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3.D. Utility Maximization Problem (UMP)

(Continued)

We return to Chapter 3, specifically, p.53 of Section 3.D.

The utility maximization problem:

max
x∈RL

u(x)

s.t.
L!

l=1
pl · xl = p · x ≤ w,

xl ≥ 0 for all l = 1, ..., L.
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Utility Maximization Problem (UMP)

• Lagrange Function:

L(x, λ) = u(x) − λ(p · x − w).

• Kuhn-Tucker conditions
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Interior Solution

∇u(x∗) = λp. (3.D.4)
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Interior Solution

For any two goods l and k, we have

∂u(x∗)/∂xl

∂u(x∗)/∂xk

= pl

pk

. (3.D.5)

∂u(x∗)/∂xl

∂u(x∗)/∂xk
is the marginal rate of substitution of good l for good

k at x∗, MRSlk(x∗).
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Boundary Solution

• ∂u(x∗)/∂xl ≤ λpl for those l with x∗
l = 0;

• ∂u(x∗)/∂xl = λpl for those l with x∗
l > 0.
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The constraint p · x ≤ w.

• If p · x = w, then λ measures the marginal, or shadow,

value of relaxing the constraint p · x = w, or the con-

sumer’s marginal utility of wealth.

• If p · x < w, then the budget constraint is not binding. In

this case, relaxing the budget doesn’t increase utility, so

λ = 0.
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Utility Maximization Problem

Example 3.D.1. Derive Walrasian Demand Function for Cobb-

Douglas Utility Function: u(x1, x2) = xα
1 x1−α

2 .
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Indirect Utility Function

For each (p, w) ≫ 0, the utility value of UMP (i.e., u(x∗))

is denoted v(p, w) ∈ R. v(p, w) is called the indirect utility

function.
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Indirect Utility Function

Example 3.D.2. Derive the indirect utility function for Cobb-

Douglas Utility Function: u(x1, x2) = xα
1 x1−α

2 .
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Indirect Utility Function

Proposition 3.D.3. Suppose that u(·) is a continuous utility

function representing a locally nonsatiated preference relation

! defined on the consumption set X = RL
+. v(p, w) is

(i) Homogeneous of degree zero.

(ii) Strictly increasing in w and nonincreasing in pl for any l.

(iii) Quansiconvex; that is, the set {(p, w) : v(p, w) ≤ v̄} is

convex for any v̄.

(iv) Continuous in p ≫ 0 and w. 11



3.E. Expenditure Minimization Problem

(EMP)

The expenditure minimization problem:

min
x∈RL

p · x

s.t. u(x) ≥ u & x ≥ 0.

The problem is equivalent to

max
x∈RL

− p · x

s.t. − u(x) ≤ −u & x ≥ 0.
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Expenditure Minimization Problem

• Lagrange Function:

L(x, λ) = −p · x − λ(−u(x) + u)

• Kuhn-Tucker conditions
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UMP and EMP

• UMP computes the maximal level of utility that can be

obtained given wealth w.

• EMP computes the minimal level of wealth required to

reach utility level u.

• The two problems are “dual” problems: they capture the

same aim of efficient use of consumer’s purchasing power.
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UMP and EMP

Proposition 3.E.1. Suppose u(·) is a continuous utility func-

tion representing a locally nonsatiated preference relation ! de-

fined on the consumption set X = RL
+ and that the price vector

is p ≫ 0. We have

(i) If x∗ is optimal in the UMP when wealth is w > 0, then x∗

is optimal in the EMP when the required utility is u(x∗).

Moreover, the minimized expenditure in the EMP is w.
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UMP and EMP

Proposition 3.E.1 (continued).

(ii) If x∗ is optimal in the EMP when the required utility level

is u > u(0), then x∗ is optimal in the UMP when wealth

is p · x∗. Moreover, the maximized utility in the UMP is

u. (*No excess utility)
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The Expenditure Function

Let x∗ be the/a solution to the EMP. Then p·x∗ is the minimized

expenditure. Let this be called the Expenditure Function and

denoted by e(p, u).
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The Expenditure Function

Proposition 3.E.2. Suppose that u(·) is a continuous utility

representing a locally nonsatiated preference relation ! defined

on the consumption set X = RL
+. e(p, u) is

(i) Homogeneous of degree one in p.

(ii) Strictly increasing in u and nondecreasing in pl for all l.

(iii) Concave in p, i.e., αe(p, u) + (1 − α)e(p′, u) ≤ e(αp +

(1 − α)p′, u).

(iv) Continuous in p ≫ 0 and u. 18



Intuition of Concavity of e(p, u).
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Relationship between e(p, u) and v(p, w)

e(p, v(p, w)) = w and v(p, e(p, u)) = u (3.E.1)
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Hicksian (or Compensated) Demand Function

• The optimal bundle in EMP is denoted as h(p, u) ⊂ RL
+

and is called the Hicksian (or Compensated) demand func-

tion/ correspondence.

• As prices vary, h(p, u) gives the level of demand that

would arise if the consumer’s wealth were simultaneously

adjusted to keep her utility level at u.

• This type of wealth compensation is called Hicksian wealth

compensation.
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Hicksian (or Compensated) Demand Function
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Hicksian (or Compensated) Demand Function

Proposition 3.E.3. Suppose that u(·) is a continuous utility

function representing a locally nonsatiated preference relation !

defined on X = RL
+. Then for any p ≫ 0, the Hicksian demand

correspondence h(p, u) (i.e., expenditure minimizing demand)

possesses the following properties:

(i) Homogeneity of degree zero in p: h(αp, u) = h(p, u) for

all p, u and α > 0.

(ii) No excess utility: For any x ∈ h(p, u), u(x) = u.
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Hicksian (or Compensated) Demand Function

Proposition 3.E.3 (continued).

(iii) Convexity/uniqueness: If ! is convex, then h(p, u) is a

convex set; and if ! is strictly convex, then there is a

unique element in h(p, u).
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Hicksian and Walrasian demand

h(p, u) = x(p, e(p, u)) and x(p, w) = h(p, v(p, w))

(3.E.4)
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Hicksian Demand and the Compensated Law of Demand

Proposition 3.E.4. Suppose that u(·) is a continuous utility

function representing a locally nonsatiated preference relation !

and that h(p, u) consists of a single element for all p ≫ 0. Then

the Hicksian demand function h(p, u) satisfies the compensated

law of demand: for all p′ and p′′,

(p′′ − p′) · [h(p′′, u) − h(p′.u)] ≤ 0. (3.E.5)
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Hicksian Demand and Expenditure Function

Example 3.E.1. Suppose p ≫ 0 and u > 0. Derive the Hick-

sian Demand and Expenditure Functions for Cobb-Douglas Util-

ity Function: u(x1, x2) = xα
1 x1−α

2 .
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3.G. Relationships between Demand, Indirect

Utility, and Expenditure Functions

This section concern three relationships:

• Hicksian Demand Function & Expenditure Function;

• Hicksian & Walrasian Demand Functions;

• Walrasian Demand Function & Indirect Utility Function.

28



Hicksian Demand and Expenditure Function

Proposition 3.G.1. Suppose that u(·) is continuous, represent-

ing locally nonsatiated and strictly convex preference relation !

defined on X = RL
+. For all p and u,

h(p, u) = ∇pe(p, u).

• We will introduce a useful mathematical result called the

Envelope Theorem.
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Hicksian Demand and Expenditure Function

Example. Verify h(p, u) = ∇pe(p, u) for Cobb-Douglas Utility

Function: u(x1, x2) = xα
1 x1−α

2 .
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Hicksian Demand

Proposition 3.G.2. Suppose u(·) is continuous utility function

representing a locally nonsatiated and strictly convex ! on X =

RL
+. Suppose h(p, u) is continuously differentiable at (p, u), and

denote the L × L derivative matrix by Dph(p, u). Then

(i) Dph(p, u) = D2
pe(p, u).

(ii) Dph(p, u) is negative semidefinite.

(iii) Dph(p, u) is symmetric.

(iv) Dph(p, u)p = 0. 31



Hicksian Demand

Remark 1. Negative semidefiniteness of Dph(p, u) is the differ-

ential analog of compensated law of demand (3.E.5).

Remark 2. Symmetry of Dph(p, u) is not obvious at all ex ante.

It’s only obvious after we know that h(p, u) = ∇pe(p, u).

Remark 3. Two goods l and k are called substitutes at (p, u)

if ∂hl(p,u)
∂pk

≥ 0; and complements at (p, u) if ∂hl(p,u)
∂pk

≤ 0. Since
∂hl(p,u)

∂pl
≤ 0, there must exist a good k such that ∂hl(p,u)

∂pk
≥ 0;

that is, every good has at least one substitute.
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Hicksian and Walrasian Demand Functions

Proposition 3.G.3 (The Slutsky Equation). Suppose that u(·)

is a continuous utility function representing a locally nonsatiated

and strictly convex ! on X = RL
+. Then for all (p, w), and

u = v(p, w), we have

For all l, k,

∂hl(p, u)
∂pk

= ∂xl(p, w)
∂pk

+ ∂xl(p, w)
∂w

xk(p, w)

or

Dph(p, u) = Dpx(p, w) + Dwx(p, w)x(p, w)T
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Hicksian and Walrasian Demand Functions

Remark. Recall,

• Slutsky compensation: ∆wSlutsky = p′ · x(p̄, w̄) − w̄;

• Hicksian Compensation: ∆wHicksian = e(p′, ū) − w̄.

In general, ∆wHicksian ≤ ∆wSlutsky. We have just shown that for

a differential change in price, Slutsky and Hicksian compensa-

tions are identical. This observation is useful because the RHS

terms are directly observable.
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Hicksian and Walrasian Demand Functions

Example. Verify the Slutsky equation for Cobb-Douglas Utility

Function: u(x1, x2) = xα
1 x1−α

2 .
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Walrasian Demand and Indirect Utility Function

Proposition 3.G.4 (Roy’s Identity). Suppose that u(·) is A

continuous utility function representing a locally nonsatiated

and strictly convex ! on X = RL
+. Suppose also that the indi-

rect utility function is differentiable at (p̄, w̄) ≫ 0.

Then

x(p̄, w̄) = − 1
∇wv(p̄, w̄)∇pv(p̄, w̄)

i.e., for every l = 1, ..., L :

xl(p̄, w̄) = −∂v(p̄, w̄)/∂pl

∂v(p̄, w̄)/∂w
.
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Walrasian Demand and Indirect Utility Function

Example. Verify Roy’s identity for Cobb-Douglas Utility Func-

tion: u(x1, x2) = xα
1 x1−α

2 .
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Summary
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