Chapter 3. Classical Demand Theory (Part 1) Xiaoxiao Hu

3.A. Introduction: Take \geq as the primitive

- (1) Assumption(s) on \succeq so that \succeq can be represented with a utility function
- (2) Utility maximization and demand function
- (3) Utility as a function of prices and wealth (indirect utility)
- (4) Expenditure minimization and expenditure function
- (5) Relationship among demand function, indirect utility function, and expenditure function

3.B. Preference Relations: Basic Properties

Rationality We would assume *Rationality* (*Completeness and Transitivity*) throughout the chapter.

Definition 3.B.1. The preference relation \succeq on *X* is rational if it possesses the following two properties:

- (i) Completeness: For all $x, y \in X$, we have $x \succeq y$ or $y \succeq x$ (or both).
- (ii) Transitivity: For all $x, y, z \in X$, if $x \succeq y$ and $y \succeq z$, then $x \succsim z$. 3

Monotonicity

Definition 3.B.2. The preference relation \succeq on X is *monotone* if *x, y* ∈ *X* and *y* ≫ *x* implies *y* ≻ *x.* It is *strongly monotone* if $y \geq x \& y \neq x$ implies $y \succ x$.

Monotonicity

Claim. If \geq is strongly monotone, then it is monotone.

Example. Here is an example of a preference that is monotone, but not strongly monotone:

$$
u(x_1,x_2)=x_1
$$
 in \mathbb{R}^2_+ .

Local Nonsatiation

Definition 3.B.3. The preference relation \geq on *X* is *locally nonsatiated* if for every $x \in X$ and every $\varepsilon > 0$, $\exists y \in X$ such

that $||y - x|| \leq \varepsilon$ and $y \succ x$.

Local Nonsatiation

Claim. *Local nonsatiation* is a weaker desirability assumption compared to *monotonicity*. If \succsim is monotone, then it is locally nonsatiated.

Example. Here is an example of a preference that is locally nonsatiated, but not monotone:

$$
u(x_1, x_2) = x_1 - |1 - x_2| \text{ in } \mathbb{R}^2_+.
$$

Convexity Assumptions

Definition 3.B.4. The preference relation \succeq on X is *convex* if for every $x \in X$, the upper contour set of $x, \{y \in X : y \succeq x\}$ is convex; that is, if $y \succsim x$ and $z \succsim x$, then $\alpha y + (1 - \alpha)z \succsim x$ for any $\alpha \in [0, 1]$. $\{y\in\mathbb{R}^2_+:y\succsim x\}$ $\{y\in\mathbb{R}^2_+:y\succsim x\}$ $\alpha y + (1 - \alpha) z$ $\alpha v + (1 - \alpha)z$ $\{y\in\mathbb{R}^2_+:y\sim x\}$ $\{y\in\mathbb{R}^2_+: y\sim x\}$ $\{y \in \mathbb{R}_+^2 : x \succeq y\}$ $\{y \in \mathbb{R}^2_+ : x \succeq y\}$ x, \mathbf{x}_1 Convex **Nonconvex** 8

Properties associated with convexity

- (i) Diminishing marginal rates of subsititution
- (ii) Preference for diversity (implied by (i))

Definition 3.B.5. The preference relation \geq on *X* is *strictly convex* if for every $x \in X$, we have that $y \succsim x$ and $z \succsim x$, and $y \neq z$ implies $\alpha y + (1 - \alpha)z \succ x$ for all $\alpha \in (0, 1)$ *.*

Homothetic Preference

Definition 3.B.6. A monotone preference relation \geq on $X =$ \mathbb{R}_{+}^{L} is *homothetic* if all indifference sets are related by proportional expansion along rays; that is, if $x \sim y$, then $\alpha x \sim \alpha y$ for any $\alpha \geq 0$. αx αy X_1

Homothetic Preference 11

Quasilinear Preference

Definition 3.B.7. \succsim on $X = (-\infty, \infty) \times \mathbb{R}^{L-1}$ is *quasilinear*

with respect to commodity 1 (*numeraire* commodity) if

- (i) All the indifference sets are parallel displacements of each other along the axis of commodity 1. That is, if $x \sim y$, then $(x + \alpha e_1) \sim (y + \alpha e_1)$ for $e_1 = (1, 0, 0, ..., 0)$ and any $\alpha \in \mathbb{R}$.
- (ii) Good 1 is desirable; that is $x + \alpha e_1 > x$ for all x and $\alpha > 0$. 12

Quasilinear Preference

Quasilinear Preference 13

3.C. Preference and Utility

Key Question. When can a rational preference relation be

represented by a utility function?

Answer: If the preference relation is continuous.

Definition 3.C.1. The preference relation \succeq on *X* is *continuous* if it is preserved in the limits. That is, for any sequence of pairs $\{(x^n, y^n)\}_{n=1}^{\infty}$ with $x^n \succsim y^n$ for all $n, x = \lim_{n \to \infty} x^n$, $y = \lim_{n \to \infty} y^n$, we have $x \succsim y$.

Claim 1. \geq *is continuous if* and *only if for* all *x*, *the upper contour set* $\{y \in X : y \succsim x\}$ *and the lower contour set* $\{y \in X : y \succsim x\}$ $X: x \succeq y$ *are both closed.*

Exercise

Claim 2. A function $f: \mathbb{R}^n \to \mathbb{R}$ is continuous if and

only if for all *a*, the set $\{x \in \mathbb{R}^n : f(x) \ge a\}$ and the set

 ${x \in \mathbb{R}^n : f(x) \leq a}$ are both closed.

Prove the "only if" part of the claim above.

Example 3.C.1. Lexicographic Preference Relation on R²

 $x > y$ if either $x_1 > y_1$, or $x_1 = y_1$ and $x_2 > y_2$.

x ∼ *y* if $x_1 = y_1$ and $x_2 = y_2$.

Claim. Lexicographic Preference Relation on \mathbb{R}^2 is not continuous.

Claim. Lexicographic Preference Relation on \mathbb{R}^2 cannot be represented by $u(\cdot)$.

Lexicographic Preference

Continuous Preference Alternatively, we could use the fact that upper and lower contour sets of a continuous preference must be closed.

Proposition 3.C.1 (Debreu's theorem)**.** *Suppose that the rational preference relation* \geq *on X is continuous and monotone. Then there exists continuous utility function* $u(x)$ *that represents* \succsim , *i.e.*, $u(x) \ge u(y)$ *if and only if* $x \succsim y$.

Remark. $u(x)$ is not unique, any increasing transformation $v(x) =$ $f(u(x))$ will represent \sum . We can also introduce countably many jumps in $f(\cdot)$.

Assumptions of differentiability of $u(x)$

The assumption of differentiability is commonly adopted for technical convenience, but is not applicable to all useful models.

Assumptions of differentiability of $u(x)$

Here is an example of preference that is not differentiable.

Example (Leontief Preference). $x \succsim y$ if and only if $\min\{x_1, x_2\} \ge$

Implications of \succeq and u

(i) \succsim is convex $\iff u: X \to \mathbb{R}$ is quasi-concave.

(ii) continuous \succsim on \mathbb{R}^L_+ is homothetic \iff ∃ H.D.1 $u(x)$

(iii) continuous \succsim on $(-\infty, \infty) \times \mathbb{R}^{L-1}_+$ is quasilinear with respect to Good $1 \iff \exists u(x) = x_1 + \phi(x_2, ..., x_L)^T$

¹In (i), all utility functions representing \succsim are quasiconcave; whereas (ii) and (iii) merely say that there exists at least one utility function that has the specific form. 24

Quasiconcave Utility

Definition. The utility function $u(\cdot)$ is *quasiconcave* if the set $\{y \in \mathbb{R}^L_+ : u(y) \ge u(x)\}$ is convex for all *x* or, equivalently, if $u(\alpha x + (1 - \alpha)y) \ge \min\{u(x), u(y)\}\$ for all x, y and all $\alpha \in [0, 1]$. If $u(\alpha x + (1 - \alpha)y) > \min\{u(x), u(y)\}$ for $x \neq y$ and $\alpha \in (0, 1)$, then $u(\cdot)$ is *strictly quasiconcave*.

3.D. Utility Maximization Problem (UMP)

Assume throughout that preference is *rational*, *continuous*, *lo-*

cally nonsatiated, and *u*(*x*) continuous.

Consumer's *Utility Maximization Problem (UMP)*:

$$
\max_{x \in \mathbb{R}_+^L} u(x)
$$

s.t. $p \cdot x \leq w$

Existence of Solution

Proposition 3.D.1. If $p \gg 0$ and $u(\cdot)$ is continuous, then the

utility maximization problem has a solution.

Existence of Solution

Here, we provide two counter examples where the solution of UMP does not exists.

Counter Examples.

(i)
$$
B_{p,w}
$$
 is not closed: $p \cdot x < w$

(ii) $u(x)$ is not continuous:

$$
u(x) = \begin{cases} p \cdot x & \text{for } p \cdot x < w \\ 0 & \text{for } p \cdot x = w \end{cases}
$$

Walrasian demand correspondence/functions

The solution of UMP, denoted by *x*(*p,w*), is called *Walrasian (* or *ordinary* or *market) demand correspondence*. When $x(p, w)$ is single valued for all (p, w) , we refer to it as *Walrasian (* or *ordinary* or *market) demand function*.

Walrasian demand correspondence/functions

Properties of Walrasian demand correspondence

Proposition 3.D.2. *Suppose that u*(*x*) *is a continuous utility function representing a locally nonsatiated preference relation* \succsim defined on the consumption set $X = \mathbb{R}^L_+$. Then the Wal*rasian demand correspondence x*(*p,w*) *possesses the following properties:*

(i) Homogeneity of degree zero in (p, w) : $x(\alpha p, \alpha w)$ = $x(p, w)$ *for any* p, w *and scalar* $\alpha > 0$ *.*

(ii) Walras' Law: $p \cdot x = w$ *for all* $x \in x(p, w)$. 31

Properties of Walrasian demand correspondence

Proposition 3.D.2 (continued).

(iii) Convexity/uniqueness: If \geq *is convex, so that* $u(\cdot)$ *is quasiconcave, then* $x(p, w)$ *is a convex set. Moreover, if* \succeq *is strictly convex, so that u*(*·*) *is strictly quasiconcave, then* $x(p, w)$ *consists of a single element.*

We will take a break to review some mathematical results before proceeding with this Chapter.