
Game Theory Assignment 4 Solution

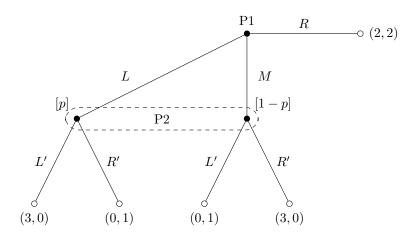
注:此答案步骤较简略,仅供参考。

Question 1: Gibbons 4.1 In the following extensive-form games, derive the normal-form game and find all the pure-strategy Nash, subgame perfect, and perfect Bayesian equilibria. a.

b.

Solution

a. (i) Normal-form game:


		Player 2		
		L'	\mathbf{R}'	
	L	(4,1)	(0, 0)	
Player 1	М	(3,0)	(0, 1)	
	R	(2,2)	(2,2)	

- (ii) Pure strategy NE: (L, L') and (R, R')
- (iii) SPE: (L, L') and (R, R')
- (iv) PBE: (L, L', p = 1) and (R, R', p) for any $p \le 1/2$.
- b. Normal-form game:

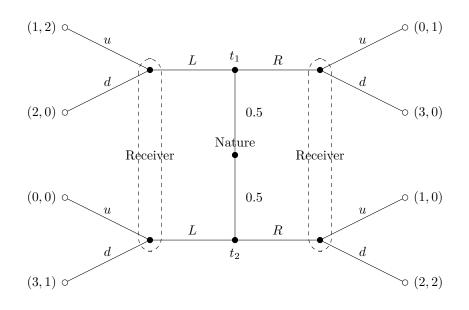
		Player 2			
		L'	\mathbf{M}	R'	
	\mathbf{L}	(1,3)	(1,2)	(4, 0)	
Player 1	Μ	(4, 0)	(0,2)	(3,3)	
	R	(2,4)	(2,4)	(2,4)	

- c. Pure strategy NE: (R, M')
- d. SPE: (R, M')
- e. PBE: (R,M',p) for any $1/3 \leq p \leq 2/3.$

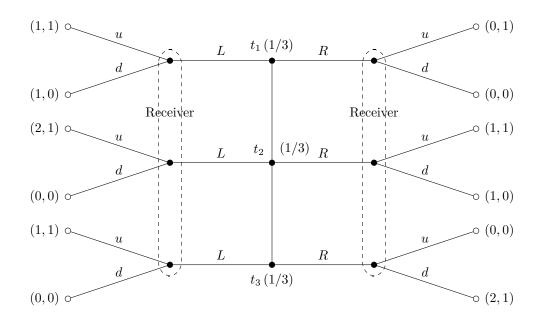
Question 2: Gibbons 4.2 Show that there does not exist a pure-strategy perfect Bayesian equilibrium in the following extensive-form game. What is the mixed-strategy perfect Bayesian equilibrium?

Solution Let p denote player 2's belief that L has been chosen when the game reaches his/her information set.

- 1. L' is optimal for player 2 if $p \le 1/2$. If player 2 chooses L', player 1's best response is L. Since L is on the equilibrium path of (L, L'), Bayes' rule implies that p = 1. This contradicts with $p \le 1/2$.
- 2. R' is optimal for player 2 if $p \ge 1/2$. If player 2 chooses R', player 1's best response is M. Since M is on the equilibrium path of (M, R'), Bayes' rule implies that p = 0. This contradicts with $p \ge 1/2$.


It is optimal for player 2 to mix if p = 1/2. Let player 2's mixed strategy be (q, 1 - q).

- 1. Suppose L and M is on the equilibrium path. Then q = 1/2. However, when this is the case, player 1's payoff from L or M is 3/2, which is less than his/her payoff from R. We reach a contradiction.
- 2. Suppose L and M is off the equilibrium path. Then we need to ensure that it is player 1's best response to choose R. This requires $1/3 \le q \le 2/3$.


To conclude, (R, (q, 1 - q), p = 1/2) for $1/3 \le q \le 2/3$ constitutes a mixed strategy PBE.

Question 3: Gibbons 4.5 Find all the pure-strategy perfect Bayesian equilibria of the following games.

a.

b.

4

Solution

- (a) There exist a set of pooling PBE that can be characterized by the following strategy profile:
 - Both types of sender plays R;
 - The receiver plays u if L is observed, plays d if R is observed;

and the receiver's belief: $\Pr(t_1|R) = 1/2$ and $\Pr(t_1|L) \ge 1/3$.

- (b) There exist a set of pooling PBE that can be characterized by the following strategy profile:
 - All types of sender plays L;
 - The receiver always plays u;

and the receiver's belief: $\Pr(t_1|L) = \Pr(t_2|L) = \Pr(t_3|L) = 1/3$ and $\Pr(t_3|R) \le 1/2$.

There also exists another PBE that can be characterized by the following strategy profile:

- The type- t_1 and type- t_2 sender plays L, and the type- t_3 sender plays R;
- The receiver plays u if L is observed, plays d if R is observed;

and the receiver's belief: $\Pr(t_1|L) = \Pr(t_2|L) = 1/2$ and $\Pr(t_3|R) = 1$.