
Advanced Microeconomics

Advanced Microeconomics

Assignment 4 Solution

5.B.2 Suppose that f(·) is the production function associated with a single-output

technology, and let Y be the production set of this technology. Show that Y satisfies

constant returns to scale if and only if f(·) is homogeneous of degree one.

Solution Recall that the single-output production function f(·) gives rise to the pro-

duction set

Y = {(−z1, −z2, · · · , −zL−1, q) : q − f(z1, · · · , zL−1) ≤ 0 and (z1, · · · , zL−1) ≥ 0}.

(i) Suppose first that Y satisfies constant returns to scale. Let z ∈ RL−1
+ , then

(−z, f(z)) ∈ Y by definition. The property of constant returns to scale implies

(−αz, αf(z)) ∈ Y for any α > 0, which in turn implies αf(z) ≤ f(αz) by the

definition of Y . On the other hand, since (−αz, f(αz)) ∈ Y , by the constant re-

turns to scale, we have (α−1αz, α−1f(αz)) ∈ Y , which implies α−1f(αz) ≤ f(z), or

f(αz) ≤ αf(z). In conclusion, f(αz) = αf(z), i.e., the production function f(·) is

homogeneous of degree one.

(ii) Conversely, suppose that f(·) is homogeneous of degree one. Let (−z, q) ∈ Y and

α > 0, then q ≤ f(z) by definition, and f(αz) = αf(z) by the homogeneity of

degree one. This implies αq ≤ αf(z) = f(αz), and hence (−αz, αq) ∈ Y , i.e., Y

satisfies constant returns to scale.

5.B.3 Show that for a single-output technology, Y is convex if and only if the production

function f(·) is concave.

Solution Recall that the single-output production function f(·) gives rise to the pro-

duction set

Y = {(−z1, −z2, · · · , −zL−1, q) : q − f(z1, · · · , zL−1) ≤ 0 and (z1, · · · , zL−1) ≥ 0}.
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(i) Suppose first that Y is convex. Let z1, z2 ∈ RL−1
+ and α ∈ [0, 1], then (−z1, f(z1)) ∈

Y and (−z2, f(z2)) ∈ Y . By convexity,

!
− (αz1 + (1 − α)z2), αf(z1) + (1 − α)f(z2)

"
∈ Y.

By definition, αf(z1) + (1 − α)f(z2) ≤ f(αz1 + (1 − α)z2), i.e. f(z) is concave.

(ii) Conversely, suppose that f(z) is concave. Let (−z1, q1) ∈ Y , (−z2, q2) ∈ Y , and

α ∈ [0, 1], then q1 ≤ f(z1) and q2 ≤ f(z2). Hence,

αq1 + (1 − α)q2 ≤ αf(z1) + (1 − α)f(z2).

As f(z) is concave,

αf(z1) + (1 − α)f(z2) ≤ f(αz1 + (1 − α)z2).

Therefore,
αq1 + (1 − α)q2 ≤ f(αz1 + (1 − α)z2).

Hence,
!

− (αz1 + (1 − α)z2), αq1 + (1 − α)q2

"
= α(−z1, q1) + (1 − α)(−z2, q2) ∈ Y.

5.C.9 Derive the profit function π(p) and supply function (or correspondence) y(p) for

the single-output technologies whose production functions f(z) are given by

(a) f(z) =
√

z1 + z2.

(b) f(z) =
#

min{z1, z2}.

(c) f(z) = (zρ
1 + zρ

2)1/ρ, for ρ ≤ 1.

Solution

(a) Let the price vector be p = (p1, p2, p3) ≫ 0. The profit maximization problem is

max
z1,z2≥0

(p1, p2, p3) · (−z1, −z2, q),

s.t. q ≤ f(z) =
√

z1 + z2.
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Clearly, the constraint must hold in equality, since otherwise one can increase the

production scale q without violating the constraint and earn a higher profit.

Hence, we can substitute q =
√

z1 + z2 into the objective function and set up the

Lagrangian:

L(z1, z2) = −p1z1 − p2z2 + p3
√

z1 + z2

If z1 + z2 = 0, then the non-negativity constraint implies z1 = z2 = 0, and thus the

profit is zero. Suppose z1 + z2 ∕= 0, the Kuhn-Tucker first-order conditions are

p3

2
√

z1 + z2
− p1 ≤ 0 with equality if z1 > 0,

p3

2
√

z1 + z2
− p2 ≤ 0 with equality if z2 > 0,

z1 ≥ 0; z2 ≥ 0.

(i) If p1 > p2, then p3
2
√

z1+z2
≤ p2 < p1, implying z1 = 0. Since we are discussing

the case where z1 +z2 ∕= 0, we have z2 > 0. And thus, p3
2√

z2
= p2 =⇒ z2 = p2

3
4p2

2
.

Therefore, the supply function and the profit function are given by

y(p) =
$

0, − p2
3

4p2
2
,

p3

2p2

%

,

π(p) = 0 − p2
3

4p2
+ p2

3
2p2

= p2
3

4p2
> 0.

(ii) If p2 > p1, by symmetry, we have

y(p) =
$

− p2
3

4p2
1
, 0,

p3

2p1

%

,

π(p) = − p2
3

4p1
− 0 + p2

3
2p1

= p2
3

4p1
> 0.

(iii) Finally, if p1 = p2, then p1 = p2 = p3
2
√

z1+z2
. z1, z2 satisfy z1 + z2 = p2

3
4p2

1
. Thus

we have

y(p) = (−z1, −z2,
√

z1 + z2) s.t. z1 ≥ 0, z2 ≥ 0, z1 + z2 = p2
3

4p2
1
,

π(p) = − p2
3

4p1
+ p2

3
2p1

= p2
3

4p1
.
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In summary, the supply function is given by

y(p) =

&
''''''''(

'''''''')

*
0, − p2

3
4p2

2
, p3

2p2

+
, if p1 > p2;

*
− p2

3
4p2

1
, 0, p3

2p1

+
, if p1 < p2;

(−z1, −z2,
p3
2p1

), z1 + z2 = p2
3

4p2
1
, if p1 = p2.

And the profit function is given by

π(p) =

&
'''(

''')

p2
3

4p2
, if p1 ≥ p2;

p2
3

4p1
, if p1 < p2.

(b) The profit maximization problem is

max
z1,z2≥0

(p1, p2, p3) · (−z1, −z2, q),

s.t. q ≤ f(z) =
#

min{z1, z2}.

Clearly, the constraint must hold in equality, since otherwise one can increase the

production scale q without violating the constraint and earn a higher profit. Hence,

we can substitute q =
#

min{z1, z2} into the objective function and obtain

max
z1,z2≥0

−p1z1 − p2z2 + p3

#
min{z1, z2}.

If z1 ∕= z2, we assume that z1 < z2 (the case in which z1 > z2 is similar). Then the

objective function can be written as

−p1z1 − p2z2 + p3
√

z1,

to maximize which we must have z2 = 0, but this will force z1 < 0 which is infeasible.

Therefore, we must have z1 = z2 in optimum. Then we can write the problem as

max
z1≥0

−(p1 + p2)z1 + p3
√

z1.

Set up the Lagrangian:

L(z1) = −(p1 + p2)z1 + p3
√

z1
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If z1 = 0, then the profit is zero.

If z1 > 0, then the Kuhn-Tucker first-order conditions are given by

−(p1 + p2) + p3

2√
z1

= 0

which imply that z1 = p2
3

4(p1+p2)2 .

Hence, the supply function and the profit function are given by

y(p) =
$

− p2
3

4(p1 + p2)2 , − p2
3

4(p1 + p2)2 ,
p3

2(p1 + p2)

%

,

π(p) = p2
3

4(p1 + p2)
.

(c) The profit maximization problem is

max
z1,z2≥0

(p1, p2, p3) · (−z1, −z2, q)

s.t. q ≤ f(z) = (zρ
1 + zρ

2)1/ρ.

Clearly, the constraint must hold in equality, since otherwise one can increase the

production scale q without violating the constraint and earn a higher profit. Hence,

we can substitute q = (zρ
1 + zρ

2)1/ρ into the objective function.

(i) If ρ = 1, the objective function becomes

max
z1,z2≥0

−p1z1 − p2z2 + p3(z1 + z2).

And the Lagrangian function is

L(z1, z2) = −p1z1 − p2z2 + p3(z1 + z2).

The Kuhn-Tucker conditions are

− p1 + p3 ≤ 0 with equality if z1 > 0,

− p2 + p3 ≤ 0 with equality if z2 > 0,

z1 ≥ 0; z2 ≥ 0.

If p1 > p2, then z1 = 0. Then the objective function can be written as

(p3 − p2)z2.
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If p2 < p3, then there is no optimal solution, i.e., y(p) = ∅, because by setting z2 to

be infinity, one can achieve infinite profit, i.e., π(p) = ∞. If p2 > p3, then z2 = 0 is

optimal, and hence y(p) = (0, 0, 0), π(p) = 0. If p2 = p3, then any z2 ≥ 0 is optimal,

and hence y(p) = (0, −z2, z2), z2 ≥ 0 and π(p) = 0.

By symmetry, if p1 < p2, then z2 = 0; if p1 < p3, then y(p) = ∅ and π(p) = +∞. If

p1 > p3, then y(p) = (0, 0, 0), π(p) = 0; if p1 = p3, then y(p) = (−z1, 0, z1), z1 ≥ 0

and π(p) = 0.

If p1 = p2, the objective function becomes (p3 − p1)(z1 + z2). If p1 = p2 > p3, then

z1 = z2 = 0 is optimal, and thus y(p) = (0, 0, 0) and π(p) = 0; if p1 = p2 = p3, then

y(p) = (−z1, −z2, z1 + z2), z1 ≥ 0, z2 ≥ 0 and π(p) = 0; if p1 = p2 < p3, there is no

solution and y(p) = ∅, π(p) = ∞.

In summary, when ρ = 1, the supply function and profit function are given by

y(p) =

&
''''''''''''''''''(

'''''''''''''''''')

∅, if min{p1, p2} < p3;

(0, 0, 0), if min{p1, p2} > p3;

(0, −z2, z2), z2 ≥ 0, if p1 > p2 = p3;

(−z1, 0, z1), z1 ≥ 0, if p2 > p1 = p3;

(−z1, −z2, z1 + z2), z1, z2 ≥ 0. if p1 = p2 = p3.

π(p) =

&
'''(

''')

∞, if min{p1, p2} < p3;

0. otherwise.

(ii) If ρ < 1, set up the Lagrangian:

L(z1, z2) = −p1z1 − p2z2 + p3(zρ
1 + zρ

2)1/ρ.

The Kuhn-Tucker conditions are

− p1 + p3z
ρ−1
1 (zρ

1 + zρ
2)1/ρ−1 ≤ 0, with equality if z1 > 0,

− p2 + p3z
ρ−1
2 (zρ

1 + zρ
2)1/ρ−1 ≤ 0, with equality if z1 > 0,

z1 ≥ 0; z2 ≥ 0.
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We first consider the interior solution z1 > 0, z2 > 0. The two FOCs imply that

zρ−1
2 = p2

p1
zρ−1

1 .

Substitute this into the second FOC and simplify the equation, we obtain

p3 =
!

p
ρ

ρ−1
1 + p

ρ
ρ−1
2

" ρ−1
ρ

.

Hence, if the above equation indeed holds for the given prices, then the supply

function is

y(p) =

,

-.−z1, −
$

p2

p1

% 1
ρ−1

z1,

/

0zρ
1 +

$
p2

p1

% ρ
ρ−1

zρ
1

1

2
1/ρ

3

45 ,

where z1 > 0, and the profit function is

π(p) = −p1z1 − p2

$
p2

p1

% 1
ρ−1

z1 +
!

p
ρ

ρ−1
1 + p

ρ
ρ−1
2

" ρ−1
ρ

/

0zρ
1 +

$
p2

p1

% ρ
ρ−1

zρ
1

1

2
1/ρ

= 0.

We consider the boundary solutions when p3 =
!

p
ρ

ρ−1
1 + p

ρ
ρ−1
2

" ρ−1
ρ

. If ρ < 0, then

p3 > max{p1, p2}. Hence, we can choose z1 = 0 and let z2 → ∞ (or z2 = 0, z1 = ∞),

which gives π = ∞. If 0 < ρ < 1, then p3 < min{p1, p2} and the optimal boundary

solution is y(p) = (0, 0, 0) which gives π(p) = 0, while any other boundary solutions

will give π < 0. Hence, when p3 =
!

p
ρ

ρ−1
1 + p

ρ
ρ−1
2

" ρ−1
ρ

, if ρ < 0, we have y(p) = ∅ and

π(p) = ∞; if ρ ∈ (0, 1), we have y(p) =
$

−z1, −
*

p2
p1

+ 1
ρ−1 z1,

6
zρ

1 +
*

p2
p1

+ ρ
ρ−1 zρ

1

71/ρ
%

for z1 ≥ 0 and π(p) = 0.

If p3 ∕=
!

p
ρ

ρ−1
1 + p

ρ
ρ−1
2

" ρ−1
ρ

, there is no interior solution. We then consider only

the boundary solutions. If p3 > min{p1, p2}, there is no optimal solution (i.e.,

y(p) = ∅) and π(p) = ∞, which can be achieved by letting the quantity of the

cheaper input go to infinity and the other be of zero amount. If p3 = p1 < p2, then

the optimal boundary solution is y(p) = (−z1, 0, z1), z1 ≥ 0 and π(p) = 0; similarly,

if p3 = p2 ≤ p1, then the optimal boundary solution is y(p) = (0, −z2, z2), z2 ≥ 0 and

π(p) = 0. If p3 < min{p1, p2}, then the optimal boundary solution is y(p) = (0, 0, 0)

and π(p) = 0.
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In summary, if ρ < 1, then the supply function and profit function are given by

y(p) =

&
'''''''''''''''''''''''''(

''''''''''''''''''''''''')

∅, if min{p1, p2} < p3;

(0, 0, 0), if min{p1, p2} > p3;

(0, −z2, z2), z2 ≥ 0, if p1 ≥ p2 = p3;

(−z1, 0, z1), z1 ≥ 0, if p2 > p1 = p3;
,

-.−z1, −
$

p2

p1

% 1
ρ−1

z1,

/

0zρ
1 +

$
p2

p1

% ρ
ρ−1

zρ
1

1

2
1/ρ

3

45 , z1 ≥ 0,

if p3 =
!

p
ρ

ρ−1
1 + p

ρ
ρ−1
2

" ρ−1
ρ

, 0 < ρ < 1.

π(p) =

&
'''(

''')

∞, if min{p1, p2} < p3;

0 otherwise.

5.C.10 Derive the cost function c(w, q) and conditional factor demand functions (or cor-

respondences) z(w.q) for each of the following single-output constant return technologies

with production functions given by

(a) f(z) = z1 + z2 (perfect substitutable inputs)

(b) f(z) = min{z1, z2} (leontief technology)

(c) f(z) = (zρ
1 + zρ

2)1/ρ, ρ ≤ 1 (constant elasticity of substitution technology)

Solution Let the factor price vector be w = (w1, w2) ≫ 0.

(a) The cost minimization problem is

min
z1,z2≥0

w1z1 + w2z2

s.t. f(z) = z1 + z2 ≥ q.

Clearly, the constraint must hold in equality in optimum, since otherwise one can

reduce the amount of inputs without violating the constraint and reduce the cost.
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Therefore, we set up the Lagrangian as follows:

L(z1, z2, λ, µ1, µ2) = −w1z1 − w2z2 + λ(z1 + z2 − q) + µ1z1 + µ2z2.

The Kuhn-Tucker first-order conditions are

w1 = λ + µ1,

w2 = λ + µ2,

z1 + z2 = q,

µ1z1 = 0, µ2z2 = 0,

µ1 ≥ 0, µ2 ≥ 0,

z1 ≥ 0, z2 ≥ 0.

The first two FOCs imply

w1 − µ1 = w2 − µ2.

If w1 < w2, then 0 ≤ µ1 < µ2, and hence z2 = 0. By the third FOC, z1 = q.

Therefore, the cost function is given by

c(w, q) = w1q,

and the (conditional) factor demand function is given by

z(w, q) = (q, 0).

By symmetry, if w1 > w2, we have

c(w, q) = w2q,

and

z(w, q) = (0, q).

If w1 = w2, then any solution (z1, z2) ≥ 0 satisfying z1 + z2 = q is optimal, and

c(w, q) = w1q = w2q.
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In summary, we have

z(w, q) =

&
''''''''(

'''''''')

(q, 0), if w1 < w2;

(0, q), if w1 > w2;

{(z1, z2) ∈ R2
+ : z1 + z2 = q}, if w1 = w2.

c(w, q) =

&
'''(

''')

w1q, if w1 ≤ w2;

w2q, if w1 > w2.

(b) The cost minimization problem is

min
z1,z2≥0

w1z1 + w2z2

s.t. f(z) = min{z1, z2} ≥ q.

Clearly, the constraint must hold in equality in optimum, since otherwise one can

reduce the amount of inputs without violating the constraint and reduce the cost.

If z1 ∕= z2, assume z1 < z2 (the other case where z1 > z2 is symmetric). Then

the constraint implies z1 = q. To minimize cost, one should set z2 as close to 0 as

possible but z2 ∕= 0. If z2 = 0, then z1 < z2 = 0 is infeasible. Such z2 does not

exist. Hence, there is no optimal solution if z1 ∕= z2.

If z1 = z2, then the constraint implies that z1 = z2 = q, i.e., z(w, q) = (q, q). And

the minimized cost is c(w, q) = (w1 + w2)q.

(c) We consider ρ < 1 only. The case when ρ = 1 is identical to part (a).

The cost minimization problem is

min
z1,z2≥0

w1z1 + w2z2

s.t. f(z) = (zρ
1 + zρ

2)1/ρ ≥ q, ρ ≤ 1

Clearly, the constraint must hold in equality in optimum, since otherwise one can

reduce the amount of inputs without violating the constraint and reduce the cost.
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We set up the Lagrangian function as follows:

L(z1, z2, λ) = −w1z1 − w2z2 − λ[−(zρ
1 + zρ

2)1/ρ + q].

Kuhn-Tucker conditions are

−w1 + λ(zρ
1 + zρ

2)
1
ρ

−1zρ−1
1 ≤ 0, with equality if z1 > 0.

−w2 + λ(zρ
1 + zρ

2)
1
ρ

−1zρ−1
2 ≤ 0, with equality if z2 > 0.

(zρ
1 + zρ

2)1/ρ = q.

For z1, z2 > 0, the two FOCs imply

w1

w2
=

!
z1

z2

"ρ−1
,

which further implies

z1 =
!

w1

w2

" 1
ρ−1

z2.

Substitute this into the third FOC, we have
8!

w1

w2

" ρ
ρ−1

zρ
2 + zρ

2

9 1
ρ

= q,

which can be solved for

z2 = qw
1

ρ−1
2 (w

ρ
ρ−1
1 + w

ρ
ρ−1
2 )− 1

ρ .

Then, we can obtain

z1 = qw
1

ρ−1
1 (w

ρ
ρ−1
1 + w

ρ
ρ−1
2 )− 1

ρ .

Hence, the factor demand function is given by

z(w, q) = q
!

w
ρ

ρ−1
1 + w

ρ
ρ−1
2

"− 1
ρ

!
w

1
ρ−1
1 , w

1
ρ−1
2

"
,

and the cost function is given by

c(w, q) = q
!

w
ρ

ρ−1
1 + w

ρ
ρ−1
2

"1− 1
ρ

.

We show below that there exists no boundary solution.
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When z1 = 0, we have z2 = q. And the cost function is c(w, q) = qw2 which is larger

than q
!

w
ρ

ρ−1
1 + w

ρ
ρ−1
2

"1− 1
ρ

for ρ < 1. Similarly, when z2 = 0, we have z1 = q. And

the cost function is c(w, q) = qw1 which is larger than q
!

w
ρ

ρ−1
1 + w

ρ
ρ−1
2

"1− 1
ρ

.

5.C.11 Show that ∂zl(w, q)/∂q > 0 if and only if marginal cost at q is increasing in wl.

Solution Assume that c(w, q) is twice continuously differentiable and z(w, q) is differ-

entiable, then Proposition 5.C.2 Shepard’s Lemma implies

∂zl(w, q)
∂q

= ∂

∂q

∂c(w, q)
∂wl

= ∂

∂wl

∂c(w, q)
∂q

.

Therefore, zl(w,q)
∂q

> 0 if and only if ∂
∂wl

∂c(w,q)
∂q

> 0, i.e., the marginal cost at q is increasing

in wl.

5.D.1 Show that AC(q̄) = C ′(q̄) at any q̄ satisfying AC(q̄) ≤ AC(q) for all q. Does this

result depend on the differentiability of C(·) everywhere?

Solution We only need C(·) to be differentiable at q̄. Everywhere differentiability is

unnecessary. Differentiate the average cost function and evaluate at q̄, we have

AC ′(q̄) = ∂

∂q

C(q)
q

:::::
q=q̄

= C ′(q̄)q̄ − C(q̄)
q̄2 .

Then, if AC(q) is minimized at q̄, we have AC ′(q̄) = 0, or C ′(q̄)q̄ − C(q̄) = 0, which

implies

C ′(q̄) = C(q̄)
q̄

= AC(q̄).

5.D.2 Depict the supply locus for a case with partially sunk costs, that is, where C(q) =

K + Cv(q) if q > 0 and 0 < C(0) < K.

Solution The total cost function is given by

C(q) =

&
'''(

''')

C(0), if q = 0;

K + Cv(q), if q > 0,
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which can be depicted by the following diagram:

Figure 1: Total cost curve with partially sunk costs

Marginal cost C ′(q) can be represented by the slope of each point on the total cost

curve. We define two different notions of average cost. Average total cost is defined as

ATC(q) = K+Cv(q)
q

, ∀q > 0, which can be represented by the slope of the line segment

connecting the origin with any point on the total cost curve where q > 0. Average

production cost is defined as APC(q) = K+Cv(q)−C(0)
q

, ∀q > 0, which can be represented

by the slope of the line segment connecting the point (0, C(0)) with any point on the

total cost curve where q > 0. Unlike ATC(q), APC(q) excludes the sunk cost C(0) from

the calculation. The two dashed lines in the above diagram are tangent to the total cost

curve, one passing through the origin and the other point (0, C(0)). The tangent points

have the property that ATC(q̄) = C ′(q̄) and APC(q̂) = C ′(q̂).

We depict the marginal cost curve and average cost curves in the following diagram:
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Figure 2: Marginal cost curve, average cost curves, and supply curve

Since the sunk cost does not affect the production decision, the producer will produce

positive quantity if and only if the price is higher than the average production cost, and

the quantity is determined by equalizing marginal cost with the price level. Hence, the

quantity supplied is zero when p < C ′(q̂), and is determined by p = C ′(q) when p ≥ C ′(q̂),

which is depicted by the bold curve in the above diagram. Note that the supply curve

consists of two pieces.

5.D.3 Suppose that a firm can produce good L from L−1 factor inputs (L > 2). Factor

prices are w ∈ RL−1 and the price of output is p. The firm’s differentiable cost function

is c(w, q). Assume that this function is strictly convex in q. However, although c(w, q) is

the cost function when all factors can be freely adjusted, factor 1 cannot be adjusted in

the short run.

Suppose that the firm is initially at a point where it is producing its long-run profit-

maximizing output level of good L given prices w and p, q(w, p) [i.e., the level that is

optimal under the long-run cost conditions described by c(w, q)], and that all inputs are

14
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optimally adjusted [i.e., zl = zl(w, q(w, p)) for all l = 1, ..., L−1, where zl(·, ·) is the long-

run input demand function]. Show that the firm’s profit-maximizing output response to

a marginal increase in the price of good L is larger in the long run than in the short

run. [Hint: Define a short-run cost function cs(w, q|z1) that gives the minimized costs of

producing output level q given that input 1 is fixed at level z1.]

Solution Let w̄ be the initial input price vector, p̄ the initial output price, and z̄1 the

initial level of input 1. The long-run profit maximization problem

max
q≥0

pq − c(w, q)

implies

p = ∂c(w, q)
∂q

, for q > 0,

which implicitly defines q(w, p).

Differentiate both sides of the above equation with respect to p, and evaluate at (w̄, p̄),

we have
∂2c(w̄, q(w̄, p̄))

∂q2
∂q(w̄, p̄)

∂p
= 1,

which implies
∂q(w̄, p̄)

∂p
=

$
∂2c(w̄, q(w̄, p̄))

∂q2

%−1

. (1)

Similarly, the short-run profit maximization problem

max
qs≥0

pqs − cs(w, qs|z1)

implies

p = ∂cs(w, qs|z1)
∂qs

,

which implicitly defines qs(w, p|z1).

Differentiate both sides of the above equation with respect to p and evaluate at (w̄, p̄, z̄1),

we have
∂2cs(w̄, q(w̄, p̄)|z̄1)

∂q2
∂qs(w̄, p̄|z̄1)

∂p
= 1,

15
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which implies
∂qs(w̄, p̄|z̄1)

∂p
=

$
∂2cs(w̄, q(w̄, p̄)|z̄1)

∂q2

%−1

. (2)

For any q, the short-run cost minimization problem has more constraints than the long-

run, and hence

c(w̄, q) ≤ cs(w̄, q), ∀q > 0,

and

c(w̄, q̄) = cs(w̄, q̄),

where q̄ = q(w̄, p̄).

Therefore, the function f(q) = c(w̄, q) − cs(w̄, q) obtains its maximum at q̄. The second-

order necessary condition implies

f ′′(q) = ∂2c(w̄, q̄)
∂q2 − ∂2cs(w̄, q̄)

∂q2 ≤ 0.

Therefore, by Eq. (1) and (2), we have

∂q(w̄, p̄)
∂p

≥ ∂qs(w̄, p̄|z̄1)
∂p

.

That is, if the output price increases marginally, the long-run profit maximizing output

is larger than the short-run. This completes the proof.
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