Advanced Microeconomics

Assignment 1 Solution

1.B.3 Show that if $f : \mathbb{R} \to \mathbb{R}$ is a strictly increasing funciton and $u : X \to \mathbb{R}$ is a utility function representing preference relation \succsim , then the function $v : X \to \mathbb{R}$ defined by $v(x) = f(u(x))$ is also a utility function representing preference relation \succsim .

Solution. We show that $\forall x, y \in X$, we have $x \succsim y$ iff $v(x) \geq v(y)$.

Since $u(\cdot)$ *is a utility function representing the preference relation* \succeq *, we have*

$$
x \succsim y \Leftrightarrow u(x) \ge u(y) \tag{1}
$$

As f (*·*) *is strictly increasing,*

$$
u(x) \ge u(y) \Leftrightarrow f(u(x)) \ge f(u(y)) \Leftrightarrow v(x) \ge v(y)
$$
\n⁽²⁾

From ([1\)](#page-0-0) and [\(2\)](#page-0-1),

$$
x \succsim y \Leftrightarrow v(x) \ge v(y).
$$

1.C.1 Consider the choice structure $(\mathscr{B}, C(\cdot))$ with $\mathscr{B} = \{\{x, y\}, \{x, y, z\}\}\$ and $C(\{x, y\}) =$ $\{x\}$. Show that if $(\mathscr{B}, C(\cdot))$ satisfies the weak axiom, then we must have $C(\{x, y, z\}) =$ *{x} ,* = *{z} ,* or = *{x, z} .*

Solution. *We prove by contradiction.*

Suppose the conclusion fails to hold, then we must have

$$
y \in C\left(\{x, y, z\}\right).
$$

 $C({x,y}) = {x}$ implies $x \in C({x,y})$ and $y \notin C({x,y})$.

We apply W.A.R.P: Since for $x, y \in \{x, y, z\}$, we have $y \in C(\{x, y, z\})$. Then, for $x, y \in$ $\{x,y\}$ and $x \in C(\{x,y\})$, we must have $y \in C(\{x,y\})$. This contradicts $y \notin C(\{x,y\})$.

1.C.2 Show that the weak axiom (Definition [1.C.1](#page-1-0)) is equivalent to the following property holding: Suppose that $B, B' \in \mathcal{B}$, that $x, y \in B$, and that $x, y \in B'$. Then if $x \in C(B)$ and $y \in C(B')$, we must have $\{x, y\} \subset C(B)$, and $\{x, y\} \subset C(B')$.

Definition 1.C.1. The choice structure $(\mathcal{B}, C(\cdot))$ satisfies the weak axiom of revealed preference if the following property holds:

If for some $B \in \mathcal{B}$ with $x, y \in B$ we have $x \in C(B)$, then for any $B' \in \mathcal{B}$ with $x, y \in B'$ and $y \in C(B')$, we must also have $x \in C(B')$

Solution. *Suppose first that the weak axiom holds. Since* $x, y \in B$ *and* $x \in C(B)$ *, then,* by weak axiom, $x, y \in B'$ and $y \in C(B')$ implies that $x \in C(B')$. Hence, $\{x, y\} \subset C(B')$. Similarly, since $x, y \in B'$ and $y \in C(B')$, then $x, y \in B$ and $x \in C(B)$ would imply that $y \in C(B)$ *and hence* $\{x, y\} \subset C(B)$ *.*

Next, suppose the property in the question holds, we want to show that if $B \in \mathcal{B}, x, y \in B$ and $x \in C(B)$, then for $B' \in \mathcal{B}$, $x, y \in B'$, $y \in C(B')$, we must have $x \in C(B')$. This is *immediate since the property implies* $\{x, y\} \subset C(B')$ *.*

1.D.2 Show that if *X* is finite, then any rational preference relation generates a nonempty choice rule; that is, $C(B) \neq \emptyset$ for any $B \subset X$ with $B \neq \emptyset$ *.*

Solution. By Remark 1, there exists utility function $u(\cdot)$ that represents \succeq . Since X is finite, for any $B \subset X$ with $B \neq \emptyset$, there exists $x \in B$ such that $u(x) \geq u(y)$ for all $y \in B$ *. Then* $x \in C^*(B, \succcurlyeq)$ *and hence* $C^*(B, \succcurlyeq) \neq \emptyset$ *.*

1.D.3 Let $X = \{x, y, z\}$, and consider the choice structure $(\mathscr{B}, C(\cdot))$ with

$$
\mathscr{B} = \{\{x, y\}, \{y, z\}, \{x, z\}, \{x, y, z\}\}\
$$

and $C(\lbrace x,y \rbrace) = \lbrace x \rbrace, C(\lbrace y,z \rbrace) = \lbrace y \rbrace$, and $C(\lbrace x,z \rbrace) = \lbrace z \rbrace$, as in Example 1.D.1. Show that $(\mathcal{B}, C(\cdot))$ must violate the weak axiom.

Solution. If $x \in \{x, y, z\}$, since $x, z \in \{x, y, z\}$, and $x, z \in \{x, z\}$, $z \in C(\{x, z\})$, (implied by $C(\lbrace x,z\rbrace) = \lbrace z \rbrace$), then by W.A.R.P, $x \in C(\lbrace x,z\rbrace)$, which contradicts $C(\{x, z\}) = \{z\}.$

Similarly, $y \in \{x, y, z\}$ contradicts $C(\{x, y\}) = \{x\}$; and $z \in \{x, y, z\}$ contradicts $C(\{y, z\}) = \{y\}.$

Additional Exercise Can you think of an example in which the preference relation is transitive but not complete?

Solution. *Let* $X = \mathbb{R}^2$. *Consider the preference relation: for all* $x, y \in X$, $x \succeq y$ *whenever* $x \geq y$ *, that is, whenever* $x_1 \geq y_1$ *and* $x_2 \geq y_2$ *.*

- 1. This preference relation is transitive: Let $x, y, z \in \mathbb{R}^2$. Suppose $x \succsim y$ and $y \succsim z$. Then, $x_1 \ge y_1$ and $x_2 \ge y_2$; $y_1 \ge z_1$ and $y_2 \ge z_2$. This implies $x_1 \ge z_1$ and $x_2 \ge z_2$. *Therefore,* $x \succeq z$ *.*
- 2. This preference relation is not complete: For $x = (1,0)$ and $y = (0,1)$ *, we have* $x \not\succsim y$ and $y \not\succsim x$.

Remark. The above preference relation is just an example. There are many other preference relations that are transitive but not complete.