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2.A. Introduction

In this chapter, we perform analysis of choice structure in the

context of consumption. In other words, we analyze consumer

demand for commodities.
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2.B. Commodities

The decision problem faced by the consumer is to choose the

consumption levels of commodities (goods and services).

A commodity vector (or commodity bundle) is a point

x =

!

""""""#

x1

...

xL

$

%%%%%%&
∈ RL

• RL is the commodity space.

• xl is the amount of commodity l consumed. 3



Commodities

Remark. Time (see the example below) and location (see Figure

3), could be built into the definition of a commodity.

For example, x1 could be bread today, and x2 could be bread

tomorrow. (In this example, we ignore other commodities.)

Alice who plans to consume 5 slices of bread today and 6 slices

of bread tomorrow would have a commodity vector

x =

!

""#
x1 = 5

x2 = 6

$

%%& ∈ R2.
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2.C. Consumption Set

The consumption set is a subset of the commodity space RL,

denoted by X ⊂ RL, whose elements are the consumption bun-

dles that the individual can conceivably consume given the phys-

ical and institutional constraints imposed by his environment.
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Physical Constraints

Figure 1: Possible consumption levels of bread and leisure in a
day
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Physical Constraints

Figure 2: Possible consumption levels of bread and mobile
phones
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Physical Constraints

Figure 3: Possible consumption levels of bread in Beijing and
Wuhan at noon
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Physical Constraints

Figure 4: Possible consumption levels of bread where
the minimum survival amount is 4 slices and only 2
types of bread are available 9



There could also be Institutional Constraints.

Figure 5: Possible consumption levels of bread and leisure in a
day with a law requiring that no one work more than
16 hours a day 10



Practically, we adopt the simplest consumption set:

X = RL
+ = {x ∈ RL : xl ≥ 0 for l = 1, 2, ..., L}.

Figure 6: The consumption set RL
+
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Consumption Set

Remark. X is convex: x ∈ X, x′ ∈ X =⇒ αx+(1−α)x′ ∈ X.

Proof. xl ≥ 0, x′
l ≥ 0, l = 1, ..., L =⇒ αxl + (1 − α)x′

l ≥ 0

Much of the theory to be developed applies also for more general

convex consumption sets (for example, the consumption sets

illustrated in Figures 1, 4, 5).1

1You should check by yourselves that the consumption sets in Figures
1, 4, 5 are convex. 12



2.D. Competitive Budgets (Affordability)

In addition to the physical and institutional constraints, the

consumer also faces economic constraint: affordability.

Assumptions:

• L commodities are all traded at public dollar prices.

• Consumers are price takers.
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Competitive Budgets

Formally, prices are represented by the price vector :

p =

!

""""""#

p1

...

pL

$

%%%%%%&
∈ RL

Assumption. p ≫ 0, i.e., pl > 0, ∀l.
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Competitive Budgets

Question. Do you think this assumption is reasonable?
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Competitive Budgets

Counter Examples.

1. Someone invites you: for you, pl = 0.

2. Sometimes parents pay kid to read books: for the kid,

pl < 0.
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Economic-Affordability Constraint

The affordability of a consumption bundle depends on

1. market prices: p = (p1, · · · , pL)

2. consumer’s wealth level (in dollars): w

The consumption bundle x ∈ RL
+ is affordable if

p · x = p1x1 + ... + pLxL ≤ w.
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Walrasian budget set

Definition 2.D.1. The Walrasian, or competitive budget set

Bp,w = {x ∈ RL
+ : p · x ≤ w} is the set of all feasible consump-

tion bundles for the consumer who faces market prices p and

has wealth w.

The consumer’s problem is to choose consumption bundle x

from Bp,w.
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Walrasian budget set

The set {x ∈ RL
+ : p · x = w} is called the budget hyperplane.

Figure 7: Budget Hyperplane (3 commodities) 19



Walrasian budget set

When L = 2, Budget Hyperplane is Budget Line.

Figure 8: Budget hyperplane (line) for two commodities
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Walrasian budget set

The slope −p1
p2

captures the rate of exchange between the two

commodities.

• p1
p2

describes the units of x2 the consumer can obtain by

giving up one unit of x1:

one unit of x1 =⇒ p1 of money =⇒ p1
p2

units of x2
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Walrasian budget set

p is orthogonal to any vector starting at x and lying on the

budget hyperplane.

Figure 9: The geometric relationship between p and the budget
hyperplane
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Walrasian budget set Bp,w is convex.

We need to show that for all x, x′ ∈ Bp,w, x′′ = αx+(1−α)x′ ∈

Bp,w.

Remark. The convexity of Bp,w depends on the convexity of the

consumption set. Bp,w will be convex as long as X is.
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2.E. Demand Functions and Comparative

Statics

The consumer’s Walrasian (or market, or ordinary) demand cor-

respondence x(p, w) assigns a set of chosen consumption bun-

dles for each (p, w).

When x(p, w) is single-valued, we refer to it as a demand func-

tion.
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Demand Functions

Assumption.

1. x(p, w) is homogeneous of degree zero.

2. x(p, w) satisfies Walras’ law.
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Homogeneous Functions

Definition. A function f : Rn → R is Homogeneous of Degree

k if for any α > 0,

f(αx1, αx2, ..., αxn) = αkf(x1, x2, ..., xn).
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Examples of Homogeneous Functions

1. f(x, y) = xy is Homogeneous of Degree 2.

2. f(x, y, z) = x
y

+ 2z
x

is Homogeneous of Degree 0.

3. f (x1, x2) = Axa
1xb

2 is Homogeneous of Degree a + b.

4. f (x1, x2) = x1 + x2
2 is not a Homogeneous Function.
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Homogeneous of Degree Zero

Definition 2.E.1. The Walrasian demand correspondence x(p, w)

is homogeneous of degree zero (H.D.∅) if x(αp, αw) = x(p, w)

for any p, w and α > 0.

Remark. Since Bp,w = Bαp,αw, H.D.∅ means that individual’s

choice depends only on the set of feasible points.

Remark. Implication of H.D.∅: it is without loss to normalize

the level of one of the L+1 independent variables at an arbitrary

level.
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Walras’ Law

Definition 2.E.2. The Walrasian demand correspondence x(p, w)

satisfies Walras’ law if for every p ≫ 0 and w > 0, we have

p · x = w for all x ∈ x(p, w).

Remark. Walras’ law says that the consumer fully expends his

wealth.
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Walras’ Law

Question. Is Walras’ law reasonable?
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Walras’ Law

Question. Is Walras’ law reasonable?

It’s more reasonable if w refers the life-time income and x refers

to life-time demands. Even then, it’s still controversial.
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Demand Functions

For the remainder of the section, we assume that x(p, w) is

single-valued, continuous, and differentiable.
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x(p, w) and Choice-base Approach (in Chapter 1)

Recall that a choice structure (B, C(·)) consists of two ingre-

dients:

(i) B is a family of nonempty subsets of X. Every B ∈ B

is a budget set.

(ii) C(·) is a choice rule. It maps every set B ∈ B to a

nonempty set C(B) ⊂ B.
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x(p, w) and Choice-base Approach (in Chapter 1)

The family of Walrasian budget sets is

BW = {Bp,w : p ≫ 0, w > 0}.

Remark. BW does not include all possible subsets of X.

Since the price-wealth pair (p, w) determines the Walrasian bud-

get set Bp,w faced by consumer, we have

C(Bp,w) = x(p, w).

Hence, (BW , x(p, w)) is a choice structure. 34



Comparative statics (with respect to p and w)

The examination of a change in outcome in response to a change

in underlying economic parameters is known as comparative

statics analysis.

This section examines how the consumer’s choice would vary

with changes in his wealth and in prices.
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Wealth Effects

For fixed prices p, x(p, w) is called the consumer’s Engel func-

tion. Its image in RL
+, Ep = {x(p, w) : w > 0} is the wealth

expansion path.

Figure 10: Wealth expansion path at p
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Wealth Effects

The derivative ∂xl(p,w)
∂w

is the wealth effect for the lth good.

• A commodity l is normal at (p, w) if ∂xl(p,w)
∂w

≥ 0.

• A commodity l is inferior at (p, w) if ∂xl(p,w)
∂w

< 0.

In matrix notation, the wealth effects are

Dwx(p, w) =

!

""""""#

∂x1(p,w)
∂w

...
∂xL(p,w)

∂w

$

%%%%%%&
∈ RL.
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Price Effects

The demand function for good l could be represented as a func-

tion of pl, keeping other things equal, i.e., x(pl, p−l, w).

Figure 11: Demand for good 2 as a function of its price
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Price Effects

Another useful representation of the consumers’ demand at dif-

ferent prices pl is the locus of points demanded in RL
+, for fixed

p−l and w. This is known as an offer curve.

Figure 12: Offer Curve 39



Price Effects

The derivative ∂xl(p,w)
∂pk

is the price effect of pk on the demand

for good l.

• Good l is a Giffen good if ∂xl(p,w)
∂pl

> 0. (Example: pota-

toes at low wealth level)

In matrix notation, the price effects are

Dpx(p, w) =

!

""""""#

∂x1(p,w)
∂p1

· · · ∂x1(p,w)
∂pL

. . .
∂xL(p,w)

∂p1
· · · ∂xL(p,w)

∂pL

$

%%%%%%&
.
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Implications of homogeneity for price and wealth effects

Proposition 2.E.1. If the Walrasian demand function x(p, w)

is homogeneous of degree zero, then for all p and w:

L'

k=1

∂xl(p, w)
∂pk

pk + ∂xl(p, w)
∂w

w = 0, for l = 1, ..., L. (2.E.1)

In matrix notation, it is expressed as

Dpx(p, w)p + Dwx(p, w)w = 0. (2.E.2)
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Implication of homogeneity for price and wealth effects

Divide the expression by xl:

L'

k=1

∂xl(p, w)
∂pk

pk

xl(p, w)+∂xl(p, w)
∂w

w

xl(p, w) = 0, for l = 1, ..., L.

i.e.,

L'

k=1
εlk(p, w) + εlw(p, w) = 0, for l = 1, ..., L. (2.E.3)

Intuition: The above equation describes the precentage change

in xl if all prices and wealth changes 1%. Basically, the equation

captures the definition of H.D.∅.
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Implications of Walras’ Law for price and wealth effects

Proposition 2.E.2. If the Walrasian demand function x(p, w)

satisfies the Walras’ Law, then for all p and w :

L'

l=1
pl

∂xl(p, w)
∂pk

+ xk(p, w) = 0, for k = 1, 2, ..., L, (2.E.4)

or written in matrix notation,

p · Dpx(p, w) + x(p, w)T = 0T . (2.E.5)

Intuition: Total expenditure cannot change in response to a

change in prices. 43



Implications of Walras’ Law for price and wealth effects

Proposition 2.E.3. If the Walrasian demand function x(p, w)

satisfies Walras’ Law, then for ALL p and w:

L'

l=1
pl

∂xl(p, w)
∂w

= 1, (2.E.6)

or, written in matrix natation,

p · Dwx(p, w) = 1. (2.E.7)

Intuition: Total expenditure must change by an amount equal

to any wealth change. 44



2.F. Weak Axiom of Revealed Preference and

Law of Demand

Implicit assumptions: x(p, w) is single-valued, homogeneous of

degree zero, and satisfies Walras’ Law.
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W.A.R.P and Law of Demand

Definition 2.F.1. The Walrasian demand function x(p, w) sat-

isfies the weak axiom of revealed preference (W.A.R.P) if the

following holds for any two price-wealth situations (p, w) and

(p′, w′): If p · x(p′, w′) ≤ w and x(p′, w′) ∕= x(p, w), 2

then p′ · x(p, w) > w′.

2Note that x(p, w) is the demand given (p, w) and x(p′, w′) is the
demand given (p′, w′). 46



Definition stated using language in Chapter 1

Let Bp,w denote the budget set given p and w; and Bp′,w′ denote

the budget set given p′ and w′. p · x(p′, w′) ≤ w means that

x(p′, w′) is also affordable under Bp,w. Through the choice given

Bp,w, x(p, w) is revealed preferred to x(p′, w′). Therefore, by

W.A.R.P, it must not be revealed that x(p′, w′) is preferred

to x(p, w). In other words, if x(p, w) is not chosen given the

budget Bp′,w′ , it must be that it is not affordable, i.e., p′ ·

x(p, w) > w′, or x(p, w) /∈ Bp′,w′ .
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Demand Satisfying W.A.R.P

Figure 13: Demand satisfying W.A.R.P
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Violation of W.A.R.P

W.A.R.P may be violated only if both x(p, w) and x(p′, w′)

belong to both Bp,w and Bp′,w′ .

Figure 14: Demand violating W.A.R.P
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Implications of W.A.R.P

Uncompensated price change

An uncompensated price change is a change in price without a

corresponding change in wealth.

Such a price change would affect the consumer in two ways:

• change the relative cost of commodities;

• change the consumer’s real wealth.
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W.A.R.P and Uncompensated price change

Figure 15: Uncompensated price change

Assuming W.A.R.P, no prediction on change in demand can be

drawn.
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Compensated price change

Imagine a situation in which a change in prices is accompanied

by a change in the consumer’s wealth that makes her initial

consumption bundle just affordable at the new prices. That is,

w′ = p′ ·x(p, w). The wealth adjustment is ∆w = ∆p ·x(p, w).

This kind of wealth adjustment is called Slutsky wealth compen-

sation. The price changes that are accompanied by compen-

sating wealth changes are called (Slutsky) compensated price

changes.
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W.A.R.P and Compensated price change

Figure 16: Compensated price change

• x1 must increase after the decrease of p1 and an associ-

ated wealth compensation.

• This is the Compensated Law of Demand. 53



W.A.R.P and Compensated law of demand

In Proposition 2.F.1, we will define Compensated Law of De-

mand and formally show that W.A.R.P implies Compensated

Law of Demand.

Furthermore, we will prove that the converse is also true: Com-

pensated Law of Demand implies W.A.R.P.
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W.A.R.P

Next, we present a useful lemma which makes it easier to check

whether a demand function satisfies W.A.R.P (for all price-

wealth changes).

Lemma 1. W.A.R.P holds for all price-wealth changes if and

only if it holds for all compensated price changes.
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W.A.R.P and Compensated law of demand

Proposition 2.F.1. Suppose that the Walrasian demand func-

tion x(p, w) is homogeneous of degree zero and satisfies Wal-

ras’ Law, Then x(p, w) satisfies W.A.R.P if and only if x(p, w)

satisfies Compensated Law of Demand, that is, for ANY com-

pensated price change from an initial situation (p, w) to a new

price-wealth pair (p′, w′) = (p′, p′ · x(p, w)), we have

(p′ − p) · [x(p′, w′) − x(p, w)] ≤ 0, (2.F.1)

with strict inequality whenever x(p, w) ∕= x(p′, w′). 56



W.A.R.P and Compensated Law of Demand

Remark. The inequality (2.F.1) is interpreted as Compensated

Law of Demand since

• demand and price move in opposite directions (law of

demand), and

• it only holds for compensated price changes.
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W.A.R.P and Compensated Law of Demand

Remark. As illustrated in Figure 15, W.A.R.P does not gener-

ate definitive prediction on the demand changes in response to

uncompensated price changes.
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W.A.R.P and Differentiable Demand

Consider a differentiable change in price dp, compensated by

the change in wealth

dw = x(p, w) · dp.

By chain rule,

dx =
(
Dpx(p, w) + Dwx(p, w)x(p, w)T

)
dp (2.F.8)
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Slutsky Matrix

Define

S(p, w) = Dpx(p, w) + Dwx(p, w)x(p, w)T

as the substitution matrix or Slutsky matrix.
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Slutsky Matrix

In matrix notation, it is

S(p, w) =

!

""""""#

s11(p, w) · · · s1L(p, w)
. . .

sL1(p, w) · · · sLL(p, w)

$

%%%%%%&
,

where the (l, k)th entry is

sl,k(p, w) = ∂xl(p, w)
∂pk

+ ∂xl(p, w)
∂w

xk(p, w).

sl,k(p, w) are known as substitution effects.
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Slutsky Matrix

sl,k(p, w) is the change in demand for good l given a change in

pk and a compensating change in w.
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Negative semidefiniteness of Slutsky matrix

Proposition 2.F.2. If a differentiable Walrasian demand func-

tion x(p, w) satisfies Walras’ Law, homogeneous of degree zero,

and W.A.R.P, then at any (p, w), the Slutsky matrix S(p, w)

satisfies v ·S(p, w)v ≤ 0 for any v ∈ RL. i.e. S(p, w) is negative

semidefinite.

Proposition 2.F.1 implies

dp · dx ≤ 0.

Together with Equation (2.F.8) gives the result. 63



Slutsky Matrix

Remark. Proposition 2.F.2 does not imply, in general, that the

matrix S(p, w) is symmetric.

• For L = 2, S(p, w) is necessarily symmetric.

(Exercise 2.F.11)

• When L > 2, S(p, w) is not necessarily symmetric, under

the assumptions so far.

• Symmetry of S(p, w) is connected with maximization of

rational preferences. (will be introduced in Chapter 3)64



Slutsky Matrix

Corollary. The substitution effect of good l with respect to its

own price is always nonpositive, i.e., sll(p, w) ≤ 0.

Remark. An implication of sll(p, w) ≤ 0 is that a good can be

a Giffen good at (p, w) only if it is inferior.
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Slutsky Matrix

Remark. H.D.∅ + Walras’ law + Negative semidefiniteness of

S(p, w) ∕=⇒ W.A.R.P.

Compare with Proposition 2.F.2:

H.D.∅ + Walras’ law + W.A.R.P =⇒ Negative semidefinite-

ness of S(p, w)
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Slutsky Matrix

Example. Consider L = 3 and X = R and x(p, w) is

x1(p, w) = p2

p3
& x2(p, w) = −p1

p3
& x3(p, w) = w

p3
.

(a) x(p, w) is H.D.∅ and satisfies Walras’ law.

(b) x(p, w) violates W.A.R.P.

(c) v · S(p, w)v = 0 for all v ∈ R3.
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Slutsky Matrix

Remark. H.D.∅ + Walras’ law + v · S(p, w)v < 0 whenever

v ∕= αp for any scalar α =⇒ W.A.R.P.
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More properties on Slutsky matrix

Proposition 2.F.3. Suppose that the Walrasian demand func-

tion x(p, w) is differentiable, homogeneous of degree zero, and

satisfies Walras’ law. Then, p · S(p, w) = 0 and S(p, w)p = 0

for any (p, w).
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More properties on Slutsky matrix

It follows from Proposition 2.F.3 that the negative semidefi-

niteness of S(p, w) established in Proposition 2.F.2 cannot be

extended to negative definiteness.

As an example, see Exercise 2.F.17.
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Choice-based Approach and Preference-based Approach

Remark. BW = {Bp,w : p ≫ 0, w > 0} does not include every

possible budget; in particular, it does not contain all two- and

three-element subsets of X.

Therefore, choice-based approach ∕= preference-based approach.
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Choice-based Approach and Preference-based Approach

Example 2.F.1. In a three-commodity world, consider the three

budget sets determined by the price vectors p1 = (2, 1, 2),

p2 = (2, 2, 1), p3 = (1, 2, 2) and wealth = 8 (the same for the

three budgets). Suppose that the respective (unique) choices

are x1 = (1, 2, 2), x2 = (2, 1, 2), x3 = (2, 2, 1). For these three

budgets, any two pairs of choices satisfy W.A.R.P but x3 is re-

vealed preferred to x2, x2 is revealed preferred to x1, and x1 is

revealed preferred to x3.

72



Summary of Chapter 2

Taking choice as the primative, we look at the implications of

these assumptions:

(i) x(p, w) is homogeneous of degree zero.

(ii) x(p, w) satisfies Walras’ Law.

(iii) x(p, w) satisfies the W.A.R.P ⇐⇒ Compensated Law

of Demand

(iv) x(p, w) is also differentiable =⇒ Slutsky matrix is neg-

ative semidefinite. 73


