A. Convex Sets

Definition 1.A.1 (Convex Set). A set S of points in n-dimensional space is called convex

if, given any two points xa = (xa
1, xa

2, ..., xa
n) and xb = (xb

1, xb
2, ..., xb

n) in S and any real

number α ∈ [0, 1], the point αxa + (1 − α)xb = (αxa
1 + (1 − α)xb

1, ..., αxa
n + (1 − α)xb

n) is

also in S.

A geometric test of convexity is that given any two points of the set, the whole line

segment joining them should lie in the set.

Figure 1 and 2 are examples of convex sets. Please be aware that to apply the geometric

test of convexity, we need to ensure that for any two points of the set, the whole line

segment lie in the set.

Figure 1: Convex Set (a) Figure 2: Convex Set (b)

Figure 3 and 4 are examples of non-convex sets. The sets are non-convex, since there

exist points xa and xb and a real number α, such that the point αxa + (1 − α)xb is not

inside the set.
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Figure 3: Non-Convex Set (a) Figure 4: Non-Convex Set (b)

1.B. Quasi-convex/concave functions

Definition 1.B.1 (Quasi-convex Function). A function f : S → R, defined on a convex

set S ⊂ RN , is quasi-convex if the set {x|f(x) ≤ c} is convex for all c ∈ R, or equivalently,

if
f(αxa + (1 − α)xb) ≤ max{f(xa), f(xb)}, (1)

for all xa, xb and for all α ∈ [0, 1].

We show the equivalence of

(a) The set {x|f(x) ≤ c} is convex for all c ∈ R;

(b) f(αxa + (1 − α)xb) ≤ max{f(xa), f(xb)}, for all xa, xb and for all α ∈ [0, 1].

Proof. (a) =⇒ (b): Since (a) holds for all c ∈ R, for any xa and xb, we could

set c = max{f(xa), f(xb)}. Then since f(xa) ≤ max{f(xa), f(xb)} = c, f(xb) ≤

max{f(xa), f(xb)} = c, by (a), we have f(αxa + (1 − α)xb) ≤ c = max{f(xa), f(xb)}

for any α ∈ [0, 1]. Thus, (b) holds.

(b) =⇒ (a): Equivalently, we show “not (a) =⇒ not (b)”.

If (a) fails, then there exists xa, xb, c and α ∈ [0, 1] such that f(xa) ≤ c and f(xb) ≤ c

but f(αxa + (1 − α)xb) > c. Then f(αxa + (1 − α)xb) > c ≥ max{f(xa), f(xb)}. Thus,

(b) fails for these values of xa, xb and α.

The definition of quasi-concave is given in Definition 1.B.2 below.
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Definition 1.B.2 (Quasi-concave Function). A function f : S → R, defined on a convex

set S ⊂ RN , quasi-concave if the set {x|f(x) ≥ c} is convex for all c ∈ R, or equivalently,

if f(αxa + (1 − α)xb) ≥ min{f(xa), f(xb)}, for all xa, xb and for all α ∈ [0, 1].

1.C. Quasi-convexity (quasi-concavity) and convexity (concavity)

The quasi in Definition 1.B.1 and 1.B.2 serves to distringuish them from stronger prop-

erties of convexity and concavity. Formally, we define convexity as follows.

Definition 1.C.1 (Convex Function). A function f : S → R, defined on a convex set

S ⊂ RN , is convex if

f(αxa + (1 − α)xb) ≤ αf(xa) + (1 − α)f(xb), (2)

for all xa, xb and for all α ∈ [0, 1].

(2) convexity implies (1) quasi-convexity since

f(αxa + (1 − α)xb) ≤!"#$
(2)

αf(xa) + (1 − α)f(xb)

≤ α max{f(xa), f(xb)} + (1 − α) max{f(xa), f(xb)}

= max{f(xa), f(xb)}.

In other words, a convex function must be quasi-convex.

Similarly, we could define concavity and compare it with quasi-concavity.

Definition 1.C.2 (Concave Function). A function f : S → R, defined on a convex set

S ⊂ RN , is concave if

f(αxa + (1 − α)xb) ≥ αf(xa) + (1 − α)f(xb), (3)

for all xa, xb and for all α ∈ [0, 1].

Following the same logic, we could show that a concave function must be quasi-concave.

Figure 5 provides a graphical illustration of a concave function for the one-variable case.

The red dot (LHS of (3)) is always higher than the green dot (RHS of (3)).
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Figure 5: Concave Function

The graph of the function lies on or above the chord joining any two points of it.

1.D. More on concave functions

An alternative interpretation of a concave function is sometimes useful. Consider the

(n + 1)-dimensional space consisting of points like (x, v) where x is an n-dimensional

vector and v is a scalar. Define the set F = {(x, v)|v ≤ f(x)}.

Then, we make the following claim:

Claim. f is a concave function if and only if F is a convex set.

Proof. “ =⇒ ”: To prove that F is a convex set, we need to show that for all (xa, va)

and (xb, vb) that satisfy va ≤ f(xa) and vb ≤ f(xb) and any real number α ∈ [0, 1], we

have αva + (1 − α)vb ≤ f(αxa + (1 − α)xb).

By concavity of f , we know that for all xa and xb and for all α ∈ [0, 1], (3) holds.

Therefore, for all (xa, va) and (xb, vb) that satisfy va ≤ f(xa) and vb ≤ f(xb) and any real

number α ∈ [0, 1],
αva + (1 − α)vb −

%
f(αxa + (1 − α)xb)

&

≤!"#$
(3)

αva + (1 − α)vb −
%
αf(xa) + (1 − α)f(xb)

&

≤!"#$
va≤f(xa) and vb≤f(xb)

αva + (1 − α)vb −
%
αva + (1 − α)vb

&
= 0
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Therefore, αva + (1 − α)vb ≤ f(αxa + (1 − α)xb) and convexity of set F follows.

“⇐=”: To prove that F is concave, we need to show that for all xa, xb and all α ∈ [0, 1],

(3) holds.

For any xa and xb, set va = f(xa) and vb = f(xb), so that va ≤ f(xa) and vb ≤ f(xb)

are satisfied, i.e., (xa, va) ∈ F and (xb, vb) ∈ F . Then by convexity of set F , for any real

number α ∈ [0, 1], we have αva + (1 − α)vb ≤ f(αxa + (1 − α)xb) =⇒! "# $
va=f(xa), vb=f(xb)

αf(xa) + (1 −

α)f(xb)) ≤ f(αxa + (1 − α)xb), and concavity of the function f follows.

The claim could be more easily understood graphically. Figure 6 illustrates the case with

a scalar variable x. The function f is the red curve. The set F is the area shaded in

orange. The claim means that the concave function f traps a convex set F underneath

its graph. And it is clear from Figure 6.

Figure 6: Concave Function

For differentiable functions, the concavity property could be interpreted in terms of first-

order derivatives. We have also shown a similar graph to Figure 7 below, and interpreted

concavity graphically: the graph of the function lies on or above the chord joining any

two points of it. To express the concavity of f(x) in terms of its derivative, we now

draw the tangent to f(x) at xa. The requirement of concavity says that the graph of the

function should lie on or below the tangent. Or expressed differently,

fx(xa)(xb − xa) ≥ f(xb) − f(xa),

where fx(xa) is the slope of the tangent to f(x) at xa.
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Figure 7: Concave Function

Such an expression holds for higher dimensions. The result is summarized in Proposition

1.D.1 below.

Proposition 1.D.1 (Concave Function). A differentiable function f : S → R, defined

on a convex set S ⊂ RN , is concave if and only if

fx(xa)(xb − xa) ≥ f(xb) − f(xa), (7.1)

for all xa, xb ∈ S .

For twice continusouly differentiable functions, this concavity property could be inter-

preted in terms of second-order derivatives.

Proposition 1.D.2. The (twice continuously differentiable) function f : S → R is

concave if and only if fxx is negative semi-definite for every x ∈ S. If fxx is negative

definite for every x ∈ S, then the function is strictly concave.
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