
Dynamic Optimization

Chapter 2. Lagrange’s Method

In this chapter, we will formalize the maximization problem with equality constraints

and introduce a general method, called Lagrange’s Method to solve such problems.

2.A. Statement of the problem

Recall, in Chapter 1, the maximization problem with the equality constriant is stated as

follows:

max
x1≥0, x2≥0

U(x1, x2)

s.t. p1x1 + p2x2 = I.

In this chapter, we will temporarily ignore the non-negativity constraints on x1 and x2
1

and introduce a general statement of the problem, as follows:

max
x

F (x)

s.t. G(x) = c.

x is a vector of choice variables, arranged in a column: x =

!

""#
x1

x2

$

%%& .

As in Chapter 1, we use x∗ =

!

""#
x∗

1

x∗
2

$

%%& to denote the optimal value of x.

F (x), taking the place of U(x1, x2), is the objective function, the function to be maximized.

G(x) = c, taking the place of p1x1 + p2x2 = I, is the constraint. However, please keep in

mind that in general, G(x) could be non-linear.

2.B. The arbitrage argument

The essence of the arbitrage argument is to find a point where “no-arbitrage” condition

is satisfied. That is, to find the point from which any infinitestimal change along the

constraint does not yield a higher value of the objective function.

1We will learn how to deal with non-negativity in Chapter 3.
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We reiterate the algorithm of finding the optimal point using the general setup:

(i) Start at any trial point, on the constraint.

(ii) Consider a small change of the point along the constraint. If the new point consti-

tutes a higher value of the objective function, use the new point as the new trial

point, and repeat Step (i) and (ii).

(iii) Stop once a better new point could not be found. The last point is the optimal

point.

Now, we will discuss the arbitrage argument behind the algorithm and derive the “non-

arbitrage” condition.

Consider an initial point x0 =

!

""#
x0

1

x0
2

$

%%&, and the infinitesimal change dx =

!

""#
dx1

dx2

$

%%&.

Since the change in x is infinitesimal, the changes in values could be approximated by

the first-order linear terms in Taylor series. Using the subscripts to denote the partial

derivatives, we have

dF (x0) = F (x0 + dx) − F (x0) = F1(x0)dx1 + F2(x0)dx2, (2.1)

and

dG(x0) = G(x0 + dx) − G(x0) = G1(x0)dx1 + G2(x0)dx2. (2.2)

Recall the concrete example in Chapter 1,

F1(x) = MU1 and F2(x) = MU2;

G1(x) = p1 and G2(x) = p2.

We continue applying the argitrage argument with the general model. The initial point x0

is on the constraint, and after the change dx, x0 + dx is still on the contraint. Therefore,

dG(x0) = 0. From (2.2), we have the following equation

G1(x0)dx1 = −G2(x0)dx2.
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Let G1(x0)dx1 = −G2(x0)dx2 = dc. Then

dx1 = dc/G1(x0) and dx2 = −dc/G2(x0). (2.3)

Substituting into (2.1), we have

dF (x0) = F1(x0)dc/G1(x0) + F2(x0)
'
−dc/G2(x0)

(

=
)
F1(x0)/G1(x0) − F2(x0)/G2(x0)

*
dc. (2.4)

Since we do not impose any boundary for x, so x0 must be an interior point, and dc could

be of either sign. Therefore,

1. If the expression in the bracket F1(x0)/G1(x0) − F2(x0)/G2(x0) is positive, then

F (x0) could increase by choosing dc > 0.

2. Similarly, if the expression in the bracket is negative, then F (x0) could increase by

choosing dc < 0.

The same argument holds for all other interior points along the constraint. Therefore,

for the interior optimum x∗, we must have

F1(x∗)/G1(x∗) − F2(x∗)/G2(x∗) = 0 =⇒ F1(x∗)/G1(x∗) = F2(x∗)/G2(x∗) (2.5)

Equation (2.5) is the “non-arbitrage” condition we are looking for.

It is important to distinguish between the interior optimal point x∗ and the points that

satisfy (2.5). The correct statement is as follows:

Remark. If an interior point x∗ maximizes F (x) subject to G(x) = c, then (2.5)

holds.

Please note that the reverse statement may not be true. That is to say, (2.5) is only the

necessary condition for an interior optimum. We will discuss it in detail in Section 2.E.
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Now, we come back to the condition (2.5). Recall that in Chapter 1, the condition

F1(x∗)/G1(x∗) = F2(x∗)/G2(x∗) ⇐⇒ MU1/p1 = MU2/p2.

We used λ to denote the marginal utility of income, which equals to MU1/p1 = MU2/p2.

As in Chapter 1, in the general case, we also define λ as

λ = F1(x∗)/G1(x∗) = F2(x∗)/G2(x∗)

=⇒ Fj(x∗) = λGj(x∗), j = 1, 2. (2.6)

Here, similar to the “marginal utility of income” interpretation of λ, λ in (2.6) corresponds

to the change of F (x∗) with respect to a change in c. We will learn this interpretation

and its implications in Chapter 4.

Before we continue the discussion of Lagrange’s Method following Equation (2.6), several

digressions will be discussed in Sections 2.C, 2.D and 2.E.

2.C. Constraint Qualification

You may have already noticed that when we rewrite dx1 and dx2 in (2.3), we require

G1(x0) ∕= 0 and G2(x0) ∕= 0. The question now is “what happens if G1(x0) = 0 or

G2(x0) = 0?”2 If, say, G1(x0) = 0, infinitesimal change of x0
1 could be made without

affecting the constraint.3 Thus, if F1(x0) ∕= 0, it would be desirable to change x0
1 in the

direction that increases F (x0).4 Say, if F1(x0) > 0, then F (x0) could increase by raising

x0
1. This process could be applied until either F1(x) = 0, or G1(x) ∕= 0. Intuitively, for

the consumer choice model we discussed in Chapter 1, G1(x0) = p1 = 0 means that good

1 is free. Then, it is desirable to consume the free good as long as consuming the good

increases the consumer’s utility, or until the point where good 1 is no longer free.

Remark. Note x0 could be any interior point. In particular, if the point of consideration

is the optimum point x∗, then, if G1(x∗) = 0, it must be the case that F1(x∗) = 0.
2The case G1(x0) = G2(x0) = 0 will be considered later.
3See Equation (2.2).
4See Equation (2.1).
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A more tricky question is that “what if G1(x0) = G2(x0) = 0?” There would be no prob-

lem if G1(x0) = G2(x0) = 0 only means that x0
1 and x0

2 are free and should be consumed

to the point of satiation. However, this case is tricky since it could be arising from the

quirks of algebra or calculus. As a concrete example, let’s reconsider the consumer choice

model in Chapter 1. That problem has an equivalent formulation as follows:

max
x1, x2

U(x1, x2)

s.t. (p1x1 + p2x2 − I)3 = 0.

Now,

G1(x) = 3p1(p1x1 + p2x2 − I)2 = 0,

G2(x) = 3p2(p1x1 + p2x2 − I)2 = 0.

However, the goods are not free at the margin. The contradiction of G1(x) = G2(x) = 0

and p1, p2 > 0 makes our method not working.

To avoid running into such problems, the theory assumes the condition of Constraint

Qualification. For our particular problem, Constraint Qualification requires G1(x∗) ∕= 0,

or G2(x∗) ∕= 0, or both.

Remark. Failure of Constraint Qualification is a rare problem in practice. If you run

into such a problem, you could rewrite the algebraic form of the constraint, just as in the

budget constraint example above.

2.D. The tangency argument

The optimization condition (2.5) could also be recovered using the tangency argument.

Recall in our Chapter 1 example, the optimality requires the tangency of the budget line

and the indifference curve. In the general case, similar observation is still valid. And we

could obtain the optimality condition with the help of the graph, Figure 2.1.
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Figure 2.1: Tangency argument

The curve G(x) = c is the constraint. The curves F (x) = v, F (x) = v′, F (x) = v′′ are

samples of indifference curves. The indifference curves to the right attains higher value

for the objective function F (x) compares to those on the left. That is, in the graph,

v′ > v′ > v′′. It could be seen from the graph, the optimal x∗ is attained when the

constraint G(x) = c is tangent to an indifference curve F (x) = v.

We next look for the tangency condition. For G(x) = c, tangency means dG(x) = 0.

From (2.2), we have

dx2/dx1 = −G1(x)/G2(x). (2.7)

Similarly, for the indifference curve F (x) = v, tangency means dF (x) = 0. From (2.1),

we have

dx2/dx1 = −F1(x)/F2(x). (2.8)

Since G(x) = c and F (x) = v are mutually tangential at x = x∗,

F1(x∗)/F2(x∗) = G1(x∗)/G2(x∗).

The above condition is equivalent to (2.5).
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Note that if G1(x) = G2(x) = 0, the slope in (2.7) is not well defined.5 And we avoid this

problem by imposing the Constraint Qualification condition as discussed in Section 2.C.

2.E. Necessary vs. Sufficient Conditions

Recall, in Section 2.B, we have established the following result:

If an interior point x∗ maximizes F (x) subject to G(x) = c, then (2.5) holds.

In other words, (2.5) is only a necessary condition for optimality. Since the first-order

derivatives are involved, it is called the first-order necessary condition.

First-order necessary condition helps us narrow down the search for the maximum. How-

ever, does not guarantee the maximum. Consider the following graph of unconstrained

maximization problem with a single variable.

Figure 2.2: Stationary points

5Only G2(x) = 0 is not a serious problem. It only means that the slope is vertical.
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We want to maximize F (x) in Figure 2.2. The first-order necessary condition for this

problem is

F ′(x) = 0. (2.9)

All x1, x2, x3 and x4 satisfy condition (2.9). However, only x3 is the global maximum

that we are looking for.

Here,

(i) x1 is a local maximum but not a global one. The problem occurs since when we

apply first-order approximation, we only check whether F (x) could be improved by

making infinitesimal change in x. Therefore, we obtain a condition for local peaks.

(ii) x2 is a minimum. This problem occurs since first-order necessary condiition for

minimum is the same as that for maximum. More specifically, minimizing F (x)

is the same as maximizing −F (x). First-order necessary condition for minimizing

F (x) (or maximizing −F (x)) and maximizing F (x) are both F ′(x) = 0.

(iii) x4 is called a saddle point. You could think of F (x) = x3 as a concrete example.

We have F ′(0) = 0, but x = 0 is neither a maximum nor a minimum.

Figure 2.3: F (x) = x3
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We used unconstrained maximization problem for easy illustration. The problems remain

for constrained maximization problem.

As the caption of Figure 2.2 shows, any point satisfying the first-order necessary condi-

tions is called a stationary point. The global maximum is one of these points. We will

learn how to check whether a point is indeed a maximum in Chapters 6 to Chapter 8.

2.F. Lagrange’s Method

In this section, we will explore a general method, called Lagrange’s Method, to solve the

constrained maximization problem restated as follows:

max
x

F (x)

s.t. G(x) = c.

We introduce an unknown variable λ and define a new function, called the Lagrangian:6

L(x, λ) = F (x) + λ [c − G(x)] (2.10)

Partial derivatives of L give

Lj(x, λ) = ∂L/∂xj = Fj(x) − λGj(x)

Lλ(x, λ) = ∂L/∂λ = c − G(x)

The first-order necessary condition (2.5) is equivalent to (2.6), and now becomes just

Lj(x, λ) = 0.

And the constraint is simply

Lλ(x, λ) = 0.

The result is restated formally as the following thoreom:

6You would see in a minute that this λ is the same as that in Section 2.B.
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Theorem 2.1 (Lagrange’s Theorem). Suppose x is a two-dimensional vector, c is a

scalar, and F and G functions taking scalar values. Suppose x∗ solves the following

maximization problem:

max
x

F (x)

s.t. G(x) = c,

and the constraint qualification holds, that is, if Gj(x∗) ∕= 0 for at least one j. Define the

function L as in (2.10):

L(x, λ) = F (x) + λ [c − G(x)] . (2.10)

Then there is a value of λ such that

Lj(x∗, λ) = 0 for j = 1, 2 Lλ(x∗, λ) = 0. (2.11)

Please always keep in mind that the theorem only provide necessary conditions for

optimality. Besides, Condition (2.11) do not guarantee existence or uniqueness of the

solution. Note that if conditions in (2.11) have no solution, it may be that the maxi-

mization problem itself has no solution, or the Constraint Qualification may fail so that

the first-order conditions are not applicable. If (2.11) have multiple solutions, we need to

check the second-order conditions.7

In most of our applications, the problems will be well-posed and the first-order necessary

condition will lead to a unique solution.

In the next section, we will apply the Lagrange’s Theorem in examples.

2.G. Examples

Example 2.1: Preferences that Imply Constant Budget Shares. Consider a consumer

choosing between two goods x and y, with prices p and q respectively. His income is I,

7We will learn Second-Order Conditions in Chapter 8.
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so the budget constraint is

px + qy = I.

Suppose the utility function is

U(x, y) = α ln(x) + β ln(y).

What is the consumer’s optimal bundle (x, y)?

Solution. First, state the problem:

max
x, y

U(x, y) ≡ max
x, y

α ln(x) + β ln(y)

s.t. px + qy = I.

Then, we apply Lagrange’s Method.

i. Write the Lagrangian:

L(x, y, λ) = α ln(x) + β ln y + λ [I − px − qy] .

ii. First-order necessary conditions are

∂L/∂x = α/x − λp = 0, (2.12)

∂L/∂y = β/y − λq = 0, (2.13)

∂L/∂λ = I − px − py = 0. (2.14)

There are various ways to solve the equation system. Here, we introduce one of them.

By (2.12) and (2.13):

α/x − λp = 0 =⇒ α/x = λp

β/y − λq = 0 =⇒ β/y = λq

+
,,-

,,.
=⇒ α

β

y

x
= p

q
=⇒ y = βp

αq
x (2.15)

Plugging (2.15) into (2.14):

I − px − q
βp

αq
x = 0 =⇒ x = αI

(α + β)p. (2.16)

Plugging (2.16) back into (2.12) and (2.15), we could obtain λ = (α+β)
I

and y = βI
(α+β)q .
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To conclude,

x = αI

(α + β)p, y = βI

(α + β)q , λ = (α + β)
I

.

We call this demand implying constant budget shares since the share of income spent on

the two goods are constant:

px

I
= α

α + β
,

qy

I
= β

α + β
.

Example 2.2: Guns vs. Butter. Consider an economy with 100 units of labor. It can

produce guns x or butter y. To produce x guns, it takes x2 units of labor; likewise y2 units

of labor are needed to produce y butter. Therefore, the economy’s resource constraint is

x2 + y2 = 100.

Let a and b be social values attached to guns and butter. And the objective function to

be maximized is F (x, y) = ax + by.

What is the optimal amount of guns and butter?

Solution. First, state the problem:

max
x, y

F (x, y) ≡ max
x, y

ax + by

s.t. x2 + y2 = 100.

Then, we apply Lagrange’s Method.

i. Write the Lagrangian:

L(x, y, λ) = ax + by + λ
)
100 − x2 − y2

*
.

ii. First-order necessary conditions are

∂L/∂x = a − 2λx = 0,

∂L/∂y = b − 2λy = 0,

∂L/∂λ = 100 − x2 − y2 = 0.
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Solving the equation system, we get

x = 10a√
a2 + b2

, y = 10b√
a2 + b2

, λ =
√

a2 + b2

20 .

Here, the optimal values x and y are called homogeneous of degree 0 with respect to a

and b since if we increase a and b in equal proportions, the values of x and y would not

change. In other words, x would increase only when a increases relatively more than the

increment of b.

Remark. It is always useful to use graphs to help you think. The graphical illustration

of the current problem is shown in Figure 2.4 below.

Figure 2.4: The maximization problem

It is not hard to see that the maximum is attained at the intersection to the right.
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