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Lagrange’s Method

In this chapter, we will formalize the maximization problem

with equality constraints and introduce a general method,

called Lagrange’s Method to solve such problems.
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2.A. Statement of the problem

Recall, in Chapter 1, the maximization problem with the

equality constriant is stated as follows:

max
x1≥0, x2≥0

U(x1, x2)

s.t. p1x1 + p2x2 = I.
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Statement of the problem

In this chapter, we will temporarily ignore the non-negativity

constraints on x1 and x2
1 and introduce a general statement

of the problem, as follows:

max
x

F (x)

s.t. G(x) = c.

x is a vector of choice variables, arranged in a column:

x =

!

""#
x1

x2

$

%%& .

1We will learn how to deal with non-negativity in Chapter 3. 4



Statement of the problem

• As in Chapter 1, we use x∗ =

!

""#
x∗

1

x∗
2

$

%%& to denote the

optimal value of x.

• F (x), taking the place of U(x1, x2), is the objective

function, the function to be maximized.

• G(x) = c, taking the place of p1x1 + p2x2 = I, is the

constraint. However, please keep in mind that in gen-

eral, G(x) could be non-linear.
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2.B. The arbitrage argument

• The essence of the arbitrage argument is to find a point

where “no-arbitrage” condition is satisfied.

• That is, to find the point from which any infinitestimal

change along the constraint does not yield a higher

value of the objective function.
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The arbitrage argument

We reiterate the algorithm of finding the optimal point:

(i) Start at any trial point, on the constraint.

(ii) Consider a small change of the point along the con-

straint. If the new point constitutes a higher value of

the objective function, use the new point as the new

trial point, and repeat Step (i) and (ii).

(iii) Stop once a better new point could not be found. The

last point is the optimal point.
7



The arbitrage argument

• Now, we will discuss the arbitrage argument behind the

algorithm and derive the “non-arbitrage” condition.

• Consider initial point x0 and infinitesimal change dx.

• Since the change in x0 is infinitesimal, the changes in

values could be approximated by the first-order linear

terms in Taylor series.
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The arbitrage argument

Using subscripts to denote partial derivatives, we have

dF (x0) = F (x0 + dx) − F (x0) = F1(x0)dx1 + F2(x0)dx2; (2.1)

dG(x0) = G(x0 + dx) − G(x0) = G1(x0)dx1 + G2(x0)dx2. (2.2)

Recall the concrete example in Chapter 1,

F1(x) = MU1 and F2(x) = MU2;

G1(x) = p1 and G2(x) = p2.
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The arbitrage argument

• We continue applying the argitrage argument with the

general model.

• The initial point x0 is on the constraint, and after the

change dx, x0 + dx is still on the contraint.

• Therefore, dG(x0) = 0.
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The arbitrage argument

• dG(x0) = 0 together with (2.2),

dG(x0) = G1(x0)dx1 + G2(x0)dx2. (2.2)

• We have G1(x0)dx1 = −G2(x0)dx2 = dc.

• Then,

dx1 = dc/G1(x0) and dx2 = −dc/G2(x0). (2.3)
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The arbitrage argument

From (2.3) and (2.1)

dx1 = dc/G1(x0) and dx2 = −dc/G2(x0) (2.3)

dF (x0) = F1(x0)dx1 + F2(x0)dx2 (2.1)

we get

dF (x0) = F1(x0)dc/G1(x0) + F2(x0)
'
−dc/G2(x0)

(

=
)
F1(x0)/G1(x0) − F2(x0)/G2(x0)

*
dc. (2.4)
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The arbitrage argument

dF (x0) =
)
F1(x0)/G1(x0) − F2(x0)/G2(x0)

*
dc. (2.4)

• Recall, dc = G1(x0)dx1 = −G2(x0)dx2.

• Since we do not impose any boundary for x, so x0 must

be an interior point, and dc could be of either sign.

• If the expression in the bracket is positive, then F (x0)

could increase by choosing dc > 0.

• Similarly, if it is negative, then choose dc < 0.
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The arbitrage argument

dF (x0) =
)
F1(x0)/G1(x0) − F2(x0)/G2(x0)

*
dc. (2.4)

• The same argument holds for all other interior points

along the constraint.

• Therefore, for the interior optimum x∗, we must the

following “non-arbitrage” condition:

F1(x∗)/G1(x∗) − F2(x∗)/G2(x∗) = 0

=⇒ F1(x∗)/G1(x∗) = F2(x∗)/G2(x∗) (2.5)
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The arbitrage argument

F1(x∗)/G1(x∗) = F2(x∗)/G2(x∗) (2.5)

• It is important to distinguish between the interior op-

timal point x∗ and the points that satisfy (2.5).

• The correct statement is as follows:

Remark. If an interior point x∗ maximizes F (x)

subject to G(x) = c, then (2.5) holds.
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The arbitrage argument

Remark. If an interior point x∗ is a maximum, then

(2.5) F1(x∗)/G1(x∗) = F2(x∗)/G2(x∗) holds.

• The reverse statement may not be true.

• That is to say, (2.5) is only the necessary condition

for an interior optimum.

• We will discuss it in detail in Section 2.E.
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The arbitrage argument

• Now, we come back to Condition (2.5):

F1(x∗)/G1(x∗) = F2(x∗)/G2(x∗) (2.5)

• Recall in Chapter 1, Condition (2.5) is equivalent to

MU1/p1 = MU2/p2.

• We used λ to denote the marginal utility of income,

which equals to MU1/p1 = MU2/p2.
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The arbitrage argument

• Similarly, in the general case, we also define λ as

λ = F1(x∗)/G1(x∗) = F2(x∗)/G2(x∗)

=⇒ Fj(x∗) = λGj(x∗), j = 1, 2. (2.6)

• Here, λ corresponds to the change of F (x∗) with re-

spect to a change in c.

• We will learn this interpretation and its implications

in Chapter 4.
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A few Digressions

Fj(x∗) = λGj(x∗), j = 1, 2. (2.6)

Before we continue the discussion of Lagrange’s Method fol-

lowing Equation (2.6), several digressions will be discussed

in Sections 2.C Constraint Qualification, 2.D Tangency Ar-

gument and 2.E Necessary vs. Sufficient Consitions.
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2.C. Constraint Qualification

• You may have already noticed that (2.3)

dx1 = dc/G1(x0) and dx2 = −dc/G2(x0) (2.3)

requires G1(x0) ∕= 0 and G2(x0) ∕= 0.

• The question now is “what happens if G1(x0) = 0 or

G2(x0) = 0?”2

2The case G1(x0) = G2(x0) = 0 will be considered later. 20



Constraint Qualification

• If, say, G1(x0) = 0, then infinitesimal change of x0
1

could be made without affecting the constraint.

dG(x0) = G1(x0)dx1 + G2(x0)dx2. (2.2)

• Thus, if F1(x0) ∕= 0, it would be desirable to change x0
1

in the direction that increases F (x0).

dF (x0) = F1(x0)dx1 + F2(x0)dx2. (2.1)

• This process could be applied until either F1(x) = 0,

or G1(x) ∕= 0.
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Constraint Qualification

• Intuitively, for the consumer choice model we discussed

in Chapter 1, G1(x0) = p1 = 0 means that good 1 is

free.

• Then, it is desirable to consume the free good as long

as consuming the good increases the consumer’s utility,

or until the point where good 1 is no longer free.
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Constraint Qualification

Remark. Note x0 could be any interior point. In particular,

if the point of consideration is the optimum point x∗, then,

if G1(x∗) = 0, it must be the case that F1(x∗) = 0.
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Constraint Qualification

• A more tricky question is

“what if G1(x0) = G2(x0) = 0?”

• There would be no problem if G1(x0) = G2(x0) = 0

only means that x0
1 and x0

2 are free and should be con-

sumed to the point of satiation.

• However, this case is tricky since it could be arising

from the quirks of algebra or calculus.
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Constraint Qualification

• As a concrete example, let’s reconsider the consumer

choice model in Chapter 1:

max
x1, x2

U(x1, x2)

s.t. p1x1 + p2x2 − I = 0.

• That problem has an equivalent formulation as follows:

max
x1, x2

U(x1, x2)

s.t. (p1x1 + p2x2 − I)3 = 0. 25



Constraint Qualification

• Under the new formulation:

G1(x) = 3p1(p1x1 + p2x2 − I)2 = 0,

G2(x) = 3p2(p1x1 + p2x2 − I)2 = 0.

• However, the goods are not free at the margin.

• The contradiction of G1(x) = G2(x) = 0 and p1, p2 > 0

makes our method not working.
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Constraint Qualification

• To avoid running into such problems, the theory as-

sumes the condition of Constraint Qualification.

• For our particular problem, Constraint Qualification

requires G1(x∗) ∕= 0, or G2(x∗) ∕= 0, or both.
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Constraint Qualification

Remark. Failure of Constraint Qualification is a rare prob-

lem in practice. If you run into such a problem, you could

rewrite the algebraic form of the constraint, just as in the

budget constraint example above.
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2.D. The tangency argument

• The optimization condition

F1(x∗)/G1(x∗) = F2(x∗)/G2(x∗) (2.5)

could also be recovered using the tangency argument.

• Recall in our Chapter 1 example, the optimality re-

quires the tangency of the budget line and the indiffer-

ence curve.

• In the general case, similar observation is still valid.
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The tangency argument

We could obtain the optimality condition with the help of

the graph:
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The tangency argument

• The curve G(x) = c is the constraint.

• The curves F (x) = v, F (x) = v′, F (x) = v′′ are sam-

ples of indifference curves.

• The indifference curves to the right attains higher value

compares to those on the left.

• The optimal x∗ is attained when the constraint G(x) =

c is tangent to an indifference curve F (x) = v.
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The tangency argument

• We next look for the tangency condition.

• For G(x) = c, tangency means dG(x) = 0. From (2.2),

we have

dG(x) = G1(x)dx1 + G2(x)dx2 = 0 (2.2)

=⇒ dx2/dx1 = −G1(x)/G2(x). (2.7)
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The tangency argument

• Similarly, for the indifference curve F (x) = v, tangency

means dF (x) = 0. From (2.1), we have

dF (x) = F1(x)dx1 + F2(x)dx2 = 0 (2.1)

=⇒ dx2/dx1 = −F1(x)/F2(x). (2.8)
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The tangency argument

Recall,
dx2/dx1 = −G1(x)/G2(x); (2.7)

dx2/dx1 = −F1(x)/F2(x). (2.8)

• Since G(x) = c and F (x) = v are mutually tangential

at x = x∗, we get F1(x∗)/F2(x∗) = G1(x∗)/G2(x∗).

• The above condition is equivalent to (2.5):

F1(x∗)/G1(x∗) = F2(x∗)/G2(x∗) (2.5)
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The tangency argument

• Note that if G1(x) = G2(x) = 0, the slope in (2.7) is

not well defined.3

dx2/dx1 = −G1(x)/G2(x). (2.7)

• We avoid this problem by imposing the Constraint Qual-

ification condition as discussed in Section 2.C.

3Only G2(x) = 0 is not a serious problem. It only means that the
slope is vertical. 35



2.E. Necessary vs. Sufficient Conditions

• Recall, in Section 2.B, we established the result:

Remark. If an interior point x∗ is a maximum,

then (2.5) F1(x∗)/G1(x∗) = F2(x∗)/G2(x∗) holds.

• In other words, (2.5) is only a necessary condition for

optimality.

• Since the first-order derivatives are involved, it is called

the first-order necessary condition.
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First-order necessary condition

• First-order necessary condition helps us narrow down

the search for the maximum.

• However, it does not guarantee the maximum.
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First-order necessary condition

Consider the following unconstrained maximization problem:
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First-order necessary condition

• We want to maximize F (x).

• The first-order necessary condition for this problem is

F ′(x) = 0. (2.9)

• All x1, x2, x3 and x4 satisfy condition (2.9).

• However, only x3 is the global maximum that we are

looking for.
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First-order necessary condition: local maximum

• x1 is a local maximum but not a global one.

• The problem occurs since when we apply first-order

approximation, we only check whether F (x) could be

improved by making infinitesimal change in x.

• Therefore, we obtain a condition for local peaks.
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First-order necessary condition: minimum

• x2 is a minimum.

• This problem occurs since first-order necessary condi-

ition for minimum is the same as that for maximum.

• More specifically, this is because minimizing F (x) is

the same as maximizing −F (x).

• First-order necessary condiition: F ′(x) = 0
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First-order necessary condition: saddle point

• x4 is called a saddle point.

• You could think of F (x) = x3 as a concrete example.

• We have F ′(0) = 0, but x = 0 is neither a maximum

nor a minimum.
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First-order necessary condition

• We used unconstrained maximization problem for easy

illustration.

• The problems remain for constrained maximization prob-

lem.
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Stationary point

• Any point satisfying the first-order necessary condi-

tions is called a stationary point.

• The global maximum is one of these points.

• We will learn how to check whether a point is indeed

a maximum in Chapters 6 to Chapter 8.
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2.F. Lagrange’s Method

In this section, we will explore a general method, called

Lagrange’s Method, to solve the constrained maximization

problem restated as follows:

max
x

F (x)

s.t. G(x) = c.
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Lagrange’s Method

• We introduce an unknown variable λ4 and define a new

function, called the Lagrangian:

L(x, λ) = F (x) + λ [c − G(x)] (2.10)

• Partial derivatives of L give

Lj(x, λ) = ∂L/∂xj = Fj(x) − λGj(x) (Lj)

Lλ(x, λ) = ∂L/∂λ = c − G(x) (Lλ)

4You would see in a minute that this λ is the same as that in Section
2.B. 46



Lagrange’s Method

• Restate (Lj)

Lj(x, λ) = ∂L/∂xj = Fj(x) − λGj(x) (Lj)

• Recall first-order necessary condition (2.5)

F1(x∗)/G1(x∗) = F2(x∗)/G2(x∗) = λ (2.5)

• First-order necessary condition is just

Lj(x, λ) = 0.
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Lagrange’s Method

• Restate (Lλ)

Lλ(x, λ) = ∂L/∂λ = c − G(x) (Lλ)

• Recall constraint: G(x) = c.

• The constraint is simply

Lλ(x, λ) = 0.
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Lagrange’s Method

Theorem 2.1 (Lagrange’s Theorem). Suppose x is a two-

dimensional vector, c is a scalar, and F and G functions

taking scalar values. Suppose x∗ solves the following maxi-

mization problem:
max

x
F (x)

s.t. G(x) = c,

and the constraint qualification holds, that is, if Gj(x∗) ∕= 0

for at least one j.
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Lagrange’s Method

Theorem 2.1 (continued).

Define function L as in (2.10):

L(x, λ) = F (x) + λ [c − G(x)] . (2.10)

Then there is a value of λ such that

Lj(x∗, λ) = 0 for j = 1, 2 Lλ(x∗, λ) = 0. (2.11)
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Lagrange’s Method

• Please always keep in mind that the theorem only pro-

vide necessary conditions for optimality.

• Besides, Condition (2.11) do not guarantee existence

or uniqueness of the solution.
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Lagrange’s Method

• If conditions in (2.11) have no solution, it may be that

– the maximization problem itself has no solution,

– or the Constraint Qualification may fail so that

the first-order conditions are not applicable.

• If (2.11) have multiple solutions, we need to check the

second-order conditions.5

5We will learn Second-Order Conditions in Chapter 8. 52



Lagrange’s Method

In most of our applications, the problems will be well-posed

and the first-order necessary condition will lead to a unique

solution.
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2.G. Examples

In this section, we will apply the Lagrange’s Theorem in

examples.
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Example 1. Preferences that Imply Constant Budget Shares.

• Consider a consumer choosing between two goods x

and y, with prices p and q respectively.

• His income is I, so the budget constraint is px+qy = I.

• Suppose the utility function is

U(x, y) = α ln(x) + β ln(y).

• What is the consumer’s optimal bundle (x, y)?
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Example 1: Solution.

First, state the problem:

max
x, y

U(x, y) ≡ max
x, y

α ln(x) + β ln(y)

s.t. px + qy = I.

Then, we apply Lagrange’s Method.

i. Write the Lagrangian:

L(x, y, λ) = α ln(x) + β ln y + λ [I − px − qy] .
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Example 1: Solution (continued)

ii. First-order necessary conditions are

∂L/∂x = α/x − λp = 0, (2.12)

∂L/∂y = β/y − λq = 0, (2.13)

∂L/∂λ = I − px − py = 0. (2.14)

Solving the equation system, we get

x = αI

(α + β)p, y = βI

(α + β)q , λ = (α + β)
I

.
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Example 1: Solution (continued)

x = αI

(α + β)p, y = βI

(α + β)q .

We call this demand implying constant budget shares since

the share of income spent on the two goods are constant:

px

I
= α

α + β
,

qy

I
= β

α + β
.
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Example 2: Guns vs. Butter.

• Consider an economy with 100 units of labor.

• It can produce guns x or butter y.

• To produce x guns, it takes x2 units of labor; likewise

y2 units of labor are needed to produce y butter.

• Therefore, the economy’s resource constraint is

x2 + y2 = 100.
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Example 2: Guns vs. Butter.

• Let a and b be social values attached to guns and but-

ter.

• And the objective function to be maximized is

F (x, y) = ax + by.

• What is the optimal amount of guns and butter?
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Example 2: Solution.

First, state the problem:

max
x, y

F (x, y) ≡ max
x, y

ax + by

s.t. x2 + y2 = 100.

Then, we apply Lagrange’s Method.

i Write the Lagrangian:

L(x, y, λ) = ax + by + λ
)
100 − x2 − y2

*
.
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Example 2: Solution (continued)

ii. First-order necessary conditions are

∂L/∂x = a − 2λx = 0,

∂L/∂y = b − 2λy = 0,

∂L/∂λ = 100 − x2 − y2 = 0.

Solving the equation system, we get

x = 10a√
a2 + b2

, y = 10b√
a2 + b2

, λ =
√

a2 + b2

20 .
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Example 2: Solution (continued)

x = 10a√
a2 + b2

, y = 10b√
a2 + b2

.

• Here, the optimal values x and y are called homoge-

neous of degree 0 with respect to a and b.

– If we increase a and b in equal proportions, the

values of x and y would not change.

– In other words, x would increase only when a in-

creases relatively more than the increment of b.
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Example 2: Solution (continued)

Remark. It is always useful to use graphs to help you think.
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