
Chapter 5. Production
Xiaoxiao Hu



5.A. Introduction

In this chapter, we study the supply side of the economy.

In particular, we study how goods and services are produced

by “firms”.

• We view firms as “black boxes”, transforming inputs

into outputs. (simplification)

• The study of organizational structure, witch falls out-

side of the scope of this chapter, is also important and

interesting.
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5.B. Production Sets

• We consider an economy with L commodities.

• Production vector (including both inputs & out-

puts) y = (y1, ..., yL) ∈ RL describes the (net) out-

puts.

– If yl > 0, l is an output;

– If yl ≤ 0, l is an input.
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Production Sets

Example 5.B.1. Suppose that L = 5, Then y = (−5, 2, −6, 3, 0)

means that

(a) 2 and 3 units of Good 2 and 4 are produced;

(b) 5 and 6 units of Good 1 and 3 are used;

(c) Good 5 is neither produced or used.
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Production Sets

• The set of all production vectors that constitute tech-

nologically feasible plans is called the production set

Y ⊂ RL.

– Any y ∈ Y is feasible;

– Any y ∕∈ Y is not feasible.
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Production Sets

• We can describe the production set Y by a transfor-

mation function F (·).

– The production set Y = {y ∈ RL : F (y) ≤ 0}.

– {y ∈ RL : F (y) = 0} is called the transformation

frontier.
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Production Sets

Production Function and Transformation Frontier
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Production Sets

• Consider changes in y while staying on F (y) = 0.

For such changes dy along the frontier, we have

dy · ∇F (y) = 0.

• Suppose only yl & yk change.

dyk

dyl

= − ∂F (ȳ)/∂yl

∂F (ȳ)/∂yk

= −MRTlk(ȳ).

MRTlk(ȳ) is called the marginal rate of transformation

(MRT) of good l for good k at ȳ.
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Technologies with Distinct Inputs and Outputs

• Suppose there are M outputs and L − M inputs.

– let q = (q1, ..., qM) ≥ 0 denote the outputs.

– let z = (z1, ..., zL−M) ≥ 0 denote the inputs.

– e.g. (yL−M+1, ..., yL) = (q1, ..., qM);

(y1, ..., yL−M) = −(z1, ..., zL−M).
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Technologies with Distinct Inputs and Outputs

• Single-output technology

– Production function: f(z), where

z = (z1, ..., zL−1) ≥ 0

– Output: q ≤ f(z)

– Production set:

Y = {(−z1, ..., −zL−1, q) : q − f(z1, ..., zL−1) ≤ 0 and

(z1, ..., zL−1) ≥ 0}
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Technologies with Distinct Inputs and Outputs

• Holding the level of output fixed, we define Marginal

rate of technological substitution (MRTS) of input l for

input k at z̄ as follows:

MRTSlk(z̄) = ∂f(z̄)/∂zl

∂f(z̄)/∂zk

– MRTSlk(z̄) is the same as MRTlk(z̄, q̄), simply a

renaming for the substitution between inputs in a

single-output case.
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Technologies with Distinct Inputs and Outputs

Example 5.B.2. Cobb-Douglas Production Function:

f(z1, z2) = zα
1 zβ

2 , where a ≥ 0, β ≥ 0.

MRTS at z = (z1, z2) is

MRTS12(z) = ∂f(z1, z2)/∂z1

∂f(z1, z2)/∂z2
= αzα−1

1 zβ
2

βzα
1 zβ−1

2
= αz2

βz1
.

Remark. In percentage change terms
!

∂f(z1, z2)
∂z1

z1

f(z1, z2)

"# !
∂f(z1, z2)

∂z2

z2

f(z1, z2)

"

= αz2

βz1

z1

z2
= α

β
.
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Commonly Assumed Properties of Production Sets

(i) Y is nonempty.

(ii) Y is closed. (technical)

(iii) No free lunch: If y ≥ 0, y = 0. The idea is that no

commodities can be created out of thin air. Production

of any commodity requires consumption of some other

commodities.

(iv) Possibility of inaction: 0 ∈ Y.

(v) Free disposal: If y ∈ Y and y′ ≤ y, then y′ ∈ Y. 13



Commonly Assumed Properties of Production Sets

(vi) Irreversibility: Suppose y ∈ Y and y ∕= 0, then −y ∕∈ Y.

Reversible Technology Irreversible Technology
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Commonly Assumed Properties of Production Sets

(vii) Nonincreasing returns to scale:

y ∈ Y and α ∈ [0, 1] =⇒ αy ∈ Y.

Nonincreasing Returns to Scale Technology
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Commonly Assumed Properties of Production Sets

(viii) Nondecreasing returns to scale:

y ∈ Y and α ≥ 1 =⇒ αy ∈ Y.

Nondecreasing Returns to Scale Technology
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Commonly Assumed Properties of Production Sets

(ix) Constant returns to scale (Cone):

y ∈ Y and α ≥ 0 =⇒ αy ∈ Y.

CRS (2 commodities) CRS (3 commodities)
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Commonly Assumed Properties of Production Sets

(x) Additivity: Suppose y ∈ Y and y′ ∈ Y. Then y + y′ ∈ Y.

• Alternatively, Y + Y ⊂ Y .

• If y ∈ Y, then ky ∈ Y for all k ∈ Z.

• This captures an economy with free entry. Any

existing technology can be added to the existing

technologies.
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Commonly Assumed Properties of Production Sets

(xi) Convexity:

y, y′ ∈ Y and α ∈ [0, 1] =⇒ αy + (1 − α)y′ ∈ Y.
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Commonly Assumed Properties of Production Sets

(xii) Convex cone: Y is a convex cone if for any production

vector y, y′ ∈ Y and constants α ≥ 0 & β ≥ 0, we have

αy + βy′ ∈ Y.

Convex Cone (2 commodities) Convex Cone (3 commodities)
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Commonly Assumed Properties of Production Sets

Proposition 5.B.1. The production set Y is additive and

satisfies the nonincreasing returns condition if and only if it

is a convex cone.
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Commonly Assumed Properties of Production Sets

Proposition 5.B.2. For any convex production set Y ⊂ RL

with 0 ∈ Y, there is a constant returns, convex production

set Y ′ ⊂ RL+1 s.t. Y = {y ∈ RL : (y, −1) ∈ Y ′}.

22



Commonly Assumed Properties of Production Sets

Remark. In essence, the implication is that in a competi-

tive, convex setting, there may be little loss of conceptual

generality in limiting to constant returns technologies.
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5.C. Profit Maximization and Cost

Minimization

• L commodities, priced at p = (p1, ...pL) ≫ 0.

• Firm is price-taking.

• Firm’s objective is to maximize profit.

• Assume nonemptiness, closedness, and free disposal.
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Profit Maximization Problem

max
y

p · y

s.t. y ∈ Y ( or F (y) ≤ 0)
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Profit Maximization Problem

• Lagrange Function: L = p · y − λF (y)

• Kuhn-Tucker Conditions:1

∂L
∂yl

= pl − λ
∂F (y)

∂yl

= 0 for l = 1, .., L, (1)

λ ≥ 0

λF (y) = 0

F (y) ≤ 0

1Suppose F (·) is differentiable. 26



Profit Maximization Problem

Claim. F (y) = 0.
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Profit Maximization Problem

Remark. Equation (1) implies pl

pk
= ∂F (y∗)/∂yl

∂F (y∗)/∂yk
= MRTlk(y∗).
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Profit Maximization Problem: Single-output Production

• The profit maximization problem is

max
z≥0,q≥0

pq − w · z

s.t. q ≤ f(z)

• The above profit maximization problem could equiva-

lently be written as

max
z≥0

pf(z) − w · z
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Profit Maximization Problem: Single-output Production

• Lagrange Function: L = pf(z) − w · z

• Kuhn-Tucker Conditions:

p
∂f(z∗)

∂zl

− wl ≤ 0, with equality if z∗
l > 0 (2)

z∗ ≥ 0
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Profit Maximization Problem: Single-output Production

• Equation (2) is equivalent to

p∇f(z∗) ≤ w and [p∇f(z∗) − w] · z∗ = 0.

• Suppose (z∗
l , z∗

k) ≫ 0. Then,

wl

wk

= ∂f(z∗)/∂zl

∂f(z∗)/∂zk

= MRTSlk(z∗). (3)

• Condition (3) can also be rewritten as

1
wl

∂f(z∗)
∂zl

= 1
wk

∂f(z∗)
∂zk

= marginal product of $1.
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Profit Maximization Problem

If the production set Y is convex, then the F.O.C in (1) and

(2) are not only necessary but also sufficient.
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Mathematical Appendix: Separating Hyperplane Theorem

Theorem M.G.2 (Separating Hyperplane Theorem (Part

I)). Suppose that B ⊂ RN is convex and closed, and that

y ∕∈ B. Then there is a p ∈ RN with p ∕= 0, and a value

c ∈ R such that p · y > c and p · x < c for every x ∈ B.
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Mathematical Appendix: Separating Hyperplane Theorem

Seperating Hyperplane
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Profit Maximization Problem

Proposition 5.C.1. Suppose π(·) is the profit function of

the production set Y and that y(·) is the associated supply

correspondence. Assume also that Y is closed and satisfies

the free disposal property. Then,

(i) π(·) is homogeneous of degree one.

(ii) π(·) is convex.

(iii) If Y is convex, then Y = {y ∈ RL : p · y ≤ π(p) for all

p ≫ 0}.
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Profit Maximization Problem

Proposition 3.C.1 (continued).

(iv) y(·) is homogeneous of degree zero.

(v) If Y is convex, then y(p) is a convex set for all p. More-

over, if Y is strictly convex, then y(p) is single-valued

(if nonempty).

(vi) (Hotelling’s lemma) If y(p̄) consists of a single point,

then π(·) is differentiable at p̄ and ∇π(p̄) = y(p̄).
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Profit Maximization Problem

Proposition 3.C.1 (continued).

(vii) If y(·) is a function differentiable at p̄, then Dy(p̄) =

D2π(p̄) is a symmetric and positive semidefinite matrix

with Dy(p̄)p̄ = 0.

Remark. ∕ ∃ budget constraint, so no “income” effect associ-

ated with price change.
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Law of Supply

Claim. (p−p′)·(y−y′) ≥ 0 [That is, dp·dy = dpT Dydp ≥ 0]

38



Cost Minimization Problem

• Cost minimization is necessary (but not sufficient) for

profit maximization.

• We focus on single-output production.

• Cost Minimization Problem (CMP):

min
z≥0

w · z

s.t. f(z) ≥ q
≡

max
z≥0

− w · z

s.t. − f(z) ≤ −q
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Cost Minimization Problem

CMP for Single-output Production
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Cost Minimization Problem

• z(w, q): solution of CMP

– z(w, q) is known as the conditional factor demand

function or correspondence.

• c(w, q): minimized cost, or the cost function.
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Cost Minimization Problem

• Lagrange Function: L = (−w · z) − λ(−f(z) + q)

• Kuhn-Tucker Conditions:

− wl + λ
∂f(z∗)

∂zl

≤ 0, with equality if z∗
l > 0 (4)

λ ≥ 0

λ(−f(z) + q) = 0

− f(z) ≤ −q

z ≥ 0
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Cost Minimization Problem

• Equation (4) is equivalent to w ≥ λ∇f(z∗) and [w −

λ∇f(z∗)] · z∗ = 0.

• For any l, k with (zl, zk) ≫ 0, we have

wl

wk

= ∂f(z∗)/∂zl

∂f(z∗)/∂zk

= MRTSlk

• λ measures ∂c(w, q)/∂q, or the marginal cost of pro-

duction.
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Cost Minimization Problem

As with Profit Maximization Problem, if the production set

Y is convex, then F.O.C. (Equation (4)) is not only nec-

essary but also sufficient for z∗ to be an optimum in Cost

Minimization Problem.
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Cost Minimization Problem

Proposition 5.C.2. Suppose that c(w, q) is the cost func-

tion and that z(w, q) is the associated conditional factor de-

mand correspondence. Assume also that Y is closed and sat-

isfies the free disposal property. Then,

(i) c(·) is H.D.1 in w and nondecreasing in q.

(ii) c(·) is a concave function of w.

(iii) If the sets {z ≥ 0 : f(z) ≥ q} are convex for every q,

then Y = {(−z, q) : w · z ≥ c(w, q) for all w ≫ 0}.
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Cost Minimization Problem

Proposition 5.C.2 (continued).

(iv) z(·) is homogeneous of degree zero in w.

(v) If the set {z ≥ 0 : f(z) ≥ q} is convex, then z(w, q)

is a convex set. Moreover, if {z ≥ 0 : f(z) ≥ q} is a

strictly convex set, then z(w, q) is single-valued.

(vi) (Shepard’s lemma) If z(w̄, q) consists of a single point,

then c(·) is differentiable with respect to w at w̄ and

∇wc(w̄, q) = z(w̄, q).
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Cost Minimization Problem

Proposition 5.C.2 (continued).

(vii) If z(·) is differentiable at w̄, then Dwz(w̄, q) = D2
wc(w̄, q)

is symmetric and NSD matrix with Dwz(w̄, q)w̄ = 0.

(viii) If f(·) is H.D.1 (i.e., exhibits constant returns to scales),

then c(·) and z(·) are H.D.1 in q.

(ix) If f(·) is concave, then c(·) is a convex function of q

(in particular, marginal costs are nondecreasing in q).
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Cost Minimization Problem

Remark. Note that cost minimization is very similar to ex-

penditure minimization.
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From Cost Minimization to Profit Maximization

Restate Profit Maximization Problem using the cost func-

tion:

max
q≥0

pq − c(w, q).

Kuhn-Tucker Conditions:

p − ∂c(w, q∗)
∂q

≤ 0 with equality if q∗ > 0 (5)

q ≥ 0.
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From Cost Minimization to Profit Maximization

• Equation (5) indicates that at an interior optimum

(i.e., if q∗ > 0), price equals marginal cost.

• If c(w, q) is convex in q, then the F.O.C (Equation (5))

is not only necessary but also sufficient for q∗ to be the

optimal production level.
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Cost Minimization and Profit Maximization

Example 5.C.1. (Building on Example 5.B.2): Derive the

cost and profit functions for the Cobb-Douglas production

function f(z1, z2) = zα
1 zβ

2 .

Remark. Since

f(λz1, λz2) = λα+βzα
1 zβ

2

Note that f(·) is constant returns to scale if α + β = 1, in-

creasing returns to scale if α +β > 1, and decreasing returns

to scale if α + β < 1.
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5.D. The Geometry of Cost and Supply on

the Single-Output Case

Focusing on the single-output case, we analyze the relation-

ships among: technology, cost function, and supply behavior.

We consider fixed factor prices w̄ ≫ 0, and suppress the

dependence on w, defining

C(q) = c(w̄, q)

AC(q) = c(w̄, q)/q

MC(q) = ∂c(w̄, q)/∂q
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Convex Production Set

Recall F.O.C for profit maximization: p ≤ C ′(q) with equal-

ity if q > 0.

If Y is convex, c(·) is convex and F.O.C is sufficient for profit

maximization.

Production Set Cost Function MC and AC
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Nonconvex Production Set

Y may not be convex.

Production Set Cost Function MC and AC

Remark. AC is minimized when MC(q̄) = AC(q̄).
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Fixed cost (but not sunk)

Some input(s) have to be used before any output can be

produced. Fix cost is preventable. For active firms, the

price has to at least cover the average cost of production.

Production Set Cost Function MC and AC
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Sunk cost

• When cost is sunk, it is no longer preventable. So it is

not an option to use no inputs and incur no cost.

• In deciding whether to be active in production or not,

sunk cost should not be part of the consideration be-

cause by gone is by gone.

• Therefore, even if the price falls below the average cost,

it may still be economically profitable to be active in

production.
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Sunk cost

Production Set Cost Function MC and AC
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Long-run and short-run cost functions

LR and SR Cost Functions LR and SR AC
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5.E. Aggregation

Question. Would the properties of individual supplies

be preserved when they are aggregated to market sup-

ply?

Question. Would merger affect supply behavior?
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Aggregation

• J production units/plants

• Yj is nonempty, closed

• πj(p): profit function

• yj(p): supply correspondence

• Aggregate supply correspondence:

y(p) =
J$

j=1
yj(p) = {y ∈ RL : y =

$

j

yj for some yj ∈ yj(p)}
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Aggregation

• Suppose yj(p) is single-valued & differentiable.

– Dy(p) = %
j Dyj(p) is also symmetric and PSD.

– PSD implies law of supply in aggregate:

dp · dy = dpT Dy(p)dp ≥ 0.

– Alternatively, from (p − p′) · [yj(p) − yj(p′)] ≥ 0,

(p − p′) ·
&

'
$

j

yj(p) −
$

j

yj(p′)
(

) ≥ 0.
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Aggregation

Aggregate production set:

Y = Y1 + ... + YJ

= {y ∈ RL : y =
$

j

yj for some yj ∈ Yj, j = 1, ..., J}

• Y is feasible to a single owner who maximizes total

profit from J plants’ production.

• π∗(p) and y∗(p) are the profit function and the supply

correspondence of Y .
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Aggregation

Proposition 5.E.1. For all p ≫ 0, we have

(i) π∗(p) = %
j πj(p)

(ii) y∗(p) = %
j yj(p)

Remark. This result that merger does affect supply behavior

holds only because the firms are price takers.
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5.F. Efficient Production (Narrow notion of

efficiency)

Question. When do we regard production as nonwaste-

ful?
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Efficient Production

We take the prices as exogenously fixed and do not discuss

whether the prices are too high or too low when we discuss

the efficiency of a profit maximizing firm.

Definition 5.F.1. A production vector y ∈ Y is efficient if

there is no y′ ∈ Y such that y′ ≥ y and y′ ∕= y.
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Efficient Production

(In)Efficient Production
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Efficient Production

Proposition 5.F.1. If y ∈ Y is profit maximizing for some

p ≫ 0, then y is efficient.
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Efficient Production

Remark. Proposition 5.F.1 holds even when the production

set is non-convex.

Non-convex production set 68



Efficient Production

Exercise 5.F.1. Suppose p1 = 0 & p2 > 0. Then for all p2,

both y and y′ maximize profit but y′ is NOT efficient. This

illustrates the importance of p ≫ 0 in Proposition 5.F.1.

p1 = 0
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Mathematical Appendix: Supporting Hyperplane Theorem

Theorem M.G.3 (Supporting Hyperplane Theorem). Sup-

pose that B ⊂ RN is convex and that x is not an element of

the interior of set B (x /∈ Int B). Then there is p ∈ RN with

p ∕= 0 such that p · x ≥ p · y for every y ∈ B.
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Mathematical Appendix: Separating Hyperplane Theorem

Theorem M.G.2 (Separating Hyperplane Theorem (Part

II)). Suppose that the convex sets A, B ⊂ RN are disjoint

(i.e., A ∩ B = ∅). Then there is p ∈ RN with p ∕= 0, and a

value c ∈ R, such that p · x ≥ c for every x ∈ A and p · y ≤ c

for every y ∈ B. That is, there is a hyperplane that separates

A and B, leaving A and B on different sides of it.

71



Efficient Production

Proposition 5.F.2. Suppose that Y is convex. Then every

efficient production y ∈ Y is a profit-maximizing production

for some nonzero price vector p ≥ 0.
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Efficient Production

The end of the second sentence of Proposition 5.F.2 cannot

be read as “ p ≫ 0” . The following example illustrates why:
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