Chapter 2. Lagrange's Method Xiaoxiao Hu February 15, 2022

In this chapter, we will formalize the maximization problem with equality constraints and introduce a general method, called *Lagrange's Method* to solve such problems.

2.A. Statement of the problem

Recall, in Chapter 1, the maximization problem with the equality constriant is stated as follows:

 $\max_{x_1 \geq 0, x_2 \geq 0} U(x_1, x_2)$

s.t.
$$
p_1x_1 + p_2x_2 = I
$$
.

Statement of the problem

In this chapter, we will temporarily ignore the non-negativity constraints on x_1 and x_2 ¹ and introduce a general statement of the problem, as follows:

 $\max_{x} F(x)$

s.t. $G(x) = c$.

x is a vector of choice variables, arranged in a column: $x =$! \mid *x*1 *x*2 \setminus $\Bigg\}$.

¹We will learn how to deal with non-negativity in Chapter 3. $\frac{4}{4}$

Statement of the problem

• As in Chapter 1, we use *x*[∗] = ! \mid x_1^* x_2^* \setminus $\left| \right|$ to denote the optimal value of *x*.

- $F(x)$, taking the place of $U(x_1, x_2)$, is the *objective function*, the function to be maximized.
- $G(x) = c$, taking the place of $p_1x_1 + p_2x_2 = I$, is the constraint. However, please keep in mind that in general, $G(x)$ could be non-linear.

- • The essence of the arbitrage argument is to find a point where "no-arbitrage" condition is satisfied.
- That is, to find the point from which any infinitestimal change along the constraint does not yield a higher value of the objective function.

We reiterate the algorithm of finding the optimal point:

- (i) Start at any *trial point*, on the constraint.
- (ii) Consider a small change of the point along the constraint. If the new point constitutes a higher value of the objective function, use the new point as the new trial point, and repeat Step [\(i\)](#page-6-0) and [\(ii\).](#page-6-1)
- (iii) Stop once a better new point could not be found. The last point is the optimal point.

- Now, we will discuss the arbitrage argument behind the algorithm and derive the "non-arbitrage" condition.
- *•* Consider initial point *^x*⁰ and infinitesimal change ^d*x*.
- *•* Since the change in *^x*⁰ is *infinitesimal*, the changes in values could be approximated by the first-order linear terms in Taylor series.

Using subscripts to denote partial derivatives, we have

$$
dF(x^{0}) = F(x^{0} + dx) - F(x^{0}) = F_{1}(x^{0})dx_{1} + F_{2}(x^{0})dx_{2}; \quad (2.1)
$$

$$
dG(x^{0}) = G(x^{0} + dx) - G(x^{0}) = G_{1}(x^{0})dx_{1} + G_{2}(x^{0})dx_{2}. \quad (2.2)
$$

Recall the concrete example in Chapter 1,

$$
F_1(x) = MU_1
$$
 and $F_2(x) = MU_2$;
 $G_1(x) = p_1$ and $G_2(x) = p_2$.

- *•* We continue applying the argitrage argument with the general model.
- *•* The initial point *^x*⁰ is on the constraint, and after the change $dx, x^0 + dx$ is still on the contraint.
- Therefore, $dG(x^0) = 0$.

• $dG(x^0) = 0$ together with (2.2) (2.2) ,

$$
dG(x^{0}) = G_{1}(x^{0})dx_{1} + G_{2}(x^{0})dx_{2}. \qquad (2.2)
$$

• We have
$$
G_1(x^0)dx_1 = -G_2(x^0)dx_2 = dc
$$
.

• Then,

$$
dx_1 = dc/G_1(x^0)
$$
 and $dx_2 = -dc/G_2(x^0)$. (2.3)

From (2.3) (2.3) and (2.1) (2.1)

$$
dx_1 = dc/G_1(x^0)
$$
 and $dx_2 = -dc/G_2(x^0)$ (2.3)
\n $dF(x^0) = F_1(x^0)dx_1 + F_2(x^0)dx_2$ (2.1)

we get

$$
dF(x^{0}) = F_{1}(x^{0})dc/G_{1}(x^{0}) + F_{2}(x^{0})(-dc/G_{2}(x^{0}))
$$

$$
= [F_{1}(x^{0})/G_{1}(x^{0}) - F_{2}(x^{0})/G_{2}(x^{0})]dc.
$$
 (2.4)

$$
dF(x^0) = \left[F_1(x^0) / G_1(x^0) - F_2(x^0) / G_2(x^0) \right] dc.
$$
 (2.4)

• Recall,
$$
dc = G_1(x^0)dx_1 = -G_2(x^0)dx_2
$$
.

- Since we do not impose any boundary for *x*, so x^0 must be an *interior point*, and d*c* could be of either sign.
- If the expression in the bracket is **positive**, then $F(x^0)$ could increase by choosing d*c >* 0.
- *•* Similarly, if it is **negative**, then choose d*c <* 0.

$$
dF(x^0) = \left[F_1(x^0) / G_1(x^0) - F_2(x^0) / G_2(x^0) \right] dc.
$$
 (2.4)

- *•* The same argument holds for all other interior points along the constraint.
- *•* Therefore, for the interior optimum *x*∗, we must the following "non-arbitrage" condition:

$$
F_1(x^*)/G_1(x^*) - F_2(x^*)/G_2(x^*) = 0
$$

\n
$$
\implies F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*)
$$
 (2.5)

14

$$
F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*)
$$
\n(2.5)

- It is important to distinguish between the interior optimal point x^* and the points that satisfy (2.5) (2.5) .
- The correct statement is as follows:

Remark. If an interior point x^* maximizes $F(x)$ subject to $G(x) = c$, then (2.5) holds.

Remark. If an interior point *x*[∗] is a maximum, then $(F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*)$ holds.

- *•* The reverse statement may **not** be true.
- *•* That is to say, [\(2.5\)](#page-13-0) is only the **necessary** condition for an interior optimum.
- We will discuss it in detail in Section [2.E.](#page-35-0)

• Now, we come back to Condition (2.5) (2.5) :

$$
F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*)
$$
 (2.5)

• Recall in Chapter 1, Condition (2.5) (2.5) is equivalent to

$$
MU_1/p_1 = MU_2/p_2.
$$

• We used *λ* to denote the **marginal utility of income**, which equals to $MU_1/p_1 = MU_2/p_2$.

• Similarly, in the general case, we also define *λ* as

$$
\lambda = F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*)
$$

$$
\implies F_j(x^*) = \lambda G_j(x^*), \ j = 1, 2.
$$
 (2.6)

- Here, λ corresponds to the change of $F(x^*)$ with respect to a change in *c*.
- *•* We will learn this interpretation and its implications in Chapter 4.

A few Digressions

$$
F_j(x^*) = \lambda G_j(x^*), \ j = 1, 2. \tag{2.6}
$$

Before we continue the discussion of *Lagrange's Method* following Equation ([2.6\)](#page-17-0), several digressions will be discussed in Sections [2.C](#page-19-0) Constraint Qualification, [2.D](#page-28-0) Tangency Argument and [2.E](#page-35-0) Necessary vs. Sufficient Consitions.

• You may have already noticed that (2.3) (2.3)

$$
dx_1 = dc/G_1(x^0)
$$
 and $dx_2 = -dc/G_2(x^0)$ (2.3)

requires $G_1(x^0) \neq 0$ and $G_2(x^0) \neq 0$.

• The question now is "what happens if $G_1(x^0) = 0$ or

$$
G_2(x^0) = 0
$$

²The case $G_1(x^0) = G_2(x^0) = 0$ will be considered later. 20

• If, say, $G_1(x^0) = 0$, then infinitesimal change of x_1^0 could be made without affecting the constraint. $dG(x^0) = G_1(x^0)dx_1 + G_2(x^0)dx_2.$ ([2.2\)](#page-8-0) • Thus, if $F_1(x^0) \neq 0$, it would be desirable to change x_1^0

in the direction that increases $F(x^0)$.

$$
dF(x^{0}) = F_{1}(x^{0})dx_{1} + F_{2}(x^{0})dx_{2}.
$$
 (2.1)

• This process could be applied until either $F_1(x) = 0$, or $G_1(x) \neq 0$.

- Intuitively, for the consumer choice model we discussed in Chapter 1, $G_1(x^0) = p_1 = 0$ means that good 1 is free.
- Then, it is desirable to consume the free good as long as consuming the good increases the consumer's utility, or until the point where good 1 is no longer free.

Remark. Note x^0 could be any interior point. In particular, if the point of consideration is the optimum point *x*∗, then,

if $G_1(x^*) = 0$, it must be the case that $F_1(x^*) = 0$.

• A more tricky question is

"what if $G_1(x^0) = G_2(x^0) = 0$?"

- There would be no problem if $G_1(x^0) = G_2(x^0) = 0$ only means that x_1^0 and x_2^0 are free and should be consumed to the point of satiation.
- However, this case is tricky since it could be arising from the quirks of algebra or calculus.

• As a concrete example, let's reconsider the consumer choice model in Chapter 1:

 $\max_{x_1, x_2} U(x_1, x_2)$

$$
s.t. p_1x_1 + p_2x_2 - I = 0.
$$

• That problem has an equivalent formulation as follows:

$$
\max_{x_1,\,x_2} U(x_1,x_2)
$$

s.t.
$$
(p_1x_1 + p_2x_2 - I)^3 = 0.
$$
 25

• Under the new formulation:

$$
G_1(x) = 3p_1(p_1x_1 + p_2x_2 - I)^2 = 0,
$$

\n
$$
G_2(x) = 3p_2(p_1x_1 + p_2x_2 - I)^2 = 0.
$$

- However, the goods are not free at the margin.
- The contradiction of $G_1(x) = G_2(x) = 0$ and $p_1, p_2 > 0$ makes our method not working.

- To avoid running into such problems, the theory assumes the condition of **Constraint Qualification**.
- *•* For our particular problem, *Constraint Qualification* requires $G_1(x^*) \neq 0$, or $G_2(x^*) \neq 0$, or both.

Remark. Failure of *Constraint Qualification* is a rare problem in practice. If you run into such a problem, you could rewrite the algebraic form of the constraint, just as in the budget constraint example above.

• The optimization condition

$$
F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*)
$$
 (2.5)

could also be recovered using the tangency argument.

- Recall in our Chapter 1 example, the optimality requires the tangency of the budget line and the indifference curve.
- In the general case, similar observation is still valid.

We could obtain the optimality condition with the help of the graph:

- The curve $G(x) = c$ is the constraint.
- The curves $F(x) = v$, $F(x) = v'$, $F(x) = v''$ are samples of indifference curves.
- The indifference curves to the right attains higher value compares to those on the left.
- The optimal x^* is attained when the constraint $G(x) =$

c is tangent to an indifference curve $F(x) = v$.

- We next look for the tangency condition.
- For $G(x) = c$, tangency means $dG(x) = 0$. From (2.2) (2.2) , we have

$$
dG(x) = G_1(x)dx_1 + G_2(x)dx_2 = 0
$$
 (2.2)

$$
\implies dx_2/dx_1 = -G_1(x)/G_2(x).
$$
 (2.7)

• Similarly, for the indifference curve $F(x) = v$, tangency means $dF(x) = 0$. From (2.1) (2.1) , we have

$$
dF(x) = F_1(x)dx_1 + F_2(x)dx_2 = 0 \qquad (2.1)
$$

$$
\implies dx_2/dx_1 = -F_1(x)/F_2(x). \tag{2.8}
$$

Recall,

$$
dx_2/dx_1 = -G_1(x)/G_2(x); \t\t(2.7)
$$

$$
dx_2/dx_1 = -F_1(x)/F_2(x). \t\t(2.8)
$$

• Since $G(x) = c$ and $F(x) = v$ are mutually tangential

at
$$
x = x^*
$$
, we get $F_1(x^*)/F_2(x^*) = G_1(x^*)/G_2(x^*)$.

• The above condition is equivalent to (2.5) (2.5) :

$$
F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*)
$$
 (2.5)

• Note that if $G_1(x) = G_2(x) = 0$, the slope in (2.7) (2.7) is not well defined.³

$$
dx_2/dx_1 = -G_1(x)/G_2(x). \t(2.7)
$$

• We avoid this problem by imposing the *Constraint Qualification* condition as discussed in Section [2.C.](#page-19-0)

³Only $G_2(x) = 0$ is not a serious problem. It only means that the slope is vertical. 35

2.E. Necessary vs. Sufficient Conditions

• Recall, in Section [2.B](#page-5-0), we established the result:

Remark. If an interior point *x*[∗] is a maximum, then $(2.5) F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*)$ holds.

- In other words, (2.5) (2.5) is only a necessary condition for optimality.
- Since the first-order derivatives are involved, it is called the *first-order necessary condition*.

- *• First-order necessary condition* helps us narrow down the search for the maximum.
- However, it does not guarantee the maximum.

Consider the following unconstrained maximization problem:

- We want to maximize $F(x)$.
- The first-order necessary condition for this problem is

$$
F'(x) = 0.\t\t(2.9)
$$

- All x_1, x_2, x_3 and x_4 satisfy condition (2.9) (2.9) .
- However, only x_3 is the global maximum that we are looking for.

First-order necessary condition: local maximum

- x_1 is a local maximum but not a global one.
- The problem occurs since when we apply first-order approximation, we only check whether $F(x)$ could be improved by making infinitesimal change in *x*.
- Therefore, we obtain a condition for local peaks.

First-order necessary condition: minimum

- x_2 is a minimum.
- This problem occurs since first-order necessary condiition for minimum is the same as that for maximum.
- More specifically, this is because minimizing $F(x)$ is the same as maximizing $-F(x)$.
- First-order necessary condition: $F'(x) = 0$

First-order necessary condition: saddle point

- *• x*⁴ is called a *saddle point*.
- You could think of $F(x) = x^3$ as a concrete example.
- We have $F'(0) = 0$, but $x = 0$ is neither a maximum

- We used unconstrained maximization problem for easy illustration.
- *•* The problems remain for constrained maximization problem.

Stationary point

- *•* Any point satisfying the *first-order necessary conditions* is called *a stationary point*.
- *•* The global maximum is one of these points.
- We will learn how to check whether a point is indeed a maximum in Chapters 6 to Chapter 8.

2.F. Lagrange's Method

In this section, we will explore a general method, called *Lagrange's Method*, to solve the constrained maximization problem restated as follows:

> $\max_{x} F(x)$ s.t. $G(x) = c$.

• We introduce an unknown variable *^λ*⁴ and define ^a new function, called the Lagrangian:

$$
\mathcal{L}(x,\lambda) = F(x) + \lambda [c - G(x)] \quad (2.10)
$$

• Partial derivatives of *L* give

$$
\mathcal{L}_j(x,\lambda) = \partial \mathcal{L}/\partial x_j = F_j(x) - \lambda G_j(x) \qquad (\mathcal{L}_j)
$$

$$
\mathcal{L}_{\lambda}(x,\lambda) = \partial \mathcal{L}/\partial \lambda = c - G(x) \tag{L_{\lambda}}
$$

⁴You would see in a minute that this λ is the same as that in Section [2.B](#page-5-0). 46

• Restate (\mathcal{L}_i) (\mathcal{L}_i) (\mathcal{L}_i)

$$
\mathcal{L}_j(x,\lambda) = \partial \mathcal{L}/\partial x_j = F_j(x) - \lambda G_j(x) \qquad (\mathcal{L}_j)
$$

• Recall first-order necessary condition (2.5) (2.5)

$$
F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*) = \lambda \tag{2.5}
$$

• First-order necessary condition is just

$$
\mathcal{L}_j(x,\lambda)=0.
$$

• Restate (\mathcal{L}_{λ}) (\mathcal{L}_{λ}) (\mathcal{L}_{λ})

$$
\mathcal{L}_{\lambda}(x,\lambda) = \partial \mathcal{L}/\partial \lambda = c - G(x) \qquad (\mathcal{L}_{\lambda})
$$

- Recall constraint: $G(x) = c$.
- *•* The constraint is simply

$$
\mathcal{L}_{\lambda}(x,\lambda)=0.
$$

Theorem 2.1 (Lagrange's Theorem)**.** *Suppose x is a twodimensional vector, c is a scalar, and F and G functions taking scalar values. Suppose x*[∗] *solves the following maximization problem:*

 $max F(x)$ *s.t.* $G(x) = c$,

and the constraint qualification holds, that is, if $G_i(x^*) \neq 0$ *for at least one j.*

Theorem 2.1 (continued).

Define function \mathcal{L} *as in* (2.10) (2.10) (2.10) :

$$
\mathcal{L}(x,\lambda) = F(x) + \lambda [c - G(x)]. \qquad (2.10)
$$

Then there is a value of λ *such that*

$$
\mathcal{L}_j(x^*, \lambda) = 0 \text{ for } j = 1, 2 \qquad \mathcal{L}_\lambda(x^*, \lambda) = 0. \tag{2.11}
$$

- Please always keep in mind that the theorem only provide necessary conditions for optimality.
- Besides, Condition (2.11) do not guarantee existence or uniqueness of the solution.

- If conditions in (2.11) (2.11) have no solution, it may be that
	- **–** the maximization problem itself has no solution,
	- **–** or the *Constraint Qualification* may fail so that the first-order conditions are not applicable.
- If (2.11) (2.11) have multiple solutions, we need to check the second-order conditions. 5

 5 We will learn Second-Order Conditions in Chapter 8. 52

In most of our applications, the problems will be well-posed and the first-order necessary condition will lead to a unique solution.

2.G. Examples

In this section, we will apply the *Lagrange's Theorem* in examples.

Example 1. Preferences that Imply Constant Budget Shares.

- *•* Consider a consumer choosing between two goods *x* and *y*, with prices *p* and *q* respectively.
- His income is *I*, so the budget constraint is $px+qy = I$.
- Suppose the utility function is

$$
U(x, y) = \alpha \ln(x) + \beta \ln(y).
$$

• What is the consumer's optimal bundle (x, y) ?

Example 1: Solution.

First, state the problem:

$$
\max_{x,y} U(x,y) \equiv \max_{x,y} \alpha \ln(x) + \beta \ln(y)
$$

s.t. $px + qy = I$.

Then, we apply *Lagrange's Method*.

i. Write the Lagrangian:

$$
\mathcal{L}(x, y, \lambda) = \alpha \ln(x) + \beta \ln y + \lambda [I - px - qy].
$$

Example 1: Solution (continued)

ii. First-order necessary conditions are

$$
\partial \mathcal{L}/\partial x = \alpha/x - \lambda p = 0, \qquad (2.12)
$$

$$
\partial \mathcal{L}/\partial y = \beta/y - \lambda q = 0, \tag{2.13}
$$

$$
\partial \mathcal{L}/\partial \lambda = I - px - py = 0. \tag{2.14}
$$

Solving the equation system, we get

$$
x = \frac{\alpha I}{(\alpha + \beta)p}
$$
, $y = \frac{\beta I}{(\alpha + \beta)q}$, $\lambda = \frac{(\alpha + \beta)}{I}$.

57

Example 1: Solution (continued)

$$
x = \frac{\alpha I}{(\alpha + \beta)p},
$$
 $y = \frac{\beta I}{(\alpha + \beta)q}.$

We call this demand implying constant budget shares since the share of income spent on the two goods are constant:

$$
\frac{px}{I} = \frac{\alpha}{\alpha + \beta}, \qquad \frac{qy}{I} = \frac{\beta}{\alpha + \beta}.
$$

Example 2: Guns vs. Butter.

- Consider an economy with 100 units of labor.
- *•* It can produce guns *x* or butter *y*.
- *•* To produce *^x* guns, it takes *^x*² units of labor; likewise *y*² units of labor are needed to produce *y* butter.
- Therefore, the economy's resource constraint is

$$
x^2 + y^2 = 100.
$$

Example 2: Guns vs. Butter.

- *•* Let *a* and *b* be social values attached to guns and butter.
- And the objective function to be maximized is

$$
F(x,y) = ax + by.
$$

• What is the optimal amount of guns and butter?

Example 2: Solution.

First, state the problem:

$$
\max_{x,y} F(x,y) \equiv \max_{x,y} ax + by
$$

s.t. $x^2 + y^2 = 100$.

Then, we apply *Lagrange's Method*.

i Write the Lagrangian:

$$
\mathcal{L}(x, y, \lambda) = ax + by + \lambda \left[100 - x^2 - y^2\right].
$$

Example 2: Solution (continued)

ii. First-order necessary conditions are

$$
\partial \mathcal{L}/\partial x = a - 2\lambda x = 0,
$$

$$
\partial \mathcal{L}/\partial y = b - 2\lambda y = 0,
$$

$$
\partial \mathcal{L}/\partial \lambda = 100 - x^2 - y^2 = 0.
$$

Solving the equation system, we get

$$
x = \frac{10a}{\sqrt{a^2 + b^2}},
$$
 $y = \frac{10b}{\sqrt{a^2 + b^2}},$ $\lambda = \frac{\sqrt{a^2 + b^2}}{20}.$

Example 2: Solution (continued)

$$
x = \frac{10a}{\sqrt{a^2 + b^2}}, \qquad y = \frac{10b}{\sqrt{a^2 + b^2}}.
$$

- *•* Here, the optimal values *x* and *y* are called *homogeneous of degree* 0 *with respect to a and b*.
	- **–** If we increase *a* and *b* in equal proportions, the values of *x* and *y* would not change.
	- **–** In other words, *x* would increase only when *a* increases relatively more than the increment of *b*.

Example 2: Solution (continued)

Remark. It is always useful to use graphs to help you think.

