Advanced Microeconomics

Assignment 2

Due date: October 23, 2022 (Sunday)

Submission method: QQ group

Grading: Your assignment will be graded based on your effort, not the accuracy of your answers.

The exercises are embedded in the Chapter 2 lecture notes (red boxes). You are advised to read the relevant sections when you work on the exercises.

The same set of exercises are provided below:

2.D.2 A consumer consumes one consumption good x and hours of leisure h. The price of the consumption good is p, and the consumer can work at a wage rate of s = 1. What is the consumer's Walrasian budget set?

2.E.1 Suppose L = 3, and consider the demand function x(p, w) defined by

$$x_{1}(p,w) = \frac{p_{2}}{p_{1} + p_{2} + p_{3}} \frac{w}{p_{1}}$$
$$x_{2}(p,w) = \frac{p_{3}}{p_{1} + p_{2} + p_{3}} \frac{w}{p_{2}}$$
$$x_{3}(p,w) = \frac{\beta p_{1}}{p_{1} + p_{2} + p_{3}} \frac{w}{p_{3}}$$

Does this demand function satisfy homogeneity of degree zero and Walras' law when $\beta = 1$? What about when $\beta \in (0, 1)$?

2.E.3 Use Proposition 2.E.1 to 2.E.3 to show that $p \cdot D_p x(p, w) p = -w$.

2.E.5 Suppose that x(p, w) is a demand function which is homogeneous of degree one with respect to w and satisfies Walras' law and homogeneity of degree zero. Suppose also that all the cross-price effects are zero, that is $\partial x_l(p, w) / \partial p_k = 0$ whenever $k \neq l$.

Show that this implies that for every l, $x_l(p, w) = \alpha_l w/p_l$, where $\alpha_l > 0$ is a constant independent of (p, w).

2.E.7 A consumer in a two-good economy has a demand function x(p, w) that satisfies Walras' law. His demand function for the first good is $x_1(p, w) = \alpha w/p_1$. Derive his demand function for the second good. Is his demand function homogeneous of degree zero?

2.E.8 Show that the elasticity of demand for good l with respect to price p_k , $\varepsilon_{lk}(p, w)$, can be written as $\varepsilon_{lk}(p, w) = d \ln (x_l(p, w)) / d \ln (p_k)$, where $\ln (\cdot)$ is the natural logarithm function. Derive a similar expression for $\varepsilon_{lw}(p, w)$. Conclude that if we estimate the parameters $(\alpha_0, \alpha_1, \alpha_2, \gamma)$ of the equation $\ln (x_l(p, w)) = \alpha_0 + \alpha_1 \ln p_1 + \alpha_2 \ln p_2 + \gamma \ln w$, these parameter estimates provide us with estimates of the elasticities $\varepsilon_{l1}(p, w)$, $\varepsilon_{l2}(p, w)$, and $\varepsilon_{lw}(p, w)$.

2.F.11 Show that for L = 2, S(p, w) is always symmetric. [Hint: Use Proposition 2.F.3.]

2.F.17 In an *L*-commodity world, a consumer's Walrasian demand function is

$$x_k(p, w) = \frac{w}{\sum_{l=1}^{L} p_l}$$
 for $k = 1, ..., L$.

- (a) In this demand function homogeneous of degree zero in (p, w)?
- (b) Does it satisfy Walras' law?
- (c) Does it satisfy the weak axiom?

(d) Compute the Slutsky substitution matrix for this demand function. Is it negative semidefinite? Negative definite? Symmetric?