Game Theory

Assignment 3

Due date: November 6, 2022 (Sunday)

Question 1: Finitely Repeated Game (Polak PS10 Q2)

1. Find all pure-strategy Nash equilibria of the following game.

		Player 2			
		a	b	с	d
Player 1	А	(3,1)	(0, 0)	(0, 0)	(5,0)
	В	(0, 0)	(1,3)	(0, 0)	(0, 0)
	С	(0, 0)	(0, 0)	(2,2)	(0, 0)
	D	(0, 0)	(0, 5)	(0, 0)	(4, 4)

2. Suppose that the game is played twice. Assume no discounting. Construct a subgame perfect Nash equilibrium in which (D, d) is played in the first stage.

Question 2: Gibbons 2.15 Suppose there are n firms in a Cournot oligopoly. Inverse demand is given by

$$P(Q) = a - Q,$$

where $Q = q_1 + ... + q_n$ and q_i is the quantity produced by firm *i*. Assume that the total cost to a firm with quantity q_i is $C(q_i) = cq_i$, where c < a. Consider the infinitely repeated game based on this stage game.

- 1. What is the lowest value of δ such that the firms can use trigger strategies to sustain the monopoly output level in a subgame perfect Nash equilibrium?
- 2. How does the answer vary with n, and why?
- 3. If δ is too small for the firms to use trigger strategies to sustain the monopoly output, what is the most-profitable symmetric subgame perfect Nash equilibrium that can be sustained using trigger strategies?

(Note: You may want to use a computer to help you with the calculations.)

Question 3: Gibbons 3.2 Consider the Cournot duopoly model where the two firms choose their quantities simultaneously. Let q_1 and q_2 denote the quantities (of a homogeneous product) produced by firms 1 and 2, respectively. Let P(Q) = a - Q be the market-clearing price when the aggregate quantity on the market is $Q = q_1 + q_2$. The demand a is uncertain:

- it is high, i.e., $a = a_H$, with probability θ ;
- it is low, i.e., $a = a_L(\langle a_H)$, with probability 1θ .

Assume that the total cost to a firm with quantity q_i is $C(q_i) = cq_i$.

The information is asymmetric:

- Firm 1 knows whether $a = a_H$ or $a = a_L$;
- Firm 2 only knows the prior distribution, i.e., $a = a_H$ w.p. θ and $a = a_L$ w.p. 1θ .

All of this is common knowledge. Assume that the parameters a_H , a_L , θ and c are such that all equilibrium quantities are positive.

- 1. What are the strategy spaces for the two firms?
- 2. What is the Bayesian Nash equilibrium of this game?

Question 4: Gibbons 3.3 Consider the following asymmetric-information model of Bertrand duopoly with differentiated products. Demand for firm i is

$$q_i(p_i, p_j) = a - p_i - b_i \cdot p_j.$$

Costs are zero for both firms. The sensitivity of firm *i*'s demand to firm *j*'s price is either high or low. That is, b_i is either b_H or b_L , where $b_H > b_L > 0$. For each firm,

- $b_i = b_H$ with probability θ , and
- $b_i = b_L$ with probability 1θ ,

independent of the realization of b_j . Each him knows its own b_i , but not its competitor's. All of this is common knowledge.

1. What are the action spaces, type spaces, beliefs, and utility functions in this game?

- 2. What are the strategy spaces?
- 3. What conditions define a symmetric pure-strategy Bayesian Nash equilibrium of this game? Solve for such an equilibrium.

Question 5: Gibbons 3.4 Find all the pure-strategy Bayesian Nash equilibria in the following static Bayesian game:

- (i) Nature determines whether the payoffs are as in Game 1 or as in Game 2, each game being equally likely.
- (ii) Player 1 learns whether nature has drawn Game 1 or Game 2, but player 2 does not.
- (iii) Player 1 chooses either T or B; player 2 simultaneously chooses either L or R.
- (iv) Payoffs are given by the game drawn by nature.

