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3.D. Utility Maximization Problem (UMP)

(Continued)

We return to Chapter 3, specifically, p.53 of Section 3.D.

The utility maximization problem:

ma ()

L
s.t. Zpl-:cl:p‘x < w,
=1

rp>0foralll=1,..., L.



Utility Maximization Problem (UMP)

e Lagrange Function:

L(x,\) =u(x) = Ap- -z —w).

e Kuhn-Tucker conditions



Interior Solution

Vu(z®) = Ap. (3.D.4)
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Interior Solution

For any two goods [ and k, we have

u(z)/0x1
Du(e)0ns i (3.D.5)

% is the marginal rate of substitution of good | for good

k at x*, MRSlk(l‘*)



Boundary Solution
e Ju(x*)/0x; < Ap, for those [ with z; = 0;
e Ju(z*)/0x; = Ap, for those | with z; > 0.

X2 Slope = —MRS;5(x")
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The constraint p -z < w.

e If p- z = w, then A measures the marginal, or shadow,
value of relaxing the constraint p - z = w, or the con-

sumer's marginal utility of wealth.

e If p-x < w, then the budget constraint is not binding. In
this case, relaxing the budget doesn’t increase utility, so

A=0.



Utility Maximization Problem

Example 3.D.1. Derive Walrasian Demand Function for Cobb-

Douglas Utility Function: u(x;, 79) = x¢wy .



Indirect Utility Function
For each (p,w) > 0, the utility value of UMP (i.e., u(z"))
is denoted v(p,w) € R. wv(p,w) is called the indirect utility

function.



Indirect Utility Function

Example 3.D.2. Derive the indirect utility function for Cobb-

Douglas Utility Function: u(x;, 79) = x¢wy .
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Indirect Utility Function

Proposition 3.D.3. Suppose that u(-) is a continuous utility
function representing a locally nonsatiated preference relation

7 defined on the consumption set X = R%. v(p,w) is

(i) Homogeneous of degree zero.
(ii) Strictly increasing in w and nonincreasing in p; for any 1.

(iii) Quansiconvex; that is, the set {(p,w) : v(p,w) < v} is

convex for any v.

(iv) Continuous in p > 0 and w. 11



3.E. Expenditure Minimization Problem

(EMP)

The expenditure minimization problem:

The problem is equivalent to

max —p- T
zeRL

st. —u(z)<—-u & x>0
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Expenditure Minimization Problem
e Lagrange Function:
L(z,\)=—p- -z — \N—u(x)+u)

e Kuhn-Tucker conditions

13



UMP and EMP

e UMP computes the maximal level of utility that can be

obtained given wealth w.

e EMP computes the minimal level of wealth required to

reach utility level u.

e The two problems are “dual” problems: they capture the

same aim of efficient use of consumer’s purchasing power.
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UMP and EMP

Proposition 3.E.1. Suppose u(-) is a continuous utility func-
tion representing a locally nonsatiated preference relation 7~ de-
fined on the consumption set X = R% and that the price vector

is p > 0. We have

(i) If x* is optimal in the UMP when wealth is w > 0, then x*
is optimal in the EMP when the required utility is u(z*).

Moreover, the minimized expenditure in the EMP is w.

15



UMP and EMP
Proposition 3.E.1 (continued).

(ii) If z* is optimal in the EMP when the required utility level
is u > u(0), then x* is optimal in the UMP when wealth
is p - x*. Moreover, the maximized utility in the UMP is

u. (*No excess utility)
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The Expenditure Function
Let 2* be the/a solution to the EMP. Then p-z* is the minimized
expenditure. Let this be called the Expenditure Function and

denoted by e(p, u).
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The Expenditure Function

Proposition 3.E.2. Suppose that u(-) is a continuous utility
representing a locally nonsatiated preference relation 7~ defined

on the consumption set X = R . e(p,u) is

(i) Homogeneous of degree one in p.
(ii) Strictly increasing in u and nondecreasing in p; for all [.

(i) Concave in p, ie., ae(p,u) + (1 — a)e(p/,u) < e(ap +

(1—a)p,u).

(iv) Continuous in p > 0 and u. 18



Intuition of Concavity of e(p, u).

Cost saving by
adjusting
consumption

/
/
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Relationship between ¢(p,u) and v(p, w)

e(p,v(p,w)) =w and  w(p,e(p,u)) =u

(3.E.1)
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Hicksian (or Compensated) Demand Function

e The optimal bundle in EMP is denoted as h(p,u) C ]Ri
and is called the Hicksian (or Compensated) demand func-

tion/ correspondence.

e As prices vary, h(p,u) gives the level of demand that
would arise if the consumer’s wealth were simultaneously

adjusted to keep her utility level at u.

e This type of wealth compensation is called Hicksian wealth

compensation.
21



Hicksian (or Compensated) Demand Function

Slutsky compensation
Hicksian compensation

{x € R2:u(x) = u}
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Hicksian (or Compensated) Demand Function

Proposition 3.E.3. Suppose that u(-) is a continuous utility
function representing a locally nonsatiated preference relation -,
defined on X = ]Ri. Then for any p > 0, the Hicksian demand
correspondence h(p,u) (i.e., expenditure minimizing demand)

possesses the following properties:

(i) Homogeneity of degree zero in p: h(ap,u) = h(p,u) for

all p,u and o > 0.

(ii) No excess utility: For any x € h(p,u), u(z) = u. ’3



Hicksian (or Compensated) Demand Function
Proposition 3.E.3 (continued).

(i) Convexity/uniqueness: If 7 is convex, then h(p,u) is a
convex set; and if 7~ is strictly convex, then there is a

unique element in h(p,u).
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Hicksian and Walrasian demand

h(p,u) = z(p,e(p,u)) and z(p,w) = h(p,v(p,w))
(3.E.4)
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Hicksian Demand and the Compensated Law of Demand

Proposition 3.E.4. Suppose that u(-) is a continuous utility
function representing a locally nonsatiated preference relation -,
and that h(p,u) consists of a single element for all p > 0. Then
the Hicksian demand function h(p, ) satisfies the compensated

law of demand: for all p’ and p”,

(p" = p) - [h(p", u) = h(p"w)] 0. (3.E.5)
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Hicksian Demand and Expenditure Function

Example 3.E.1. Suppose p > 0 and u > 0. Derive the Hick-
sian Demand and Expenditure Functions for Cobb-Douglas Util-

. . _ 1—a
ity Function: u(zq,22) = 223 *.
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3.G. Relationships between Demand, Indirect

Utility, and Expenditure Functions

This section concern three relationships:
e Hicksian Demand Function & Expenditure Function;
e Hicksian & Walrasian Demand Functions;

e Walrasian Demand Function & Indirect Utility Function.
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Hicksian Demand and Expenditure Function

Proposition 3.G.1. Suppose that u(-) is continuous, represent-
ing locally nonsatiated and strictly convex preference relation -

defined on X = R%. For all p and u,

h(p,u) = Vye(p,u).

e We will introduce a useful mathematical result called the

Envelope Theorem.
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Hicksian Demand and Expenditure Function

Example. Verify h(p,u) = V,e(p,u) for Cobb-Douglas Utility

H . _ 11—«
Function: u(zq,x2) = x{as *.
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Hicksian Demand

Proposition 3.G.2. Suppose u(-) is continuous utility function
representing a locally nonsatiated and strictly convex -, on X =
RL. Suppose h(p,u) is continuously differentiable at (p,w), and

denote the L x L derivative matrix by D,h(p,w). Then
(i) Dph(p,u) = Dje(p, u).
(ii) D,h(p, ) is negative semidefinite.
(iii) Dyh(p,u) is symmetric.

(iv) Dyh(p,u)p = 0. 31



Hicksian Demand

Remark 1. Negative semidefiniteness of D,h(p,u) is the differ-

ential analog of compensated law of demand (3.E.5).

Remark 2. Symmetry of D,h(p, ) is not obvious at all ex ante.

It's only obvious after we know that h(p,u) = V,e(p, u).

Remark 3. Two goods [ and k are called substitutes at (p,u)

if 8hl(”’ ) > 0; and complements at (p,u) if M < 0. Since

Ohy(p,u)

op— = 0, there must exist a good k such that 8hl(p’ ) > 0;

that is, every good has at least one substitute.
32



Hicksian and Walrasian Demand Functions

Proposition 3.G.3 (The Slutsky Equation). Suppose that u(-)
is a continuous utility function representing a locally nonsatiated
and strictly convex 7, on X = RE. Then for all (p,w), and
u = v(p,w), we have

For all I, k,

ahl(pa U) _ a$l<p7w) + axl(paw)
Opr Opr ow

Ik(pv w)

or

D,h(p,u) = Dpx(p, w) + Dyx(p,w)z(p, w)”
33



Hicksian and Walrasian Demand Functions

Remark. Recall,

e Slutsky compensation: Awsjysky = p' - 2(p, w) — w;

e Hicksian Compensation: Awyicksian = €(p', @) — w.

In general, Awhicksian < Awsiyesky. We have just shown that for
a differential change in price, Slutsky and Hicksian compensa-
tions are identical. This observation is useful because the RHS

terms are directly observable.
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Hicksian and Walrasian Demand Functions

Example. Verify the Slutsky equation for Cobb-Douglas Utility

H . _ 11—«
Function: u(zq,x2) = x{as *.
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Walrasian Demand and Indirect Utility Function

Proposition 3.G.4 (Roy's Identity). Suppose that u(-) is A
continuous utility function representing a locally nonsatiated
and strictly convex 7, on X = R%. Suppose also that the indi-
rect utility function is differentiable at (p,w) > 0.

Then

o 1 o
z(p, w) = —vav(p,w)

i.e., foreveryl=1,....L:

_ —81)(]7, )/8]?[
u(p,w) = ov(p,w)/ow
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Walrasian Demand and Indirect Utility Function

Example. Verify Roy's identity for Cobb-Douglas Utility Func-

tion: u(zy, z9) = x¢ws %
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Summary

umMp

“DUAL” Problems

Roy’s
Identity

v(p,w)

Proposition 3.E.1

Slutsky Equation

e(p,v(p,w)) =w

EMP

h(p,w)

h(p,u) =
Me(p,u)

v(p,e(pw) = u

e(p,u)
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