Advanced Microeconomics

Assignment 1 Solution

1.B.3 Show that if $f : \mathbb{R} \to \mathbb{R}$ is a strictly increasing function and $u : X \to \mathbb{R}$ is a utility function representing preference relation \succeq , then the function $v : X \to \mathbb{R}$ defined by v(x) = f(u(x)) is also a utility function representing preference relation \succeq .

Solution. We show that $\forall x, y \in X$, we have $x \succeq y$ iff $v(x) \ge v(y)$.

Since $u(\cdot)$ is a utility function representing the preference relation \succeq , we have

$$x \succeq y \Leftrightarrow u\left(x\right) \ge u\left(y\right) \tag{1}$$

As $f(\cdot)$ is strictly increasing,

$$u(x) \ge u(y) \Leftrightarrow f(u(x)) \ge f(u(y)) \Leftrightarrow v(x) \ge v(y)$$
(2)

From (1) and (2),

$$x \succeq y \Leftrightarrow v(x) \ge v(y)$$

1.C.1 Consider the choice structure $(\mathscr{B}, C(\cdot))$ with $\mathscr{B} = \{\{x, y\}, \{x, y, z\}\}$ and $C(\{x, y\}) = \{x\}$. Show that if $(\mathscr{B}, C(\cdot))$ satisfies the weak axiom, then we must have $C(\{x, y, z\}) = \{x\}, = \{z\}, \text{ or } = \{x, z\}$.

Solution. We prove by contradiction.

Suppose the conclusion fails to hold, then we must have

$$y \in C\left(\{x, y, z\}\right).$$

 $C(\{x, y\}) = \{x\} \text{ implies } x \in C(\{x, y\}) \text{ and } y \notin C(\{x, y\}).$

We apply W.A.R.P: Since for $x, y \in \{x, y, z\}$, we have $y \in C(\{x, y, z\})$. Then, for $x, y \in \{x, y\}$ and $x \in C(\{x, y\})$, we must have $y \in C(\{x, y\})$. This contradicts $y \notin C(\{x, y\})$.

1.C.2 Show that the weak axiom (Definition 1.C.1) is equivalent to the following property holding: Suppose that $B, B' \in \mathcal{B}$, that $x, y \in B$, and that $x, y \in B'$. Then if $x \in C(B)$ and $y \in C(B')$, we must have $\{x, y\} \subset C(B)$, and $\{x, y\} \subset C(B')$.

Definition 1.C.1. The choice structure $(\mathscr{B}, C(\cdot))$ satisfies the weak axiom of revealed preference if the following property holds:

If for some $B \in \mathscr{B}$ with $x, y \in B$ we have $x \in C(B)$, then for any $B' \in \mathscr{B}$ with $x, y \in B'$ and $y \in C(B')$, we must also have $x \in C(B')$

Solution. Suppose first that the weak axiom holds. Since $x, y \in B$ and $x \in C(B)$, then, by weak axiom, $x, y \in B'$ and $y \in C(B')$ implies that $x \in C(B')$. Hence, $\{x, y\} \subset C(B')$. Similarly, since $x, y \in B'$ and $y \in C(B')$, then $x, y \in B$ and $x \in C(B)$ would imply that $y \in C(B)$ and hence $\{x, y\} \subset C(B)$.

Next, suppose the property in the question holds, we want to show that if $B \in \mathscr{B}, x, y \in B$ and $x \in C(B)$, then for $B' \in \mathscr{B}, x, y \in B', y \in C(B')$, we must have $x \in C(B')$. This is immediate since the property implies $\{x, y\} \subset C(B')$.

1.D.2 Show that if X is finite, then any rational preference relation generates a nonempty choice rule; that is, $C(B) \neq \emptyset$ for any $B \subset X$ with $B \neq \emptyset$.

Solution. By Remark 1, there exists utility function $u(\cdot)$ that represents \succeq . Since X is finite, for any $B \subset X$ with $B \neq \emptyset$, there exists $x \in B$ such that $u(x) \ge u(y)$ for all $y \in B$. Then $x \in C^*(B, \succeq)$ and hence $C^*(B, \succeq) \neq \emptyset$.

1.D.3 Let $X = \{x, y, z\}$, and consider the choice structure $(\mathscr{B}, C(\cdot))$ with

$$\mathscr{B} = \left\{ \left\{ x, y \right\}, \left\{ y, z \right\}, \left\{ x, z \right\}, \left\{ x, y, z \right\} \right\}$$

and $C(\{x,y\}) = \{x\}, C(\{y,z\}) = \{y\}$, and $C(\{x,z\}) = \{z\}$, as in Example 1.D.1. Show that $(\mathscr{B}, C(\cdot))$ must violate the weak axiom.

Solution. If $x \in \{x, y, z\}$, since $x, z \in \{x, y, z\}$, and $x, z \in \{x, z\}$, $z \in C(\{x, z\})$, (implied by $C(\{x, z\}) = \{z\}$), then by W.A.R.P, $x \in C(\{x, z\})$, which contradicts $C(\{x, z\}) = \{z\}$.

Similarly, $y \in \{x, y, z\}$ contradicts $C(\{x, y\}) = \{x\}$; and $z \in \{x, y, z\}$ contradicts $C(\{y, z\}) = \{y\}$.

Additional Exercise Can you think of an example in which the preference relation is transitive but not complete?

Solution. Let $X = \mathbb{R}^2$. Consider the preference relation: for all $x, y \in X$, $x \succeq y$ whenever $x \ge y$, that is, whenever $x_1 \ge y_1$ and $x_2 \ge y_2$.

- 1. This preference relation is transitive: Let $x, y, z \in \mathbb{R}^2$. Suppose $x \succeq y$ and $y \succeq z$. Then, $x_1 \ge y_1$ and $x_2 \ge y_2$; $y_1 \ge z_1$ and $y_2 \ge z_2$. This implies $x_1 \ge z_1$ and $x_2 \ge z_2$. Therefore, $x \succeq z$.
- 2. This preference relation is not complete: For x = (1,0) and y = (0,1), we have $x \not\gtrsim y$ and $y \not\gtrsim x$.

Remark. The above preference relation is just an example. There are many other preference relations that are transitive but not complete.