
Advanced Microeconomics

Chapter 5. Production

5.A. Introduction

In this chapter, we study the supply side of the economy. In particular, we study

how goods and services are produced by “firms”. Here, we view firms as “black boxes”,

transforming inputs into outputs. That is, we ignore the organizational structure within

the firms. Please note that this simplification is for the purpose of analyzing market

behavior. The study of organizational structure, witch falls outside of the scope of this

chapter, is also important and interesting.

5.B. Production Sets

• We consider an economy with L commodities.

• Production vector (including both inputs & outputs) y = (y1, ..., yL) ∈ RL

describes the (net) outputs.

– If yl > 0, l is an output;

– If yl ≤ 0, l is an input.

Example 5.B.1. Suppose that L = 5, Then y = (−5, 2, −6, 3, 0) means that

(a) 2 and 3 units of Good 2 and 4 are produced;

(b) 5 and 6 units of Good 1 and 3 are used;

(c) Good 5 is neither produced or used.

• The set of all production vectors that constitute technologically feasible plans is

called the production set Y ⊂ RL.

– Any y ∈ Y is feasible;

– Any y ∕∈ Y is not feasible.

• We can describe the production set Y by a transformation function F (·).

– The production set Y = {y ∈ RL : F (y) ≤ 0}.

– {y ∈ RL : F (y) = 0} is called the transformation frontier.
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• Figure 1 below presents the production function and transformation frontier for two

goods.

Figure 1: Production Function and Transformation Frontier

• Consider changes in y while staying on F (y) = 0. For such changes dy along the

frontier, we have dy · ∇F (y) = 0 .

• Suppose only yl & yk change.

dF (ȳ) = ∂F (ȳ)
∂yl

dyl + ∂F (ȳ)
∂yk

dyk = 0

⇐⇒ dyk

dyl

= − ∂F (ȳ)/∂yl

∂F (ȳ)/∂yk

= −MRTlk(ȳ).

MRTlk(ȳ) is called the marginal rate of transformation (MRT) of good l for good k

at ȳ.

Technologies with Distinct Inputs and Outputs

• Suppose there are M outputs and L − M inputs.

– let q = (q1, ..., qM) ≥ 0 denote the outputs.

– let z = (z1, ..., zL−M) ≥ 0 denote the inputs.

– e.g. (yL−M+1, ..., yL) = (q1, ..., qM); (y1, ..., yL−M) = −(z1, ..., zL−M).
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• Single-output technology

– Production function: f(z), where z = (z1, ..., zL−1) ≥ 0

– Output: q ≤ f(z)

– Production set:

Y = {(−z1, ..., −zL−1, q) : q − f(z1, ..., zL−1) ≤ 0 and (z1, ..., zL−1) ≥ 0}

• Holding the level of output fixed, we define Marginal Rate of Technological Substi-

tution (MRTS) of input l for input k at z̄ as follows:

MRTSlk(z̄) = ∂f(z̄)/∂zl

∂f(z̄)/∂zk

– MRTSlk(z̄) is the same as MRTlk(z̄, q̄), simply a renaming for the substitution

between inputs in a single-output case.

Example 5.B.2. Cobb-Douglas Production Function:

f(z1, z2) = zα
1 zβ

2 , where a ≥ 0, β ≥ 0. (f(z1, z2) : output, z1 : input 1, z2 : input 2.)

MRTS at z = (z1, z2) is

MRTS12(z) = ∂f(z1, z2)/∂z1

∂f(z1, z2)/∂z2
= αzα−1

1 zβ
2

βzα
1 zβ−1

2
= αz2

βz1
.

Remark. In percentage change terms
!

∂f(z1, z2)
∂z1

z1

f(z1, z2)

"# !
∂f(z1, z2)

∂z2

z2

f(z1, z2)

"

= αz2

βz1

z1

z2
= α

β
.

Commonly Assumed Properties of Production Sets

(i) Y is nonempty.

(ii) Y is closed. (technical)

(iii) No free lunch: If y ≥ 0, then y = 0. The idea is that no commodities can be created

out of thin air. Production of any commodity requires consumption of some other

commodities.

(iv) Possibility of inaction: 0 ∈ Y.
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(v) Free disposal: If y ∈ Y and y′ ≤ y, then y′ ∈ Y.

• Extra amount of inputs (or outputs) can be disposed at no cost.

(vi) Irreversibility: Suppose y ∈ Y and y ∕= 0, then −y ∕∈ Y.

• For example, One cannot effortlessly disassemble an iPad and turn it back into

its original parts in perfect condition.

• Figure 2 and Figure 3 below depict reversible and irreversible technology re-

spectively.

Figure 2: Reversible Technology Figure 3: Irreversible Technology

(vii) Nonincreasing returns to scale: y ∈ Y and α ∈ [0, 1] =⇒ αy ∈ Y.

• Smaller scale is more efficient: Half the inputs will get you more than half the

outputs.

Figure 4: Nonincreasing Returns to Scale Technology
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(viii) Nondecreasing returns to scale: y ∈ Y and α ≥ 1 =⇒ αy ∈ Y.

• Larger scale is more efficient. Double the inputs will get you more than double

the outputs.

Figure 5: Nondecreasing Returns to Scale Technology

(ix) Constant returns to scale (Cone): y ∈ Y and α ≥ 0 =⇒ αy ∈ Y.

Figure 6: CRS (2 commodities) Figure 7: CRS (3 commodities)

Exercise 5.B.2

Suppose that f(·) is the production function associated with a single-output tech-

nology, and let Y be the production set of this technology. Show that Y satisfies

constant returns to scale if and only if f(·) is homogeneous of degree one.
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(x) Additivity: Suppose y ∈ Y and y′ ∈ Y. Then y + y′ ∈ Y.

• Alternatively, Y + Y ⊂ Y .

• If y ∈ Y, then ky ∈ Y for all k ∈ Z.

• This captures an economy with free entry: Any existing technology can be

added to the existing technologies.

(xi) Convexity: y, y′ ∈ Y and α ∈ [0, 1] =⇒ αy + (1 − α)y′ ∈ Y.

• Convexity implies nonincreasing returns to scale: if inaction is possible (i.e.,

0 ∈ Y ), then convexity implies that for any α ∈ [0, 1], αy = αy +(1−α)0 ∈ Y .

• “Balanced” inputs (outputs) are weakly more productive (less costly) than

“unbalanced” ones.

Exercise 5.B.3
Show that for a single-output technology, Y is convex if and only if the production

function f(·) is concave.

(xii) Convex cone: Y is a convex cone if for any production vector y, y′ ∈ Y and constants

α ≥ 0 & β ≥ 0, we have αy + βy′ ∈ Y.

• Note that αy + βy′ can be written as γ[θy + (1 − θ)y′] for some γ ≥ 0 and

θ ∈ [0, 1].1 The convex combination between y and y′ captures the convex part

of the definition, and γ ≥ 0 captures the cone part of the definition.

• The production sets depicted in Figure 6 and Figure 7 are both convex cones.

Proposition 5.B.1. The production set Y is additive and satisfies the nonincreasing

returns condition if and only if it is a convex cone.

Proof.

1. “⇐=” part: Suppose Y is a convex cone. That is, for any y, y′ ∈ Y and α ≥ 0 &

β ≥ 0, we have αy + βy′ ∈ Y .

1More specifically, we could let γ = α + β and θ = α
α+β , we have (α + β)[ α

α+β y + β
α+β y′] ∈ Y.
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a) Let α = β = 1. Then, for any y, y′ ∈ Y , we have y + y′ ∈ Y . Therefore, Y is

additive.

b) Let β = 0 and α ∈ [0, 1]. Then, for any y ∈ Y and α ∈ [0, 1], we have αy ∈ Y .

Therefore, Y is nonincreasing returns to scale.

2. “=⇒” part: Consider any y, y′ ∈ Y and α ≥ 0, β ≥ 0.

• Let k ∈ Z such that k > max{α, β}. Then by additivity, ky ∈ Y and ky′ ∈ Y .

• Since α
k

< 1, by nonincreasing returns to scale, α
k
ky ∈ Y . That is, αy ∈ Y .

Similarly, βy′ ∈ Y .

• By additivity, αy + βy′ ∈ Y .

• Since for any y, y′ ∈ Y and α ≥ 0 & β ≥ 0, αy + βy′ ∈ Y , Y is a convex

cone.

Proposition 5.B.2. For any convex production set Y ⊂ RL with 0 ∈ Y, there is a

constant returns, convex production set Y ′ ⊂ RL+1 s.t. Y = {y ∈ RL : (y, −1) ∈ Y ′}.

Remark. Here “there exists” only means that there exists such an interpretation. It

doesn’t really mean that the technology necessarily exists.

Figure 8: Constant Returns Production Set

Proof. Let Y ′ = {y′ ∈ RL+1 : y′ = α(y, −1) for some y ∈ Y & α ≥ 0}. See Figure 8.

We now check that Y ′ is constant returns and convex.
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• Constant returns: We need to show that if y′ ∈ Y ′, then γy′ ∈ Y ′ for all γ ≥ 0.

y′ ∈ Y ′ means y′ = α(y, −1) where y ∈ Y and α ≥ 0, then for any γ ≥ 0, γy′ =

γα(y, −1) ∈ Y ′ since y ∈ Y and γα ≥ 0.

• Convexity: We need to show that if y′
1, y′

2 ∈ Y ′, β ∈ [0, 1], then βy′
1 +(1−β)y′

2 ∈ Y ′.

y′
1 ∈ Y ′ and y′

2 ∈ Y ′ mean y′
1 = α1(y1, −1) where y1 ∈ Y and α1 ≥ 0 and y′

2 =

α2(y2, −1) where y2 ∈ Y and α2 ≥ 0, then for any β ∈ [0, 1],

βy′
1 + (1 − β)y′

2 = βα1(y1, −1) + (1 − β)α2(y2, −1)

=[α1β + α2(1 − β)]
$

α1β

α1β + α2(1 − β)y1 + α2(1 − β)
α1β + α2(1 − β)y2, −1

%

∈ Y ′

since α1β
α1β+α2(1−β)y1+ α2(1−β)

α1β+α2(1−β)y2 ∈ Y (∵ Y is convex) and α1β+α2(1−β) ≥ 0.

Remark. Y is not constant returns to scale. But it can be the cross-section of a constant

returns to scale Y ′ ⊂ RL+1. In essence, the implication is that in a competitive, convex

setting, there may be little loss of conceptual generality in limiting to constant returns

technologies.

Remark (on the concept of production set). Production set is a description of technology.

So, if inputs (including good “L + 1”) are there, production should be scalable. In other

words, decreasing returns to scale observed in real life must be a reflection of scarcity of

inputs.

5.C. Profit Maximization and Cost Minimization

• L commodities, priced at p = (p1, ...pL) ≫ 0.

• Firm is price-taking.

• Firm’s objective is to maximize profit.

• Assume (i) nonemptiness, (ii) closedness, and (v) free disposal.
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Profit Maximization Problem

• Profit = p · y. This is because y includes both inputs (as negative) and outputs (as

positive). Besides, profit can come from multiple products.

• Profit maximization problem
max
y∈RL

p · y

s.t. y ∈ Y ( or F (y) ≤ 0)

Figure 9: Profit Maximization Problem

• In general, the profit maximization problem may have multiple solutions (y(p) is a

set rather than s single vector), or no solution.

• Lagrange Function:
L = p · y − λF (y)

• Kuhn-Tucker Conditions:2

∂L
∂yl

= pl − λ
∂F (y)

∂yl

= 0 for l = 1, .., L, or p = λ∇F (y∗) (1)

λ ≥ 0

λF (y) = 0

F (y) ≤ 0

2Suppose F (·) is differentiable.
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Claim. F (y) = 0.

Proof. If F (y) < 0, then ∃y′ ≫ y and F (y′) < 0. Since y′ is feasible and p·y′ > p·y,

it contradicts with the fact that y maximizes profit.

• Equation (1) implies pl

pk
= ∂F (y∗)/∂yl

∂F (y∗)/∂yk
= MRTlk(y∗).

• In the case of single-output production, profit = pf(z) − w · z where p > 0 is a

scalar, and w = (w1, ..., wL−1) ≫ 0 is a vector of input prices.

• The profit maximization problem for single-output production is

max
z≥0,q≥0

pq − w · z

s.t. q ≤ f(z)

Clearly, the constraint must hold in equality, since otherwise one can increase the

production scale q without violating the constraint and earn a higher profit. There-

fore, the above profit maximization problem could equivalently be written as

max
z≥0

pf(z) − w · z

Remark. Here z ≥ 0 is required but not in the previous configuration (y ∈ RL).

• Lagrange Function:

L = pf(z) − w · z

• Kuhn-Tucker Conditions:

p
∂f(z∗)

∂zl

− wl ≤ 0, with equality if z∗
l > 0, for l = 1, ..., L − 1. (2)

z∗ ≥ 0

Equation (2) is equivalent to p∇f(z∗) ≤ w and [p∇f(z∗) − w] · z∗ = 0.

• Suppose (z∗
l , z∗

k) ≫ 0. Then,

p
∂f(z∗)

∂zl

= wl and p
∂f(z∗)

∂zk

= wk

=⇒ wl

wk

= ∂f(z∗)/∂zl

∂f(z∗)/∂zk

= MRTSlk(z∗). (3)
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• Condition (3) can also be rewritten as

1
wl

∂f(z∗)
∂zl

= 1
wk

∂f(z∗)
∂zk

= marginal product of $1.

In other words, when profit is maximized, the marginal product of $ 1 of production

cost spent on each input should be equal. Or else the same production cost should

be spent on the input generating a higher marginal product per dollar. It is possible

input j generates lower marginal product per dollar than the rest because this input

is particularly ineffective. In that case, z∗
j must be zero. Note that the Kuhn-Tucker

conditions accommodate this.

• If the production set Y is convex, then the F.O.C in (1) and (2) are not only

necessary but also sufficient.

Exercise 5.C.9

Derive the profit function π(p) and supply function (or correspondence) y(p) for

the single-output technologies whose production functions f(z) are given by

(a) f(z) =
√

z1 + z2.

(b) f(z) =
&

min{z1, z2}.

(c) f(z) = (zρ
1 + zρ

2)1/ρ, for ρ ≤ 1.

Mathematical Appendix: Separating Hyperplane Theorem Now we need to visit the

Mathematical Appendix to retrieve a result that we’ll use to prove our next proposition

for this chapter.

Theorem M.G.2 (Separating Hyperplane Theorem (Part I)). Suppose that B ⊂ RN is

convex and closed, and that y ∕∈ B. Then there is a p ∈ RN with p ∕= 0, and a value c ∈ R

such that p · y > c and p · x < c for every x ∈ B.

Proof. For any z ∈ RN and z ∕= y, define p = y − z. First, p · y > p · z because

p · (y − z) = ‖y − z‖2 > 0. Let c = p ·
'

y+z
2

(
so that p · y > c > p · z.
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Suppose z = arg minx∈B ‖y − x‖2. (see Figure 10) Consider an arbitrary x ∈ B.

‖z − y‖2 ≤ ‖(1 − λ) z + λx − y‖2 = ‖(1 − λ) (z − y) + λ (x − y)‖2

= (1 − λ)2 ‖z − y‖2 + λ2 ‖x − y‖2 + 2 (1 − λ) λ (z − y) · (x − y)

=⇒ 0 ≤ λ (λ − 2) ‖z − y‖2 + λ2 ‖x − y‖2 + 2 (1 − λ) λ (z − y) · (x − y)

=⇒ 0 ≤ (λ − 2) ‖z − y‖2 + λ ‖x − y‖2 + 2 (1 − λ) (z − y) · (x − y)

Taking limit, letting λ go to zero,

0 ≤ −2 (z − y) · (z − y) + 2 (z − y) · (x − y)

0 ≤ 2 (z − y) · (x − z) = −2p · (x − z)

p · z ≥ p · x.

Therefore, p · y > c > p · z ≥ p · x for all x ∈ B.

Figure 10: Seperating Hyperplane

Proposition 5.C.1. Suppose π(·) is the profit function of the production set Y and that

y(·) is the associated supply correspondence. Assume also that Y is closed and satisfies

the free disposal property. Then,

(i) π(·) is homogeneous of degree one.

(ii) π(·) is convex.
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(iii) If Y is convex, then Y = {y ∈ RL : p · y ≤ π(p) for all p ≫ 0}.

(iv) y(·) is homogeneous of degree zero.

(v) If Y is convex, then y(p) is a convex set for all p. Moreover, if Y is strictly convex,

then y(p) is single-valued (if nonempty).

(vi) (Hotelling’s lemma) If y(p̄) consists of a single point, then π(·) is differentiable at

p̄ and ∇π(p̄) = y(p̄).

(vii) If y(·) is a function differentiable at p̄, then Dy(p̄) = D2π(p̄) is a symmetric and

positive semidefinite matrix with Dy(p̄)p̄ = 0.

Proof.

(i) & (iv) The solution to

max
y∈RL

αp · y

s.t. y ∈ Y

and
max
y∈RL

p · y

s.t. y ∈ Y

are identical. Therefore, y (αp) = y (p). This proves (iv).

Next, π(αp) = (αp) · y(αp) = αp · y(p) = απ(p). This proves (i).

(ii) π(p) = p · y(p) ≥ p · ỹ for any ỹ ∈ Y. π(p′) = p′ · y(p′) ≥ p′ · ỹ for any ỹ ∈ Y.

π(αp + (1 − α)p′) = [αp + (1 − α)p′] · y(αp + (1 − α)p′)

= αp · y(αp + (1 − α)p′) + (1 − α)p′ · y(αp + (1 − α)p′)

≤ αp · y(p) + (1 − α)p′ · y(p′)

= απ(p) + (1 − α)π(p′)

Therefore, π(·) is convex.
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Intuition: Consider the scenario in which the price is uncertain; with probability

α it is p and with probability (1 − α) it is p′. If the firm chooses output under this

uncertainty, its output is y (αp + (1 − α)p′) and profit is π(αp + (1 − α)p′). The

result is same as when the price is fixed at αp + (1 − α)p′. It is intuitive that the

firm’s profit would be higher if it gets to know the realization of the price before

choosing y. In that case, its expected profit is απ(p) + (1 − α)π(p′).

(iii) If Y is convex and closed, then by Theorem M.G.2 Separating Hyperplane Theorem

(Part I), ∀x ∕∈ Y, there exists p ∕= 0 s.t. p · x > p · y for all y ∈ Y.

Note that π (p) = p · y∗ ≥ p · y for some y∗ ∈ Y and for all y ∈ Y . Therefore,

p · x > π (p) ≥ p · y.

Now we establish that p ≥ 0. Suppose pl < 0 for some l. Then by free disposal,

y − θel ∈ Y for any θ > 0. This implies that an arbitrarily large profit can be

achieved by choosing θ sufficiently large. This contradicts p · x > p · (y − θel).

Next, we argue that it is without loss of generality to focus on p ≫ 0. Suppose

pl = 0 for some l. Then there exists α > 0 sufficiently small such that (p + αel) ·x >

π (p + αel) ≥ (p + αel) · y for all y ∈ Y .3 Now the new price vector p′ = p + αel

satisfies p′
l = pl + αel > 0. We could apply the same procedure for all pl = 0. The

resulting price vector satisfies p̃ ≫ 0.

We have proved that each x ∕∈ Y (no matter how close to Y ) is excluded from the

half space p · y ≤ π(p) for some p ≫ 0. Then the intersection of such half spaces

for all p ≫ 0 excludes all x ∕∈ Y. However, all such half spaces include Y so their

intersection also includes Y.

Therefore, Y = {y ∈ RL : p · y ≤ π(p) for all p ≫ 0}.

(v) Suppose y, y′ ∈ y(p) ⊂ Y. Then,

p · y = p · y′ = π(p) and F (y) ≤ 0, F (y′) ≤ 0

=⇒p · (αy + (1 − α)y′) = αp · y + (1 − α)p · y′ = π(p), ∀α ∈ [0, 1]

3The first inequality follows from continuity of π(·) and the second inequality follows from the defini-
tion of π(·).
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Convexity of Y implies αy + (1 − α)y′ ∈ Y. Therefore, y(p) is convex.

Suppose Y is strictly convex. Consider y, y′ ∈ y(p) and y ∕= y′. Then, F (αy +

(1 − α)y′) < 0 for α ∈ (0, 1). Then, ∃ y′′ ≫ αy + (1 − α)y′ s.t. F (y′′) ≤ 0, and

p · y′′ > p · (αy + (1 − α)y′) = αp · y + (1 − α)p · y′ = π(p).

This contradicts the definition of π(p).

(vi) Proof of differentiability of π(p) is skipped.

The profit maximization problem could be written as

max
y∈RL

p · y

s.t. F (y) = 0

The maximized profit is π(p) = p · y∗, where y∗ is the solution to the problem.

Lagrange Function:
L(y, λ) = p · y − λF (y) .

By Envelope Theorem,

∂(π(p̄))
∂pl

= ∂L(y∗, λ∗, p̄)
∂pl

= y∗
l = yl(p̄).

In matrix notation, ∇π(p̄) = y(p̄).

(vii) • Dy(p̄) = D2π(p̄) follows (vi) directly.

• Symmetry of D2π(p̄) is also standard for π(p) being C2 [Schwarz’ theorem].

• Positive semidefiniteness follows from π(p) being convex (ii). Taylor expansion:

π(p + αz) = π(p) + ∇π(p) · (az) + 1
2(αz)D2π(p + βz)(αz) for some β ∈ [0, α].

=⇒ α2

2 zT D2π(p + βz)z = π(p + αz) − π(p) − ∇π(p) · (az) ≥ 0 (∵ π is convex.)

This holds true for α, β arbitrarily small.

=⇒ zT D2π(p)z ≥ 0.

• By (iv), y(αp) = y(p) (H.D.∅).

Differentiating both sides of the equation by α gives: Dy(αp)p = 0.

Setting α = 1, we have Dy(p)p = 0.
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Remark. ∕ ∃ budget constraint, so no “income” effect associated with price change.

Law of Supply

Claim. (p − p′) · (y − y′) ≥ 0 [That is, dp · dy = dpT Dydp ≥ 0]

Proof. (p − p′) · (y − y′) = (p · y − p · y′) + (p′ · y′ − p′ · y) ≥ 0.

Cost Minimization

• Cost minimization is necessary (but not sufficient) for profit maximization.

• We focus on single-output production.

• Cost Minimization Problem (CMP):

min
z≥0

w · z

s.t. f(z) ≥ q
≡

max
z≥0

− w · z

s.t. − f(z) ≤ −q

Figure 11: CMP for Single-output Production

• Let z(w, q) denote the solution of CMP, c(w, q) denote the minimized cost, or

the cost function. z(w, q) is known as the conditional factor demand function or

correspondence.

• Lagrange Function:

L = (−w · z) − λ(−f(z) + q)
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• Kuhn-Tucker Conditions:

− wl + λ
∂f(z∗)

∂zl

≤ 0 ⇐⇒ wl ≥ λ
∂f(z∗)

∂zl

, with equality if z∗
l > 0 (4)

λ ≥ 0

λ(−f(z) + q) = 0

− f(z) ≤ −q

z ≥ 0

• Equation (4) is equivalent to w ≥ λ∇f(z∗) and [w − λ∇f(z∗)] · z∗ = 0.

• For any l, k with (zl, zk) ≫ 0, we have

wl

wk

= ∂f(z∗)/∂zl

∂f(z∗)/∂zk

= MRTSlk

• λ measures ∂c(w, q)/∂q, or the marginal cost of production.

• As with Profit Maximization Problem, if the production set Y is convex, then

F.O.C. (Equation (4)) is not only necessary but also sufficient for z∗ to be an

optimum in Cost Minimization Problem.

Proposition 5.C.2. Suppose that c(w, q) is the cost function of a single-output technol-

ogy Y with production function f(·) and that z(w, q) is the associated conditional factor

demand correspondence. Assume also that Y is closed and satisfies the free disposal prop-

erty. Then,

(i) c(·) is homogeneous of degree one in w and nondecreasing in q.

(ii) c(·) is a concave function of w.

(iii) If the sets {z ≥ 0 : f(z) ≥ q} are convex for every q, then Y = {(−z, q) : w · z ≥

c(w, q) for all w ≫ 0}.

(iv) z(·) is homogeneous of degree zero in w.

(v) If the set {z ≥ 0 : f(z) ≥ q} is convex, then z(w, q) is a convex set. Moreover, if

{z ≥ 0 : f(z) ≥ q} is a strictly convex set, then z(w, q) is single-valued.
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(vi) (Shepard’s lemma) If z(w̄, q) consists of a single point, then c(·) is differentiable

with respect to w at w̄ and ∇wc(w̄, q) = z(w̄, q).

(vii) If z(·) is differentiable at w̄, then Dwz(w̄, q) = D2
wc(w̄, q) is symmetric and negative

semidefinite matrix with Dwz(w̄, q)w̄ = 0.

(viii) If f(·) is homogeneous of degree one (i.e., exhibits constant returns to scales), then

c(·) and z(·) are homogeneous of degree one in q.

(ix) If f(·) is concave, then c(·) is a convex function of q (in particular, marginal costs

are nondecreasing in q).

Remark. Note that cost minimization is very similar to expenditure minimization.

Proof.

(i) & (iv) The cost minimization problem

min
z≥0

αw · z

s.t. f(z) ≥ q
≡

min
z≥0

w · z

s.t. f(z) ≥ q

Therefore, z(αw, q) = z(w, q), or z(w, q) is H.D.∅ in w, which is (iv). For (i),

c(αw, q) = aw · z(αw, q) = aw · z(w, q) = αc(w, q).

Therefore, c(w, q) is H.D.1 in w.

Next, we prove that c(·) is nondecreasing in q (the second part of (i)).

Suppose q′′ > q′. Let the input price be w, and z′′ and z′ be the optimal input

bundles for output levels q′′ and q′ respectively.

Since f(z′′) ≥ q′′ > q′, definition of c(·) implies c(w, q′) ≤ w · z′′ = c(w, q′′).

(ii) To prove concavity in w, we need to show

c(αw + (1 − α)w′, q) ≥ αc(w, q) + (1 − α)c(w′, q) ∀α ∈ [0, 1].

18
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To see this,

c(αw + (1 − α)w′, q) = [αw + (1 − α)w′] · z(αw + (1 − α)w′, q)

= αw · z(αw + (1 − α)w′, q) + (1 − α)w′ · z(αw + (1 − α)w′, q)

≥ αw · z(w, q) + (1 − α)w′ · z(w′, q)

= αc(w, q) + (1 − α)c(w′, q)

=⇒ c(·) is concave in w.

(iii) Given that )Yq = {z ≥ 0 : f(z) ≥ q} is convex and closed, by Theorem M.G.2

Separating Hyperplane Theorem (Part I), ∀x ∕∈ )Yq, there exists w ∕= 0 s.t. w · x <

w · z, ∀z ∈ )Yq.

Note that c (w, q) = w · z∗ ≤ w · z for some z∗ ∈ )Yq and for all z ∈ )Yq. So

w · x < c (w, q) ≤ w · z.

Now, we show that w ≥ 0. Suppose wl < 0 for some l. In this case, by free disposal,

f (z + θel) ≥ q, so z + θel ∈ )Yq for θ > 0. For all x, there exists θ > 0 sufficiently

large such that w · (z + θel) < w · x. This contradicts w · x < w · z, ∀z ∈ )Yq.

Next, we argue that it is without loss of generality to restrict attention to w ≫ 0.

Suppose wl = 0 for some l. In this case, there exists α > 0 sufficiently small such

that (w + αel) · x < (w + αel) · z for all z ∈ )Yq.

Since every x ∕∈ Yq is excluded by some half space w·z ≥ c(w, q) for some w ≫ 0, the

intersection of all such half spaces for all w ≫ 0 excludes all x ∕∈ Yq. On the other

hand, the intersection still covers )Yq. Therefore, )Yq = {z ∈ RL−1 : w · z ≥ c(w, q)

for all w ≫ 0}. Since yL = q and (y1, ..., yL−1) = −z, Y = {(−z, q) : w · z ≥ c(w, q)

for all w ≫ 0}.

(v) Suppose z1, z2 ∈ z(w, q). Then,

w · z1 = w · z2 = c(w, q) ≤ w · z, ∀z ∈ Yq ≡ {z ≥ 0 : f(z) ≥ q}

=⇒ w · (αz1 + (1 − α)z2) = αw · z1 + (1 − α)w · z2 = c(w, q).

Since Yq is convex, (αz1 + (1 − α)z2) ∈ Yq. Therefore, αz1 + (1 − α)z2 ∈ z(w, q).
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Suppose z1, z2 ∈ z(w, q) and z1 ∕= z2. If Yq is strictly convex, then f(αz1 + (1 −

α)z2) > q and there exists θ ∈ (0, 1) such that f(θ(αz1 + (1 − α)z2)) ≥ q and

w · θ(αz1 + (1 − α)z2) < c(w, q). This contradicts the definition of c(w, q).

(vi) Proof of differentiability of c (·) is skipped.

The Lagrange Function:

L(z, λ, w̄) = −w̄ · z − λ (−f (z) + q) .

By Envelope Theorem,

∂c(w̄, q)
∂wl

= ∂L(z∗, λ∗, w̄)
∂wl

= z∗
l = zl(w̄, q)

In matrix notation, ∇wc(w̄, q) = z(w̄, q).

(vii) • Dwz(w̄, q) = D2
wc(w̄, q) follows differentiability of z(·) and (vi) immediately.

• Symmetry of D2
wc(w̄, q) is standard for c(w̄, q) being C2 [Schwarz’ theorem].

• Positive semidefiniteness follows from c(w, q) being concave in w (ii).

Taylor expansion:

c(w + αv, q) = c(w, q) + Dwc(w, q)αv + 1
2(αv)D2

wc(w + βv, q)(αv) for β ∈ [0, α]

=⇒ α2

2 vT D2
wc(w + βv, q)v = c(w + αv, q) − c(w, q) − Dwc(w, q)αv ≤ 0

∵ c is concave in w.

This holds true for α, β arbitrarily small. =⇒ vT D2
wc(w, q)v ≤ 0.

• by (iv), z(αw, q) = z(w, q) (H.D.∅ in w).

Differentiating both sides of the equation by α gives: Dwz(αw, q)w = 0.

Setting α = 1, we have Dwz(w, q)w = 0.

(viii) Note that z (w, λq) solves CMP1:

min
z

w · z

s.t. f(z) ≥ λq.
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Since f (z) is H.D.1,

f (z) ≥ λq ⇐⇒ f (z)
λ

≥ q ⇐⇒ f
*

z

λ

+
≥ q.

CMP1 can be stated as CMP2

min
z̃

w · (z̃)

s.t. f(z̃) ≥ q,

where z̃ = z/λ. Let z̃∗ be the solution to CMP2. Then

z (w, λq)
λ

= z̃∗ = z (w, q)

=⇒ z (w, λq) = λz (w, q) .

That is, z(·) is H.D.1 in q.

An alternative proof of z(w, αq) = αz(w, q)

• It is equivalent to show that αz(w, q) is the solution to the cost minimization

problem with parameters (w, αq).

a) Since f(·) is HD1, f(αz(w, q)) = αf(z(w, q)) ≥ αq. Thus, αz(w, q) satis-

fies the constraint of the (w, αq) problem.

b) For any z such that f(z) ≥ αq, since f(·) is HD1, we have f(z) ≥ αq =⇒

α−1f(z) ≥ q =⇒ f(α−1z) ≥ q. That is, α−1z satisfies the constraint of

the (w, q) problem. Thus, the cost of α−1z must be weakly higher than the

minimum cost which is obtained at z(w, q), that is, w ·(α−1z) ≥ w ·z(w, q).

We further have w · z ≥ w · (αz(w, q)).

• Since a) αz(w, q) satisfies the constraint of the (w, αq) problem and b) w ·

(αz(w, q)) ≤ w · z for any z such that f(z) ≥ αq, αz(w, q) is the solution to

the cost minimization problem with parameters (w, αq).

• Thus, αz(w, q) = z(w, αq).

For c(·),

c (w, αq) = w · z (w, αq) = αw · z (w, q) = αc (w, q) .

That is, c(·) is also H.D.1 in q.
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(ix) Let z1 = z(w, q1) and z2 = z(w, q2) be the solutions to cost minimization problems

with parameters (w, q1) and (w, q2) respectively. Let c(w, q1) = w ·z1 and c(w, q2) =

w · z2 be the minimized cost.

• First, αz1 + (1 − α)z2 satisfies the constraint of the cost minimization problem

with parameters (w, αq1 + (1 − α)q2):

f(αz1 + (1 − α)z2) ≥,-./
concavity

αf(z1) + (1 − α)f(z2) ≥,-./
f(z1)≥q1, f(z2)≥q2

αq1 + (1 − α)q2.

• Thus, the cost of αz1 + (1 − α)z2 must be higher than the minimum cost

c(w, αq1 + (1 − α)q2), that is, c(w, αq1 + (1 − α)q2) ≤ w · (αz1 + (1 − α)z2).

• Therefore,

c(w, αq1 + (1 − α)q2) ≤ w · (αz1 + (1 − α)z2)

= αw · z1 + (1 − α)w · z2

=,-./
definition of z1 & z2

αc(w, q1) + (1 − α)c(w, q2)

That is, c(·) is convex in q.

From Cost Minimization to Profit Maximization We restate Profit Maximization

Problem using the cost function:

max
q≥0

pq − c(w, q).

Kuhn-Tucker Conditions:

p − ∂c(w, q∗)
∂q

≤ 0 with equality if q∗ > 0 (5)

q ≥ 0.

Equation (5) indicates that at an interior optimum (i.e., if q∗ > 0), price equals marginal

cost. If c(w, q) is convex in q, then the F.O.C (Equation (5)) is not only necessary but

also sufficient for q∗ to be the optimal production level.

Example 5.C.1. (Building on Example 5.B.2): Derive the cost and profit functions for

the Cobb-Douglas production function f(z1, z2) = zα
1 zβ

2 .
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Remark. Note that f(·) is constant returns to scale if α + β = 1, increasing returns to

scale if α + β > 1, and decreasing returns to scale if α + β < 1.

Solution. We first consider the cost minimization problem.

Cost minimization

min
z1,z2≥0

w1z1 + w2z2

s.t. zα
1 zβ

2 ≥ q
≡

max
z1,z2≥0

− w1z1 − w2z2

s.t. − zα
1 zβ

2 ≤ −q

Lagrange Function:
L = −w1z1 − w2z2 − λ(−zα

1 zβ
2 + q)

Kuhn-Tucker Conditions:

− w1 + λ(αzα−1
1 zβ

2 ) ≤ 0, with equality if z1 > 0

− w2 + λ(βzα
1 zβ−1

2 ) ≤ 0, with equality if z2 > 0

λ ≥ 0

λ(−zα
1 zβ

2 + q) = 0

− zα
1 zβ

2 ≤ −q

z1, z2 ≥ 0

Note that for any q > 0, z∗
1 > 0 & z∗

2 > 0 must hold (if not, z∗α
1 z∗β

2 = 0 < q).

Therefore,
w1

w2
= α

β

z2

z1
⇐⇒ z2 = z1

w1β

w2α
. (6)

Also, it must hold that zα
1 zβ

2 = q. If not, less of both inputs can be used and

production cost can be lowered. Plugging (6) into this equality gives

z1(w1, w2, q) = q1/(α+β)(αw2

βw1
)β/(α+β);

z2(w1, w2, q) = q1/(α+β)(βw1

αw2
)α/(α+β).

It follows immediately that the (conditional) cost function is

c(w1, w2, q) = w1z1(w1, w2, q) + w2z2(w1, w2, q)

= q1/(α+β)[(α

β
)β/(α+β) + (α

β
)−α/(α+β) ]wα/(α+β

1 w
β/(α+β)
2

= q1/(α+β)θφ(w1, w2), (7)

where θ = (α
β
)β/(α+β) + (α

β
)−α/(α+β) and φ(w1, w2) = w

α/(α+β
1 w

β/(α+β)
2 .
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Profit maximization Cost minimization is only a necessary condition for profit maxi-

mization. To maximize profit, the firm must choose the optimal quantity:

max
q≥0

pq − c(w, q)

Kuhn-Tucker Conditions:

p − ∂c(w, q∗)
∂q

≤ 0 with equality if q∗ > 0 (8)

q ≥ 0.

When (8) holds in equality, p = MC.

Plugging (7) into (8), we have

p ≤ θφ(w1, w2)(
1

α + β
)q1/(α+β)−1, with equality if q > 0. (9)

Case I When α + β < 1, f(·) is concave and c(·) is convex in q, i.e., MC increases

in q. =⇒ F.O.C. is sufficient.

At q = 0, the R.H.S of (9) is zero and p ≤ 0 must not hold. So (9) must hold

in equality. Optimal q is unique:

q(w1, w2, q) =
!

(α + β)
$

p

θφ(w1, w2)

%" α+β
1−α−β

Figure 12: Case I

The factor demands can also be obtained through:

zl(w1, w2, q) = zl(w1, w2, q(w1, w2, p))

So can the profit function:

π(w1, w2, p) = pq(w1, w2, p) − w · z(w1, w2, q(w1, w2, p))

24



Advanced Microeconomics

Case II When α + β = 1, (8) =⇒ p ≤ θφ(w1, w2)

(i) If θφ(w1, w2) > p, then q∗ = 0.

(ii) If θφ(w1, w2) < p, then no solution: the higher q, the better.

(iii) If θφ(w1, w2) = p, (knife-edge case): any nonnegative q is a solution.

Figure 13: Case II (i) Figure 14: Case II (ii)
Case III When α + β > 1, then F.O.C only identifies the local minimum.

Figure 15: Case III

Exercise 5.C.10

Derive the cost function c(w, q) and conditional factor demand functions (or cor-

respondences) z(w.q) for each of the following single-output constant return tech-

nologies with production functions given by

(a) f(z) = z1 + z2 (perfect substitutable inputs)

(b) f(z) = min{z1, z2} (leontief technology)

(c) f(z) = (zρ
1 + zρ

2)1/rho, ρ ≤ 1 (constant elasticity of substitution technology)

Exercise 5.C.11

Show that ∂zl(w, q)/∂q > 0 if and only if marginal cost at q is increasing in wl.
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5.D. The Geometry of Cost and Supply on the Single-Output Case

Focusing on the single-output case, we analyze the relationships among: technology, cost

function, and supply behavior.

We consider fixed factor prices w̄ ≫ 0, and suppress the dependence on w, defining

C(q) = c(w̄, q)

AC(q) = c(w̄, q)/q

MC(q) = ∂c(w̄, q)/∂q

Convex Production Set Recall F.O.C for profit maximization: p ≤ C ′(q), with equality

if q > 0. If Y is convex, c(·) is convex and F.O.C is sufficient for profit maximization.

An example of convex production set is given below:

Figure 16: Production Set Figure 17: Cost Function Figure 18: MC and AC

Nonconvex Production Set Y may not be convex. An example of nonconvex produc-

tion set is given below:

Figure 19: Production Set Figure 20: Cost Function Figure 21: MC and AC
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The relationship between Average Cost (AC) and Marginal Cost (MC):

AC(q) = c(q)/q

AC ′(q) = qc′(q) − c(q)
q2

The F.O.C. for minimization of AC is q̄c′(q̄)−c(q̄) = 0 or c′(q̄) = c(q̄)
q̄

, i.e., AC is minimized

when MC(q̄) = AC(q̄).

Exercise 5.D.1

Show that AC(q̄) = C ′(q̄) at any q̄ satisfying AC(q̄) ≤ AC(q) for all q. Does this

result depend on the differentiability of C(·) everywhere?

Fixed cost (but not sunk) Fixed cost arises because some input(s) have to be used

before any output can be produced. Since the cost is not sunk, it is still preventable so

producing nothing and costing nothing is still an option.

For the firm to be willing to be active in production, the price has to at least cover the

average cost of production. Otherwise, the firm will produce nothing.

Figure 22: Production Set Figure 23: Cost Function Figure 24: MC and AC

Sunk cost When cost is sunk, it is no longer preventable. So it is not an option to use

no inputs and incur no cost. In deciding whether to be active in production or not, sunk

cost should not be part of the consideration because by gone is by gone. Therefore, even

if the price falls below the average cost, it may still be economically profitable (without

accounting for the sunk cost) to be active in production.
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Figure 25: Production Set Figure 26: Cost Function Figure 27: MC and AC

Exercise 5.D.2

Depict the supply locus for a case with partially sunk costs, that is, where C(q) =

K + Cv(q) if q > 0 and 0 < C(0) < K.

Long-run and short-run cost functions In Figure 28, the cost function excluding any

prior input commitments is depicted by C(·). We call it the long-run cost function. If

one input, say z2, is fixed at level z̄2 in the short-run, then the short-run cost function of

the firm becomes C(q | z̄2) = w̄1z1 + w̄2z̄2, where z1, is chosen so that f(z1, z̄2) = q.

Figure 28: LR and SR Cost Functions Figure 29: LR and SR AC
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Exercise 5.D.3

Suppose that a firm can produce good L from L − 1 factor inputs (L > 2). Factor

prices are w ∈ RL−1 and the price of output is p. The firm’s differentiable cost

function is c(w, q). Assume that this function is strictly convex in q. However,

although c(w, q) is the cost function when all factors can be freely adjusted, factor

1 cannot be adjusted in the short run.

Suppose that the firm is initially at a point where it is producing its long-run profit-

maximizing output level of good L given prices w and p, q(w, p) [i.e., the level that is

optimal under the long-run cost conditions described by c(w, q)], and that all inputs

are optimally adjusted [i.e., zl = zl(w, q(w, p)) for all l = 1, ..., L − 1, where zl(·, ·)

is the long-run input demand function]. Show that the firm’s profit-maximizing

output response to a marginal increase in the price of good L is larger in the long

run than in the short run. [Hint: Define a short-run cost function cs(w, q|z1) that

gives the minimized costs of producing output level q given that input 1 is fixed at

level z1.]

5.E. Aggregation

Question. Would the properties of individual supplies be preserved when they are

aggregated to market supply?

Question. Would merger affect supply behavior?

• J production units/plants

• Yj is nonempty, closed

• πj(p): profit function

• yj(p): supply correspondence

• Aggregate supply correspondence:

y(p) =
J0

j=1
yj(p) = {y ∈ RL : y =

0

j

yj for some yj ∈ yj(p), j = 1, ..., J}
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• Suppose yj(p) is single-valued & differentiable.

– From Proposition 5.C.1, Dyj(p) is symmetric & positive semidefinite.

– Because these properties are preserved under addition, Dy(p) = 1
j Dyj(p) is

also symmetric and positive semidefinite.

– Positive semidefiniteness implies law of supply in aggregate:

dp · dy = dpT Dy(p)dp ≥ 0.

– Alternatively, from (p − p′) · [yj(p) − yj(p′)] ≥ 0, adding over j, we have

(p − p′) ·
21

j yj(p) − 1
j yj(p′)

3
≥ 0.

• Aggregate production set:

Y = Y1 + ... + YJ = {y ∈ RL : y =
0

j

yj for some yj ∈ Yj, j = 1, ..., J}

– Y is feasible to a single owner who maximizes total profit from J plants’

production.

– π∗(p) and y∗(p) are the profit function and the supply correspondence of Y .

Proposition 5.E.1. For all p ≫ 0, we have

(i) π∗(p) = 1
j πj(p)

(ii) y∗(p) = 1
j yj(p)

Proof.

(i) a) First, we prove π∗(p) ≥ 1
j πj(p). (The owner of all J plants can at least

replicate what the J individual owners do. )

• For any collection of production plans yj ∈ Yj for j = 1, ..., J , we have
1

j yj ∈ Y .

• Since π∗(p) is the profit function associated with Y , we have π∗(p) ≥

p · 1
j yj = 1

j p · yj = 1
j πj(p).

b) Next, we prove π∗(p) ≤ 1
j πj(p).
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• By definition of Y , there exist yj ∈ Yj, j = 1, ..., J such that 1
j yj = y.

• Therefore, for any y ∈ Y , p · y = p · 1
j yj = 1

p · yj ≤ 1
j πj(p).

• Therefore, π∗(p) ≤ 1
j πj(p).

Together, π∗(p) ≥ 1
j πj(p) and π∗(p) ≤ 1

j πj(p) imply π∗(p) = 1
j πj(p).

(ii) We need to show 1
j yj(p) ⊆ y∗(p) and y∗(p) ⊆ 1

j yj(p).

a) First, we prove 1
j yj(p) ⊆ y∗(p).

• Consider any set of individual production plans yj ∈ yj(p) for j = 1, ..., J .

• Then p · 1
j yj = 1

j p · yj = 1
j πj(p) = π∗(p) (the second equality follows

from the definition of πj(p) and the last equality is by (i)).

• Therefore, 1
j yj ∈ y∗(p), and thus 1

j yj(p) ⊆ y∗(p).

b) Next, we prove y∗(p) ⊆ 1
j yj(p).

• Take any y ∈ y∗(p).

• By definition of Y , there exist yj ∈ Yj, j = 1, ..., J such that 1
j yj = y.

• Thus, π∗(p) = p · y = p · 1
j yj = 1

j p · yj.

• In addition, by (i), π∗(p) = 1
j πj(p). Thus, 1

j πj(p) = 1
j p · yj.

• By definition of πj(p), p · yj ≤ πj(p). So it must be that p · yj = πj(p) for

every j = 1, ..., J .

• Therefore, yj ∈ yj(p) for all j.

• So y = 1
j yj ∈ 1

j yj(p) and thus y∗(p) ⊆ 1
j yj(p).

Remark. This result that merger does affect supply behavior holds only because the firms

are price takers. When these firms set prices to compete, the prices they set will have

externality on each other’s profit. After merger, the owner of all the plants typically will

raise the prices to reduce the negative externality of low prices on other plants’ profits.
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5.F. Efficient Production (Narrow notion of efficiency)

Question. When do we regard production as nonwasteful?

We take the prices as exogenously fixed and do not discuss whether the prices are too

high or too low when we discuss the efficiency of a profit maximizing firm.

Definition 5.F.1. A production vector y ∈ Y is efficient if there is no y′ ∈ Y such that

y′ ≥ y and y′ ∕= y.

Figure 30: (In)Efficient Production

Proposition 5.F.1. If y ∈ Y is profit maximizing for some p ≫ 0, then y is efficient.

Proof. Suppose y is not efficient. Then ∃y′ ∈ Y s.t. y′ ≥ y and y′ ∕= y. This implies

p · y′ > p · y for all p ≫ 0; so y is not profit maximizing.

Remark. Proposition 5.F.1 holds even when production set is non-convex. See Figure 31.

Figure 31: Non-convex production set
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Exercise 5.F.1. Suppose p1 = 0 & p2 > 0. Then for all p2, both y and y′ maximize profit

but y′ is NOT efficient. This illustrates the importance of p ≫ 0 in Proposition 5.F.1.

Figure 32: p1 = 0

Now we need to visit the Mathematical Appendix to retrieve some results that we’ll use

to prove our next proposition for this chapter.

Theorem M.G.3 (Supporting Hyperplane Theorem). Suppose that B ⊂ RN is convex

and that x is not an element of the interior of set B (x /∈ Int B). Then there is p ∈ RN

with p ∕= 0 such that p · x ≥ p · y for every y ∈ B.

Proof. Consider x /∈ Int B. Then we can find a sequence xm → x such that for all m, xm

is not an element of the closure4 of the set B (xm /∈ Cl B). By Theorem M.G.2 Separating

Hyperplane Theorem (Part I), for each m there is a pm ∕= 0 and a cm ∈ R such that

pm · xm > cm ≥ pm · y (10)

for every y ∈ B. Without loss of generality, suppose that ‖pm‖ = 1 for every m. Thus,

extracting a subsequence if necessary5, we can assume that there is p ∕= 0 and c ∈ R such

that pm → p and cm → c. Taking limits of (10), we have

p · x ≥ c ≥ p · y

for every y ∈ B.

4A closure of a set A is the union of the set A and its limit points.
5The existence of convergent subsequence is a result of the Bolzano–Weierstrass Theorem: each

bounded sequence in RN has a convergent subsequence.
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Theorem M.G.2 (Separating Hyperplane Theorem (Part II)). Suppose that the convex

sets A, B ⊂ RN are disjoint (i.e., A ∩ B = ∅). Then there is p ∈ RN with p ∕= 0, and a

value c ∈ R, such that p · x ≥ c for every x ∈ A and p · y ≤ c for every y ∈ B. That is,

there is a hyperplane that separates A and B, leaving A and B on different sides of it.

Proof. Consider arbitrary x ∈ A and y ∈ B and let z = x − y. Let

D =
4
z ∈ RN : z = x − y for some x ∈ A and some y ∈ B

5
.

Now we show that D is convex. Suppose z1, z2 ∈ D. Then

αz1 + (1 − α) z2 = [αx1 + (1 − α) x2] − [αy1 + (1 − α) y2] .

Since A and B are convex, αx1 + (1 − α) x2 ∈ A and αy1 + (1 − α) y2 ∈ B.

So αz1 +(1 − α) z2 ∈ D. Therefore, D is convex. Since A and B are disjoint, 0 /∈ D. Since

0 /∈ D, we have 0 /∈ Int D. Then, we could apply Thereom M.G.3 Supporting Hyperplane

Theorem: there is p′ ∈ RN with p′ ∕= 0 such that p′ · 0 ≥ p′ · z for all z ∈ D. Let p = −p′,

we have 0 ≤ p · (x − y) or p · y ≤ p · x for all x ∈ A and y ∈ B. To complete the proof, let

c =
infx∈A p · x + supy∈B p · y

2 .

Proposition 5.F.2. Suppose that Y is convex. Then every efficient production y ∈ Y is

a profit-maximizing production for some nonzero price vector p ≥ 0.

Figure 33: Proposition 5.F.2
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Proof. Suppose y ∈ Y is efficient and define Py = {y′ ∈ RL : y′ ≫ y}.

Step 1: we show that ∃p ≥ 0 s.t. p · y′ ≥ p · y′′ for every y′ ∈ Py and y′′ ∈ Y.

• Since y is efficient, ∕ ∃x ∈ Y, s.t. x ≥ y & x ∕= y. Therefore, Y ∩ Py = ∅.

• Since Py is convex and disjoint from Y, by Theorem M.G.2 Separating Hyperplane

Theorem (Part II), ∃p ∕= 0 s.t. p · y′ ≥ p · y′′ for every y′ ∈ Py and y′′ ∈ Y.

• In particular, p · y′ ≥ p · y for every y′ ≫ y. And for this to hold, it requires that

p ≥ 0. Suppose otherwise that pl < 0 for some l. Then with y′
l sufficiently large,

p · y′ < p · y necessarily holds, constituting a contradiction.

Step 2: we show that given p ≥ 0 found in Step 1, we have p · y ≥ p · y′′ for every y′′ ∈ Y ,

i.e., y maximizes profit given some p ≥ 0.

• Suppose otherwise that p · y < p · y′′ for some y′′ ∈ Y .

• Then there exists ε > 0 sufficiently small such that p · (y + εe) < p · y′′.

• However, (y + εe) ∈ Py.

• We reach a contradiction with the separation result established in Step 1.

The end of the second sentence of Proposition 5.F.2 cannot be read as “ p ≫ 0” . The

following example illustrates why:

Figure 34: Proposition 5.F.2

The production vector y is efficient but is not profit-maximizing for any p ≫ 0. It’s

profit-maximizing for some (p1, p2) with p1 = 0.
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