
Advanced Microeconomics

Chapter 3. Classical Demand Theory

3.D. Utility Maximization Problem (UMP) (Continued)

We return to Chapter 3, specifically, p.53 of Section 3.D.

The utility maximization problem:

max
x∈RL

u(x)

s.t.
L!

l=1
pl · xl = p · x ≤ w,

xl ≥ 0 for all l = 1, ..., L.

Lagrange Function:

L(x, λ) = u(x) − λ(p · x − w).

Kuhn-Tucker conditions:

∂L
∂xl

= ∂u(x∗)
∂xl

− λpl ≤ 0, with equality if x∗
l > 0, (3.D.1)

L!

l=1
pl · xl = p · x ≤ w,

xl ≥ 0 for all l = 1, ..., L,

λ ≥ 0,

λ(p · x − w) = 0, i.e., λ = 0 if p · x < w.

(3.D.1) can be rewritten as

∇u(x∗) ≤ λp (3.D.2)

and

x∗ · [∇u(x∗) − λp] = 0. (3.D.3)

The constraint x∗ ≥ 0. If we have an interior solution (i.e., if x∗ ≫ 0), we must have

∇u(x∗) = λp. (3.D.4)

Condition (3.D.4) shows that at an interior optimum, ∇u(x∗) must be proportional to p.

See Figure 1 below.
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Figure 1: Interior Solution when L = 2

Therefore, for any two goods l and k, we have

∂u(x∗)/∂xl

∂u(x∗)/∂xk

= pl

pk

. (3.D.5)

∂u(x∗)/∂xl

∂u(x∗)/∂xk
is the marginal rate of substitution of good l for good k at x∗, MRSlk(x∗). It

indicates the amount of good k that the consumer needs to get to compensate for 1 unit

reduction of good l.

Condition (3.D.5) tells us that at the interior optimum, the consumer’s marginal rate

of substitution between any two goods must be equal to their price ratio. To see this,

suppose on the contrary, ∂u(x∗)/∂xl

pl
> ∂u(x∗)/∂xk

pk
. Then, the consumer can increase her

utility by spending ε less on product of k, and ε more on good l. She’ll lose ε/pk units

of product k and gain ε/pl units of product l. This translates into a utility change of

= ε
"

∂u(x∗)/∂xl

pl
− ∂u(x∗)/∂xk

pk

#
> 0.

If we have a boundary solution, then F.O.C. tells us that ∂u(x∗)/∂xl ≤ λpl for those

l with x∗
l = 0 and ∂u(x∗)/∂xl = λpl for those l with x∗

l > 0. See Figure 2 below.

In Figure 2, MRS12(x∗) > p1
p2

. Now, the consumer would want to spend ε less on good 2

and ε more on good 1. But because the consumer’s consumption of good 2 is already 0

and thus she is unable to reduce her consumption of good 2 any further.
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Figure 2: Boundary Solution when L = 2

The constraint p · x ≤ w. If p · x = w, then λ measures the marginal, or shadow, value

of relaxing the constraint p · x = w, or the consumer’s marginal utility of wealth.

To see this, consider the simple case where x(p, w) is differentiable and x(p, w) ≫ 0.

Then (3.D.1) becomes

∇u(x∗) = λp.

By chain rule, the change in utility from a marginal increase in w gives

∇u(x(p, w)) · Dwx(p, w) = λp · Dwx(p, w) = λ.

If p · x < w, then the budget constraint is not binding. In this case, relaxing the budget

doesn’t increase utility, so λ = 0.

Example 3.D.1. Derive Walrasian Demand Function for Cobb-Douglas Utility Function:

u(x1, x2) = xα
1 x1−α

2 .

Solution. The problem is:

max
x∈R2

xα
1 x1−α

2

s.t. p1x1 + p2x2 ≤ w

x1 ≥ 0, x2 ≥ 0.
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Lagrange Function:

L = xα
1 x1−α

2 − λ(p1x1 + p2x2 − w).

Kuhn-Tucker Conditions:

∂L
∂x1

= αxα−1
1 x1−α

2 − λp1 ≤ 0, with equality if x1 > 0, (1)

∂L
∂x2

= (1 − α)xα
1 x−α

2 − λp2 ≤ 0, with equality if x2 > 0, (2)

p1x1 + p2x2 ≤ w,

x1 ≥ 0, x2 ≥ 0,

λ ≥ 0,

λ(p1x1 + p2x2 − w) = 0. (3)

If x1 = 0 or x2 = 0, we will have u(x1, x2) = 0. Therefore, utility maximization requires

(x1, x2) ≫ 0. Then, (1) and (2) hold with equality. From (1) and (2) with equality,

p1x1

p2x2
= α

1 − α
, (4)

λ > 0. (5)

(5) and (3) imply

p1x1 + p2x2 = w. (6)

Therefore, from (4) and (6),

x1 = αw

p1
and x2 = (1 − α)w

p2
.

The Indirect Utility Function For each (p, w) ≫ 0, the utility value of UMP (i.e.,

u(x∗)) is denoted v(p, w) ∈ R. v(p, w) is called the indirect utility function.

Example 3.D.2. Derive the indirect utility function for Cobb-Douglas Utility Function:

u(x1, x2) = xα
1 x1−α

2 .

Solution.

v(p, w) =
$

αw

p1

%α $
(1 − α)w

p2

%1−α

= αα(1 − α)1−α w

pα
1 p1−α

2
.
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Proposition 3.D.3 identifies basic properties of Indirect Utility Function v(p, w).

Proposition 3.D.3. Suppose that u(·) is a continuous utility function representing a

locally nonsatiated preference relation ! defined on the consumption set X = RL
+. The

indirect utility function v(p, w) is

(i) Homogeneous of degree zero.

(ii) Strictly increasing in w and non-increasing in pl for any l.

(iii) Quasiconvex; that is, the set {(p, w) : v(p, w) ≤ v̄} is convex for any v̄.

(iv) Continuous in p ≫ 0 and w.

Proof.

(i) Recall Proposition 3.D.2, x(p, w) is H.D.∅.

x(p, w) = x(αp, αw) ⇐⇒ u(x(p, w)) = u(x(αp, αw)) ⇐⇒ v(p, w) = v(αp, αw)

(ii) v(p, w) is strictly increasing in w :

The proof below does not assume that we already have “Proposition 3.D.2, x(p, w)

satisfies Walras’ law”. Suppose w′ > w. Then p · x(p, w) ≤ w < w′. By continuity,

∃ε > 0 such that for all ‖x′ − x(p, w)‖ < ε, p · x′ < w′. Let this ball be bε(x(p, w)).

Since ! is locally nonsatiated, ∃&x ∈ bε(x(p, w)) such that u(&x) > u(x(p, w)).

Since &x ∈ bε(x(p, w)), we have p·&x < w′. That is, &x ∈ Bp,w′ . Therefore, u(x(p, w′)) ≥

u(&x) since x(p, w′) is the solution to the utility maximization problem given (p, w′).

Thus, we have w′ > w and u(x(p, w′)) ≥ u(&x) > u(x(p, w)).

Suppose now that we already know “x(p, w) satisfies Walras’ law”. Consider w′ > w.

Since p · x(p, w) = w < w′, by Walras’ law, x(p, w) must not be optimal under the

budget Bp,w′ . Therefore, u(x(p, w′)) > u(x(p, w)).

v(p, w) is non-increasing in p :

Suppose p′ ≥ p, then Bp′,w ⊆ Bp,w. Therefore, v(p, w) ≥ v(p′, w).

(iii) Consider (p, w) and (p′, w′) such that v(p, w) ≤ v̄ and v(p′, w′) ≤ v̄. The corre-

sponding budgets are denoted by Bp,w and Bp′,w′ . If for some consumption bundle

x, x ∈ Bp,w or x ∈ Bp′,w′ , then we must have u(x) ≤ v̄.
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The new budget set is

{x ∈ RL
+ : [αp + (1 − α)p′] · x ≤ αw + (1 − α)w′}

⇐⇒ {x ∈ RL
+ : αp · x + (1 − α)p′ · x ≤ αw + (1 − α)w′}.

This implies p · x ≤ w or p′ · x ≤ w′ or both =⇒ x ∈ Bp,w ∪ Bp′,w′ =⇒ u(x) ≤ v̄.

Figure 3 shows the quasiconvexity of v(p, w) for L = 2. Bp,w and Bp′,w′ generate the

same maximized utility ū. Bp′′,w′′ , corresponding to (p′′, w′′) = (αp+(1−α)p′, αw+

(1 − α)w′), must generates utility no greater than ū.1

Figure 3: Quasiconvexity of v(p, w)

(iv) Consider a sequence {(pn, wn)}∞
n=1, where lim

n→∞
(pn, wn) = (p, w). Let x(·, ·) be the

solution to the utility maximization problem.

Consider a sufficiently small open ball around (p, w): bε(p, w) = {y ∈ RL+1
++ :

‖y − (p, w)‖ < ε}. For all (p′, w′) ∈ bε(p, w), w′ ≤ w + ε and p′
l > pl − ε. Therefore,

xl(p′, w′) ≤ w+ε
pl−ε

. There exists N such that for all n > N , (pn, wn) ∈ bε(p, w)

and x(pn, wn) ≤
'

w+ε
p1−ε

, w+ε
p2−ε

, ..., w+ε
pL−ε

(
. Since for n = 1, ..., N , x(pn, wn) are also

bounded, we can conclude that for all n = 1, 2, ..., ∞, x(pn, wn) ∈ [0, z]L for some

z > 0 (sufficiently large). Therefore, by Bolzano-Weierstrass Theorem2, the infinite

sequence {{x(pn, wn)}}∞
n=1 must have a convergent subsequence {x(pm(n), wm(n))}.

1Note that the intersection the budget lines Bp,w and Bp′,w′ also satisfies the budget line of Bp′′,w′′ .
In other words, p · x = w and p′ · x = w′ imply [αp + (1 − α)p′] · x = αw + (1 − α)w′.

2Bolzano-Weierstrass Theorem: Each bounded sequence in Rn has a convergent subsequence.
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We want to show that lim
n→∞

x(pm(n), wm(n)) = x(p, w). Suppose to the contrary that

lim
n→∞

x(pm(n), wm(n)) = x̃ ∕= x(p, w). Then since pm(n) · x(pm(n), wm(n)) ≤ wm(n),

taking the limit on both sides gives p · x̃ ≤ w. But since x̃ ∕= x(p, w), we must have

u(x̃) < u(x(p, w)). Hence, by the continuity of u(·), there exists δ ∈ (0, 1) such

that u(x̃) < u((1 − δ)x(p, w)). Since lim
n→∞

x(pm(n), wm(n)) = x̃, ∃N1 ∈ N such that

∀n > N1, u(x(pm(n), wm(n))) < u((1 − δ)x(p, w)).

From p · x(p, w) ≤ w, we have p · (1 − δ)x(p, w) < w. Since lim
n→∞

pm(n) = p and

lim
n→∞

wm(n) = w, ∃N2 ∈ N such that ∀n > N2, pm(n) · (1 − δ)x(p, w) < wm(n).

Thus, ∀n > max{N1, N2}, we have u((1−δ)x(p, w)) > u(x(pm(n), wm(n))) and pm(n) ·

(1 − δ)x(p, w) < wm(n), which then contradicts the optimality of x(pm(n), wm(n)).

Therefore, every convergent subsequences x(pm(n), wm(n)) converges to x(p, w). That

is, lim
n→∞

x(pm(n), wm(n)) = x(p, w), and thus lim
n→∞

x(pn, wn) = x(p, w).3 Therefore,

lim
n→∞

v(pn, wn) = lim
n→∞

u(x(pn, wn)) = u(x(p, w)) = v(p, w).

Exercise 3.D.5
Consider again CES utility function of Exercise 3.C.6, and assume that α1 = α2 = 1.

(a) Compute Walrasian demand and indirect utility functions.

(b) Verify that the functions satisfy all properties of Propositions 3.D.2 and 3.D.3.

(c) Derive Walrasian demand correspondence and indirect utility function for

linear utility and Leontief utility.a Show that CES Walrasian demand and

indirect utility functions approach these as ρ → 1 and ρ → −∞, respectively.

(d) The elasticity of substitution between goods 1 and 2 is defined as

ξ12(p, w) = −∂[x1(p, w)/x2(p, w)]
∂[p1/p2]

p1/p2

x1(p, w)/x2(p, w) .

Show that for CES utility function, ξ12(p, w) = 1
1−ρ

, thus justifying the name.

What is ξ12(p, w) for linear, Leontief, and Cobb-Douglas utility functions?
aSee Exercise 3.C.6

3If every convergent subsequence converges to a, then so does the original bounded sequence.
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3.E. The Expenditure Minimization Problem (EMP)

The expenditure minimization problem:

min
x∈RL

p · x

s.t. u(x) ≥ u

x ≥ 0.

The problem is equivalent to

max
x∈RL

− p · x

s.t. − u(x) ≤ −u

x ≥ 0.

Lagrange Function:

L(x, λ) = −p · x − λ(−u(x) + u)

Kuhn-Tucker conditions:

∂L
∂xl

= −pl + λ
∂u(x∗)

∂xl

≤ 0, with equality if x∗
l > 0, (7)

u(x) ≥ u,

xl ≥ 0 for all l = 1, ..., L,

λ ≥ 0,

λ(u − u(x)) = 0, i.e., λ = 0 if u(x) > u.

Equation (7) can be rewritten as

p ≥ λ∇u(x∗) (3.E.2)

and

x∗ · [p − λ∇u(x∗)] = 0. (3.E.3)

UMP computes the maximal level of utility that can be obtained given wealth w; EMP

computes the minimal level of wealth required to reach utility level u. The two problems

are “dual” problems: they capture the same aim of efficient use of consumer’s purchasing

power.
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To see this, consider the following thought process.

Step 1:

max
x≥0

u(x) (UMP1)

s.t. p · x ≤ w.

Suppose x∗ solves (UMP1), and the highest utility is u(x∗).

Step 2:

min
x≥0

p · x (EMP1)

s.t. u(x) ≥ u(x∗)

Claim. x∗ solves (EMP1).

Similarly,

Step 1:

min
x≥0

p · x (EMP2)

s.t. u(x) ≥ u

Suppose x∗ solves (EMP2), and the lowest expenditure is p · x∗.

Step 2:

max
x≥0

u(x) (UMP2)

s.t. p · x ≤ p · x∗.

Claim. x∗ solves (UMP2).

Formally, the above claims are stated in Proposition 3.E.1 below.

Proposition 3.E.1. Suppose u(·) is a continuous utility function representing a locally

nonsatiated preference relation ! defined on the consumption set X = RL
+ and that the

price vector is p ≫ 0. We have

(i) If x∗ is optimal in the UMP when wealth is w > 0, then x∗ is optimal in the EMP

when the required utility is u(x∗). Moreover, the minimized expenditure in the EMP

is w.
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(ii) If x∗ is optimal in the EMP when the required utility level is u > u(0), then x∗ is

optimal in the UMP when wealth is p · x∗. Moreover, the maximized utility in the

UMP is u. (*No excess utility)

Proof.

(i) Suppose x∗ is not optimal in the EMP. Then, ∃x′ such that p · x′ < p · x∗ ≤ w

and u(x′) ≥ u(x∗). There exists a sufficiently small open ball around x′, denoted

bε(x′), such that for every &x ∈ bε(x′), p · &x < p · x∗ ≤ w (continuity of p · x). Local

nonsatiation of u implies that ∃x′′ ∈ bε(x′) such that u(x′′) > u(x′) ≥ u(x∗). Since

p· &x < w for all &x ∈ bε(x′) and x′′ ∈ bε(x′), we have p·x′′ < w. This implies x′′ ∈ Bp,w

and u(x′′) > u(x∗) and thus contradicts the assumption that x∗ is optimal in the

UMP. Therefore, x∗ must solve the EMP. The minimized expenditure is p·x∗. Recall

Proposition 3.D.2: Walras’ Law is satisfied in the UMP, i.e., p · x∗ = w.

(ii) Prove u(x∗) = u in EMP first (i.e. no excess utility). Suppose to the contrary,

u(x∗) > u, then u(αx∗) > u for some α < 1 (continuity of u(·)). Since αx∗ attains

the required utility u and is cheaper (since p · αx∗ < p · x∗), then we reached a

contradiction that x∗ minimizes expenditure.

Suppose x∗ is not optimal in the UMP. Then ∃x′ such that u(x′) > u(x∗) ≥ u and

p · x′ ≤ p · x∗. This implies that ∃α < 1 such that u(αx′) > u and p · αx′ < p · x∗.

This contradicts that x∗ solves the EMP.

Therefore, x∗ must solve the UMP. And the maximized utility is u(x∗) = u.

The Expenditure Function Let x∗ be the/a solution to the EMP. Then p · x∗ is the

minimized expenditure. Let this be called the Expenditure Function and denoted by

e(p, u). Proposition 3.E.2 describes the basic properties of e(p, u).

Proposition 3.E.2. Suppose that u(·) is a continuous utility representing a locally non-

satiated preference relation ! defined on the consumption set X = RL
+. The expenditure

function e(p, u) is

(i) Homogeneous of degree one in p.
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(ii) Strictly increasing in u and nondecreasing in pl for all l.

(iii) Concave in p, i.e., αe(p, u) + (1 − α)e(p′, u) ≤ e(αp + (1 − α)p′, u).

(iv) Continuous in p ≫ 0 and u.

Proof.

(i) The constraint set u(x) ≥ u is unaffected by the change in p.

The solution to
min
x≥0

αp · x

s.t. u(x) ≥ u

and
min
x≥0

p · x

s.t. u(x) ≥ u

are identical. Therefore, e(αp, u) = αp · x∗ = αe(p, u).

(ii) e(p, u) is strictly increasing in u.

Suppose e(p, u) is NOT strictly increasing in u.

Consider a change from u′ to u′′ with u′′ > u′. Let the price be p, and x′′ and x′ be

the optimal bundles for required utility level u′′ and u′ respectively. Since e(p, u) is

not strictly increasing, then we have,

p · x′′ = e(p, u′′) ≤ e(p, u′) = p · x′.

By continuity of u(·) and u(x′′) ≥ u′′ > u′, we can find a bundle αx′′ with α ∈ (0, 1)

such that u(αx′′) > u′

and p · αx′′ < p · x′′ ≤ p · x′ = e(p, u′).

This contradicts that x′ minimizes expenditure subject to constraint u(x) ≥ u′.

Remark. Similar to the Proof of Proposition 3.D.3 (ii), the proof here can be sub-

stantially shortened if we already know “Proposition 3.E.3 (ii) No excess utility”.

Consider u′′ > u′. Let the price be p, and x′′ and x′ be the optimal bundles for

required utility level u′′ and u′ respectively. Since u(x′′) = u′′ > u′, x′′ must not be

optimal under (p, u′). So, e(p, u′′) > e(p, u′).
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e(p, u) is nondecreasing in pl for all l.

Let el = (0, ..., 0, 1)*+,
lth element

, 0, ..., 0). Consider a price change from p′ to p′′ = p′ +αel.

Let the required utility be u, and x′′ and x′ be the optimal bundles given prices p′′

and p′ respectively.

Since p′ ≤ p′′,
e(p′′, u) = p′′ · x′′ ≥ p′ · x′′ ≥ e(p′, u)

The last inequality follows from the definition of e(p′, u): e(p′, u) is the minimized

expenditure given p′ and u, and x′′ is a bundle satisfying the constraint u(x′′) ≥ u.

(iii) Let p′′ = αp + (1 − α)p′ for α ∈ [0, 1]. Let the required utility be u, and x, x′ and

x′′ be the optimal bundles given prices p, p′ and p′′ respectively. Then,

e(p′′, u) = p′′ · x′′ = αp · x′′ + (1 − α)p′ · x′′ ≥ αe(p, u) + (1 − α)e(p′, u).

Intuition of Concavity of e(p, u).

Figure 4: Concavity of e(p, u)

If p2 increases, assuming that x stays at x = x̄, the expenditure e increases with p2

by the amount x2. However, the consumer can lower the expenditure e by adjusting

x to more cost effectively achieve u.

Similarly, if p2 decreases, assuming that x stays at x = x̄, the expenditure e de-

creases with p2 by the amount x2. However, the consumer can further lower the

expenditure e by adjusting x to more cost effectively achieve u.
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(iv) Suppose the sequence {(pn, un)}∞
n=1 converges to (p, u). Let h(·, ·) be the solution

to the expenditure minimization problem. As h(pn, un) is bounded for all n4, there

exists a convergent subsequence h(pm(n), um(n)).

We want to show that lim
n→∞

h(pm(n), um(n)) = h(p, u). Suppose to the contrary that

lim
n→∞

h(pm(n), um(n)) = h̃ ∕= h(p, u). Then since u(h(pm(n), um(n))) ≥ um(n), taking the

limit on both sides gives u(h̃) ≥ u. But since h̃ ∕= h(p, u), we have p · h̃ > p · h(p, u).

There exists a small open ball around h(p, u), denoted bε(h(p, u)), such that for

every h′ ∈ bε(h(p, u)), p · h̃ > p · h′. Moreover, by local nonsatiation of u, there

exists ĥ ∈ bε(h(p, u)), such that u(ĥ) > u(h(p, u)) = u. Since p · h̃ > p · h′ for all

h′ ∈ bε(h(p, u)) and ĥ ∈ bε(h(p, u)), we have p · h̃ > p · ĥ.

• Since lim
n→∞

um(n) = u and u(ĥ) > u, there exists N1 ∈ N such that ∀n >

N1, u(ĥ) > um(n).

• Since lim
n→∞

pm(n) = p, lim
n→∞

h(pm(n), um(n)) = h̃ and p · h̃ > p · ĥ, there exists

N2 ∈ N such that ∀n > N2, pm(n) · h(pm(n), um(n)) > pm(n) · ĥ.

Thus, ∀n > max{N1, N2}, pm(n) · ĥ < pm(n) · h(pm(n), um(n)) and u(ĥ) > um(n), which

then contradicts the optimality of h(pm(n), um(n)).

Hence, we must have lim
n→∞

h(pm(n), um(n)) = h(p, u), and thus lim
n→∞

h(pn, un) =

h(p, u). Therefore, lim
n→∞

e(pn, un) = lim
n→∞

pn · h(pn, un) = p · h(p, u) = e(p, u).

Using Proposition 3.E.1, we can connect the expenditure function e(p, u) and the indirect

utility function v(p, w):

e(p, v(p, w)) = w and v(p, e(p, u)) = u. (3.E.1)

Hicksian (or Compensated) Demand Function The optimal bundle in EMP is de-

noted as h(p, u) ⊂ RL
+ and is called the Hicksian (or Compensated) demand function/

correspondence.
4It is without loss of generality to modify the expenditure minimization problem to the following:

min
x≥0

p · x

s.t. u(x) ≥ u and p · x ≤ M(for some sufficiently large M).
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As prices vary, h(p, u) gives the level of demand that would arise if the consumer’s wealth

were simultaneously adjusted to keep her utility level at u. This type of wealth compen-

sation is called Hicksian wealth compensation. From initial price-wealth pair (p, w) and

prices change to p′, the Hicksian wealth compensation is ∆wHicks = e(p′, u) − w.

Figure 5 compares Hicksian compensation with Slutsky compensation.

Figure 5: Hicksian compensation and Slutsky compensation

Proposition 3.E.3 describes the basic properties of h(p, u).

Proposition 3.E.3. Suppose that u(·) is a continuous utility function representing a

locally nonsatiated preference relation ! defined on X = RL
+. Then for any p ≫ 0, the

Hicksian demand correspondence h(p, u) (i.e., expenditure minimizing demand) possesses

the following properties:

(i) Homogeneity of degree zero in p: h(αp, u) = h(p, u) for all p, u and α > 0.

(ii) No excess utility: For any x ∈ h(p, u), u(x) = u.

(iii) Convexity/uniqueness: If ! is convex, then h(p, u) is a convex set; and if ! is

strictly convex, then there is a unique element in h(p, u).

Proof.

(i) The solution to
arg min

x≥0
αp · x

s.t. u(x) ≥ u

14
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and
arg min

x≥0
p · x

s.t. u(x) ≥ u

are identical. Therefore, h(αp, u) = h(p, u).

(ii) Suppose u(x′) > u for some x′ ∈ h(p, u). By continuity of u(·), ∃α < 1 such that

u(αx′) > u. However, p · αx′ < p · x′. This contradicts x′ ∈ h(p, u).

(iii) Suppose x, x′ ∈ h(p, u), then p · x = p · x′ ≡ e(p, u). By (ii), u(x) = u(x′) = u. Let

x′′ = αx + (1 − α)x′ for some α ∈ (0, 1). p · x′′ = αp · x + (1 − α)p · x′ = e(p, u).

Convexity of ! implies x′′ ! x, and x′′ ! x′. So u(x′′) ≥ u and thus x′′ ∈ h(p, u).

Suppose x ∕= x′ and x, x′ ∈ h(p, u). Strict convexity implies x′′ ≻ x and x′′ ≻ x′,

or u(x′′) > u. So there is excess utility. Applying the logic in (ii), ∃α < 1 s.t.

u(αx′′) > u but p · αx′′ < e(p, u), constituting a contradiction.

Using Proposition 3.E.1, we can relate the Hicksian and Walrasian demand correspon-

dences as follows: (assuming single-value demand)

h(p, u) = x(p, e(p, u)) and x(p, w) = h(p, v(p, w)). (3.E.4)

Exercise 3.E.6
Consider the constant elasticity of substitution utility function studied in Exercises

3.C.6 and 3.D.5 with α1 = α2 = 1. Derive its Hicksian demand function and

expenditure function. Verify the properties of Propositions 3.E.2 and 3.E.3.

Exercise 3.E.9

Use the relations in (3.E.1) to show that the properties of the indirect utility func-

tion identified in Proposition 3.D.3 imply Proposition 3.E.2. Likewise, use the

relations in (3.E.1) to prove that Proposition 3.E.2 implies Proposition 3.D.3.

Hicksian Demand and the Compensated Law of Demand

Proposition 3.E.4. Suppose that u(·) is a continuous utility function representing a

locally nonsatiated preference relation ! and that h(p, u) consists of a single element for

15
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all p ≫ 0. Then the Hicksian demand function h(p, u) satisfies the compensated law of

demand: for all p′ and p′′,

(p′′ − p′) · [h(p′′, u) − h(p′.u)] ≤ 0. (3.E.5)

Proof. h(p, u) is optimal in EMP, so

p′′ · h(p′′, u) ≤ p′′ · h(p′, u)

and p′ · h(p′′, u) ≥ p′ · h(p′, u)

=⇒ (p′′ − p′) · h(p′′, u) ≤ (p′′ − p′) · h(p′, u)

=⇒ (p′′ − p′) · [h(p′′, u) − h(p′.u)] ≤ 0.

Example 3.E.1. Suppose p ≫ 0 and u > 0. Derive the Hicksian Demand and Expendi-

ture Functions for Cobb-Douglas Utility Function: u(x1, x2) = xα
1 x1−α

2 .

Solution. The problem is:

min
x∈RL

p1x1 + p2x2

s.t. xα
1 x1−α

2 ≥ u

x1 ≥ 0, x2 ≥ 0.

Lagrange Function:

L = −(p1x1 + p2x2) − λ(−xα
1 x1−α

2 + u).

Kuhn-Tucker Conditions:

∂L
∂x1

= −p1 + λαxα−1
1 x1−α

2 ≤ 0, with equality if x1 > 0, (8)

∂L
∂x2

= −p2 + λ(1 − α)xα
1 x−α

2 ≤ 0, with equality if x2 > 0, (9)

xα
1 x1−α

2 ≥ u,

x1 ≥ 0, x2 ≥ 0,

λ ≥ 0,

λ(u − xα
1 x1−α

2 ) = 0. (10)

If x1 = 0 or x2 = 0, we will have xα
1 x1−α

2 = 0 < u. Therefore, it requires (x1, x2) ≫ 0.

16
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Then, (8) and (9) hold with equality. From (8) and (9) with equality,

p1x1

p2x2
= α

1 − α
, (11)

λ > 0. (12)

(12) and (10) imply

xα
1 x1−α

2 = u. (13)

Therefore, from (11) and (13),

h1(p, u) = x1 = u

-
αp2

(1 − α)p1

.1−α

h2(p, u) = x2 = u

-
(1 − α)p1

αp2

.α

e(p, u) = p1h1(p, u) + p2h2(p, u) = upα
1 p1−α

2
αα(1 − α)1−α

.

We will skip Section 3.F Duality.

3.G. Relationships between Demand, Indirect Utility, and

Expenditure Functions

This section concerns three relationships:

• Hicksian Demand Function & Expenditure Function;

• Hicksian & Walrasian Demand Functions;

• Walrasian Demand Function & Indirect Utility Function.

Hicksian demand and the expenditure function Recall e(p, u) = p · h(p, u). Now we

show h(p, u) = ∇pe(p, u)

Proposition 3.G.1. Suppose that u(·) is continuous, representing locally nonsatiated

and strictly convex preference relation ! defined on X = RL
+. For all p and u,

h(p, u) = ∇pe(p, u).

17
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Before proving the result, we will introduce a useful mathematical result called the En-

velope Theorem.

Consider the following maximization problem:

max
x

f(x, θ)

s.t. g1(x, θ) = b̄1

...

gM(x, θ) = b̄M

where θ = (θ1, ...θS) are parameters affecting f and/or gi’s.

We are now interested in knowing how a marginal change of θs would affect the optimal

value of f .

The Lagrangian function is:

L(x, λ, θ) = f(x, θ) −
M!

m=1
λm(gm(x, θ) − bm)

The first order conditions with respect to xj’s are given by

∂L
∂xj

= ∂f(x∗(θ), θ)
∂xj

−
M!

m=1
λm

∂gm(x∗(θ), θ)
∂xj

= 0.

The effect of a marginal change of θs on the optimal value f(x∗) is:

df(x∗(θ), θ)
dθs

= ∂f(x∗(θ), θ)
∂θs

+
N!

j=1

∂f(x∗(θ), θ)
∂xj

∂x∗
j(θ)

∂θs

=)*+,
F.O.C

∂f(x∗(θ), θ)
∂θs

+
N!

j=1

/-
M!

m=1
λm

∂gm(x∗(θ), θ)
∂xj

.
∂x∗

j(θ)
∂θs

0

=∂f(x∗(θ), θ)
∂θs

+
M!

m=1

1

2λm

N!

j=1

/
∂gm(x∗(θ), θ)

∂xj

∂x∗
j(θ)

∂θs

03

4 (14)

Differentiating the constraints gm(x∗(θ), θ) = b̄m with respect to θs gives

∂gm(x∗(θ), θ)
∂θs

+
N!

j=1

/
∂gm(x∗(θ), θ)

∂xj

∂x∗
j(θ)

∂θs

0

= 0 (15)

Substituting (15) into 14) and rearranging yields the Envelope Theorem:

df(x∗(θ), θ)
dθs

= ∂f(x∗(θ), θ)
∂θs

−
M!

m=1

-

λm
∂gm(x∗(θ), θ)

∂θs

.

= ∂L(x∗(θ), λ, θ)
∂θs

.

In words, the Envelope Theorem tells us that the change in the optimal value f(x∗)

with respect to a marginal change of the parameter θs is given by the partial derivative

of the Lagrangian with respect to θs.
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Remark. The interpretation of Lagrange multiplier we discussed earlier is a special case

of the Envelope Theorem. (Please check by yourself.)

We will then use the Envelope Theorem to prove Proposition 3.G.1 above.

Proof. We focus on the case where h(p, u) ≫ 0 and h(p, u) is differentiable at (p, u).

The expenditure minimization problem could be written as

max
x∈RL

+

− p · x

s.t. u(x) = u

The minimized expenditure is e(p, u) = p · x∗, where x∗ is the solution to the problem.

Lagrange Function:
L(x, λ)
x∈RL

+,λ

= −p · x − λ(−u(x) + u)

By Envelope Theorem,

∂(−e(p, u))
∂pl

= ∂L(x∗, λ∗, p)
∂pl

= −x∗
l = −hl(p, u).

That is, ∂(e(p,u))
∂pl

= hl(p, u). In matrix notation, h(p, u) = ∇pe(p, u).

Example. Verify h(p, u) = ∇pe(p, u) for Cobb-Douglas Utility Function: u(x1, x2) =

xα
1 x1−α

2 .

Solution. h1(p, u), h2(p, u) and e(p, u) are solved in Example 3.E.1.

∂e(p, u)
∂p1

= uαpα−1
1 p1−α

2
αα(1 − α)1−α

= u

-
αp2

(1 − α)p1

.1−α

= h1(p, u);

∂e(p, u)
∂p2

= upα
1 (1 − α)p−α

2
αα(1 − α)1−α

= u

-
(1 − α)p1

αp2

.α

= h2(p, u).

Proposition 3.G.2 summarizes the properties of Dph(p, u).

Proposition 3.G.2. Suppose u(·) is continuous utility function representing a locally

nonsatiated and strictly convex ! on X = RL
+. Suppose h(p, u) is continuously differen-

tiable at (p, u), and denote the L × L derivative matrix by Dph(p, u). Then

(i) Dph(p, u) = D2
pe(p, u).

(ii) Dph(p, u) is negative semidefinite.
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(iii) Dph(p, u) is symmetric.

(iv) Dph(p, u)p = 0.

Proof.

(i) Property (i) follows immediately from Proposition 3.G.1 by differentiation.

(ii) Recall that e(p, u) is concave. Below we show that concavity of a function f(x)

implies D2f(x) is negative semidefinite. Once this is established, then it implies

D2
pe(p, u) = Dph(p, u) is negative semidefinite.

By Taylor expansion, f(x+αz) = f(x)+∇f(x) · (αz)+ 1
2(αz) ·D2f(x+βz)(αz) for

some β ∈ (0, α). Then, α2

2 z · D2f(x + βz)z = f(x + αz) − f(x) − ∇f(x) · (αz) ≤ 0.

The inequality follow from the concavity of f(x). This holds for α, β arbitrarily

small. Therefore, z · D2f(x)z ≤ 0 must hold. To see this, suppose otherwise

z · D2f(x)z > 0. Then for β sufficiently small (as α → 0), z · D2f(x + βz)z > 0,

which constitutes a contradiction.

(iii) Symmetry of D2
pe(p, u) is due to Schwarz’ theorem (or Clairant’s theorem) and that

e(p, u) is C2. Therefore, Dph(p, u) = D2
pe(p, u) is symmetric.

(iv) Note that since h(p, u) is H.D.∅ in p, then

h(αp, u) = h(p, u)

Differentiating both sides of the equation by α gives

Dαph(αp, u) · p = 0.

This holds for α = 1. So, Dph(p, u) · p = 0.

Remark. Negative semidefiniteness of Dph(p, u) is the differential analog of compensated

law of demand (3.E.5). Condition (3.E.5) implies dp·dh(p, u) ≤ 0. Substituting dh(p, u) =

Dph(p, u)dp gives dp · Dph(p, u)dp ≤ 0 ∀dp. Note also that semidefiniteness of Dph(p, u)

implies that ∂hl(p,u)
∂pl

≤ 0 ∀l; that is, compensated own-price effects are non-positive.

Remark. Symmetry of Dph(p, u) is not obvious at all ex ante. It’s only obvious after we

know that h(p, u) = Dpe(p, u).
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Remark. Two goods l and k are called substitutes at (p, u) if ∂hl(p,u)
∂pk

≥ 0; and complements

at (p, u) if ∂hl(p,u)
∂pk

≤ 0.5 Since ∂hl(p,u)
∂pl

≤ 0, by (iv), there must exist a good k such that
∂hl(p,u)

∂pk
≥ 0; that is, every good has at least one substitute.

The Hicksian and Walrasian Demand Functions Proposition 3.G.3 shows that Dph(p, u)

can be computed from the observable Walrasian demand function x(p, w).6

Proposition 3.G.3 (The Slutsky Equation). Suppose that u(·) is a continuous utility

function representing a locally nonsatiated and strictly convex ! on X = RL
+. Then for

all (p, w), and u = v(p, w), we have

For all l, k,

∂hl(p, u)
∂pk

= ∂xl(p, w)
∂pk

+ ∂xl(p, w)
∂w

xk(p, w)

or

Dph(p, u) = Dpx(p, w) + Dwx(p, w)x(p, w)T

Proof. Recall (3.E.4), h(p, u) = x(p, e(p, u)). If follows that for any u,

∂hl(p, u)
∂pk

= ∂xl(p, e(p, u))
∂pk

+ ∂xl(p, e(p, u))
∂e(p, u)

∂e(p, u)
∂pk

= ∂xl(p, e(p, u))
∂pk

+ ∂xl(p, e(p, u))
∂e(p, u) hk(p, u). (16)

Since it is assumed that u = v(p, w), we have

h(p, u) = h(p, v(p, w)) = x(p, w) (3.E.4) and e(p, u) = e(p, v(p, w)) = w (3.E.1).

So, we can write (16) as

∂hl(p, u)
∂pk

55555
u=v(p,w)

= ∂xl(p, w)
∂pk

+ ∂xl(p, w)
∂w

xk(p, w).

Remark. In Chapter 2, we derived the same result, except that it was based on a different

compensation (Slutsky compensation). Recall,

• Slutsky compensation: ∆wSlutsky = p′ · x(p̄, w̄) − w̄;

• Hicksian Compensation: ∆wHicksian = e(p′, ū) − w̄.
5For Walrasian demand, two goods l and k are called gross substitutes if ∂xl(p,w)

∂pk
≥ 0; and gross

complements if ∂xl(p,w)
∂pk

≤ 0.
6Hicksian demand function is not directly observable. It has consumer’s utility level as an argument.
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In general, ∆wHicksian ≤ ∆wSlutsky (see Figure 5). We have just shown that for a differential

change in price, Slutsky and Hicksian compensations are identical. This observation is

useful because the RHS terms are directly observable.

Example. Verify the Slutsky equation for Cobb-Douglas Utility Function: u(x1, x2) =

xα
1 x1−α

2 .

Solution. h1(p, u) and h2(p, u) are solved in Example 3.E.1. x1(p, w) and x2(p, w) are

solved in Example 3.D.1.

Calculation of LHS:

Dph(p, u) =

1

662
−αu

'
1−α

α
p1
p2

(α p2
p2

1
αu

'
1−α

α
p1
p2

(α 1
p1

αu
'

1−α
α

p1
p2

(α 1
p1

−αu
'

1−α
α

p1
p2

(α 1
p2

3

774 .

Substituting u =
'

αw
p1

(α '
(1−α)w

p2

(1−α
into the expression for Dph(p, u) yields

Dph(p, u) =

1

662
−α

'
αw
p1

(α '
(1−α)w

p2

(1−α '
1−α

α
p1
p2

(α p2
p2

1
α

'
αw
p1

(α '
(1−α)w

p2

(1−α '
1−α

α
p1
p2

(α 1
p1

α
'

αw
p1

(α '
(1−α)w

p2

(1−α '
1−α

α
p1
p2

(α 1
p1

−α
'

αw
p1

(α '
(1−α)w

p2

(1−α '
1−α

α
p1
p2

(α 1
p2

3

774

=

1

662
−α(1−α)w

p2
1

α(1−α)w
p1p2

α(1−α)w
p1p2

−α(1−α)w
p2

2
.

3

774

Calculation of RHS:

Dpx(p, w) + Dwx(p, w)x(p, w)T =

1

662
−αw

p2
1

0

0 − (1−α)w
p2

2

3

774 +

1

662

α
p1

1−α
p2

3

774

8
αw
p1

(1−α)w
p2

9

=

1

662
−α(1−α)w

p2
1

α(1−α)w
p1p2

α(1−α)w
p1p2

−α(1−α)w
p2

2
.

3

774

Therefore, Dph(p, u) = Dpx(p, w) + Dwx(p, w)x(p, w)T .

Walrasian Demand and Indirect Utility Function For EMP, we have h(p, u) = ∇pe(p, u)

(Proposition 3.G.1). Proposition 3.G.4 below shows the analog statement for UMP.

Proposition 3.G.4 (Roy’s Identity). Suppose that u(·) is A continuous utility function

representing a locally nonsatiated and strictly convex ! on X = RL
+. Suppose also that

the indirect utility function is differentiable at (p̄, w̄) ≫ 0.
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Then

x(p̄, w̄) = − 1
∇wv(p̄, w̄)∇pv(p̄, w̄)

i.e., for every l = 1, ..., L :

xl(p̄, w̄) = −∂v(p̄, w̄)/∂pl

∂v(p̄, w̄)/∂w
.

Proof. We focus on the case where x(p, w) ≫ 0 and x(p, w) is differentiable at (p, w).

The utility maximization problem could be written as

max
x∈RL

+

u(x)

s.t. p · x = w

The maximized utility is v(p, w) = u(x∗), where x∗ is the solution to the maximization

problem.

Lagrange Function:

L(x, λ)
x∈RL

+,λ

= u(x) − λ(p · x − w)

By Envelope Theorem,

∂(v(p, w))
∂pl

= ∂L(x∗, λ∗, p̄, w̄)
∂pl

= −λx∗
l .

∂(v(p, w))
∂w

= ∂L(x∗, λ∗, p̄, w̄)
∂w

= λ.

=⇒ ∂v(p̄, w̄)/∂pl

∂v(p̄, w̄)/∂w
= −x∗

l = −xl(p̄, w̄)

That is, xl(p̄, w̄) = −∂v(p̄,w̄)/∂pl

∂v(p̄,w̄)/∂w
.

Example. Verify Roy’s identity for Cobb-Douglas Utility Function: u(x1, x2) = xα
1 x1−α

2 .

Solution. Direct computation of − 1
∇wv(p,w)∇pv(p, w) gives:

− 1
∇wv(p, w)∇pv(p, w)

= −
$

α

p1

%−α $
1 − α

p2

%α−1
:

;−
$

α

p1

%α+1 $
1 − α

p2

%1−α

w, −
$

α

p1

%α $
1 − α

p2

%2−α

w

<

=

=
$

αw

p1
,
(1 − α)w

p2

%

= x(p, w).

Hence, Roy’s identity holds, i.e., x(p, w) = − 1
∇wv(p,w)∇pv(p, w).
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Summary Figure 6 below summarizes the relationships between UMP and EMP.

Figure 6: Relationships between UMP and EMP

Exercise 3.G.1

Prove that Proposition 3.G.1 is implied by Roy’s identity (Proposition 3.G.4).

Exercise 3.G.8

The indirect utility function v(p, w) is logarithmically homogeneous if v(p, αw) =

v(p, w)+ln α for α > 0 [in other words, v(p, w) = ln(v∗(p, w)), where v∗(p, w) is ho-

mogeneous of degree one in w]. Show that if v(·, ·) is logarithmically homogeneous,

then x(p, 1) = −∇pv(p, 1).

Exercise 3.G.15

Consider the utility function u = 2x
1/2
1 + 4x

1/2
2 .

(a) Find demand functions for goods 1 and 2 as they depend on prices and wealth.

(b) Find compensated demand function h(·).

(c) Find the expenditure function, and verify that h(p, u) = ∇pe(p, u).

(d) Find the indirect utility function, and verify Roy’s identity.

24


