Chapter 3. Classical Demand Theory (Part 1) Xiaoxiao Hu

3.A. Introduction: Take \succeq as the primitive

- (1) Assumption(s) on \succsim so that \succsim can be represented with a utility function
- (2) Utility maximization and demand function
- (3) Utility as a function of prices and wealth (indirect utility)
- (4) Expenditure minimization and expenditure function
- (5) Relationship among demand function, indirect utility function, and expenditure function

3.B. Preference Relations: Basic Properties

Rationality We would assume *Rationality* (*Completeness and Transitivity*) throughout the chapter.

Definition 3.B.1. The preference relation \succeq on X is rational if it possesses the following two properties:

- (i) Completeness: For all $x, y \in X$, we have $x \succeq y$ or $y \succeq x$ (or both).
- (ii) Transitivity: For all $x, y, z \in X$, if $x \succeq y$ and $y \succeq z$, then $x \succeq z$.

Monotonicity

Definition 3.B.2. The preference relation \succeq on X is monotone if $x, y \in X$ and $y \gg x$ implies $y \succ x$. It is strongly monotone if $y \ge x \& y \ne x$ implies $y \succ x$.

Monotonicity

Claim. If \succeq is strongly monotone, then it is monotone.

Example. Here is an example of a preference that is monotone, but not strongly monotone:

$$u(x_1, x_2) = x_1 \text{ in } \mathbb{R}^2_+.$$

Local Nonsatiation

Definition 3.B.3. The preference relation \gtrsim on X is *locally nonsatiated* if for every $x \in X$ and every $\varepsilon > 0, \exists y \in X$ such

that $||y - x|| \le \varepsilon$ and $y \succ x$.

Local Nonsatiation

Claim. Local nonsatiation is a weaker desirability assumption compared to *monotonicity*. If \succeq is monotone, then it is locally nonsatiated.

Example. Here is an example of a preference that is locally nonsatiated, but not monotone:

$$u(x_1, x_2) = x_1 - |1 - x_2|$$
 in \mathbb{R}^2_+ .

Convexity Assumptions

Definition 3.B.4. The preference relation \succeq on X is *convex* if for every $x \in X$, the upper contour set of x, $\{y \in X : y \succeq x\}$ is convex; that is, if $y \succeq x$ and $z \succeq x$, then $\alpha y + (1 - \alpha)z \succeq x$ for any $\alpha \in [0, 1]$. $\{y \in \mathbb{R}^2_+ : y \succeq x\}$ $\{y \in \mathbb{R}^2_+ : y \succeq x\}$ $\alpha v + (1 - \alpha)z$ $\alpha v + (1 - \alpha)z$ $\{y \in \mathbb{R}^2_+ : y \sim x\}$ $\{y \in \mathbb{R}^2_+ : y \sim x\}$ $\{y \in \mathbb{R}^2_+ : x \succeq y\}$ $\{y \in \mathbb{R}^2_+ : x \succeq y\}$ x1 \mathbf{X}_1 Convex Nonconvex

8

Properties associated with convexity

- (i) Diminishing marginal rates of subsititution
- (ii) Preference for diversity (implied by (i))

Definition 3.B.5. The preference relation \succeq on X is *strictly* convex if for every $x \in X$, we have that $y \succeq x$ and $z \succeq x$, and $y \neq z$ implies $\alpha y + (1 - \alpha)z \succ x$ for all $\alpha \in (0, 1)$.

Homothetic Preference

Definition 3.B.6. A monotone preference relation \succeq on X = \mathbb{R}^{L}_{+} is *homothetic* if all indifference sets are related by proportional expansion along rays; that is, if $x \sim y$, then $\alpha x \sim \alpha y$ for any $\alpha \geq 0$. αx αv X_1

Homothetic Preference

Quasilinear Preference

Definition 3.B.7. \succeq on $X = (-\infty, \infty) \times \mathbb{R}^{L-1}_+$ is quasilinear

with respect to commodity 1 (numeraire commodity) if

- (i) All the indifference sets are parallel displacements of each other along the axis of commodity 1. That is, if $x \sim y$, then $(x + \alpha e_1) \sim (y + \alpha e_1)$ for $e_1 = (1, 0, 0, ..., 0)$ and any $\alpha \in \mathbb{R}$.
- (ii) Good 1 is desirable; that is $x + \alpha e_1 \succ x$ for all x and $\alpha > 0$.

Quasilinear Preference

Quasilinear Preference

3.C. Preference and Utility

Key Question. When can a rational preference relation be

represented by a utility function?

Answer: If the preference relation is continuous.

Definition 3.C.1. The preference relation \succeq on X is *continuous* if it is preserved in the limits. That is, for any sequence of pairs $\{(x^n, y^n)\}_{n=1}^{\infty}$ with $x^n \succeq y^n$ for all $n, x = \lim_{n \to \infty} x^n$, $y = \lim_{n \to \infty} y^n$, we have $x \succeq y$.

Claim 1. \succeq is continuous if and only if for all x, the upper contour set $\{y \in X : y \succeq x\}$ and the lower contour set $\{y \in X : x \succeq y\}$ are both closed.

Exercise

Claim 2. A function $f \colon \mathbb{R}^n \to \mathbb{R}$ is continuous if and

only if for all a, the set $\{x \in \mathbb{R}^n : f(x) \ge a\}$ and the set

 $\{x \in \mathbb{R}^n : f(x) \le a\}$ are both closed.

Prove the "only if" part of the claim above.

Example 3.C.1. Lexicographic Preference Relation on \mathbb{R}^2

 $x \succ y$ if either $x_1 > y_1$, or $x_1 = y_1$ and $x_2 > y_2$.

 $x \sim y$ if $x_1 = y_1$ and $x_2 = y_2$.

Claim. Lexicographic Preference Relation on \mathbb{R}^2 is not continuous.

Claim. Lexicographic Preference Relation on \mathbb{R}^2 cannot be represented by $u(\cdot)$.

Lexicographic Preference

Continuous Preference Alternatively, we could use the fact that upper and lower contour sets of a continuous preference must be closed.

Proposition 3.C.1 (Debreu's theorem). Suppose that the rational preference relation \succeq on X is continuous and monotone. Then there exists continuous utility function u(x) that represents \succeq , i.e., $u(x) \ge u(y)$ if and only if $x \succeq y$.

Remark. u(x) is not unique, any increasing transformation v(x) = f(u(x)) will represent \succeq . We can also introduce countably many jumps in $f(\cdot)$.

Assumptions of differentiability of u(x)

The assumption of differentiability is commonly adopted for technical convenience, but is not applicable to all useful models.

Assumptions of differentiability of u(x)

Here is an example of preference that is not differentiable.

Example (Leontief Preference). $x \succeq y$ if and only if $\min\{x_1, x_2\} \ge x$

Implications of \succeq and u

(i) \succeq is convex $\iff u: X \to \mathbb{R}$ is quasi-concave.

(ii) continuous \succeq on \mathbb{R}^L_+ is homothetic $\iff \exists H.D.1 \ u(x)$

(iii) continuous \succeq on $(-\infty, \infty) \times \mathbb{R}^{L-1}_+$ is quasilinear with respect to Good 1 $\iff \exists u(x) = x_1 + \phi(x_2, ..., x_L)^1$

¹In (i), all utility functions representing \gtrsim are quasiconcave; whereas (ii) and (iii) merely say that there exists at least one utility function that has the specific form. 24

Quasiconcave Utility

Definition. The utility function $u(\cdot)$ is *quasiconcave* if the set $\{y \in \mathbb{R}^L_+ : u(y) \ge u(x)\}$ is convex for all x or, equivalently, if $u(\alpha x + (1 - \alpha)y) \ge \min\{u(x), u(y)\}$ for all x, y and all $\alpha \in [0, 1]$. If $u(\alpha x + (1 - \alpha)y) > \min\{u(x), u(y)\}$ for $x \ne y$ and $\alpha \in (0, 1)$, then $u(\cdot)$ is *strictly quasiconcave*.

3.D. Utility Maximization Problem (UMP)

Assume throughout that preference is rational, continuous, lo-

cally nonsatiated, and u(x) continuous.

Consumer's Utility Maximization Problem (UMP):

$$\max_{x \in \mathbb{R}^L_+} u(x)$$

s.t.
$$p \cdot x \leq w$$

Existence of Solution

Proposition 3.D.1. If $p \gg 0$ and $u(\cdot)$ is continuous, then the

utility maximization problem has a solution.

Existence of Solution

Here, we provide two counter examples where the solution of UMP does not exists.

Counter Examples.

(i)
$$B_{p,w}$$
 is not closed: $p \cdot x < w$

(ii) u(x) is not continuous:

$$u(x) = \begin{cases} p \cdot x & \text{ for } p \cdot x < w \\ 0 & \text{ for } p \cdot x = w \end{cases}$$

Walrasian demand correspondence/functions

The solution of UMP, denoted by x(p, w), is called *Walrasian* (or ordinary or market) demand correspondence. When x(p, w) is single valued for all (p, w), we refer to it as *Walrasian* (or ordinary or market) demand function.

Walrasian demand correspondence/functions

Properties of Walrasian demand correspondence

Proposition 3.D.2. Suppose that u(x) is a continuous utility function representing a locally nonsatiated preference relation \succeq defined on the consumption set $X = \mathbb{R}^L_+$. Then the Walrasian demand correspondence x(p, w) possesses the following properties:

(i) Homogeneity of degree zero in (p, w) : $x(\alpha p, \alpha w) = x(p, w)$ for any p, w and scalar $\alpha > 0$.

(ii) Walras' Law: $p \cdot x = w$ for all $x \in x(p, w)$.

Properties of Walrasian demand correspondence

Proposition 3.D.2 (continued).

(iii) Convexity/uniqueness: If \succeq is convex, so that $u(\cdot)$ is quasiconcave, then x(p, w) is a convex set. Moreover, if \succeq is strictly convex, so that $u(\cdot)$ is strictly quasiconcave, then x(p, w) consists of a single element.

We will take a break to review some mathematical results before proceeding with this Chapter.