
Dynamic Optimization

Chapter 8. Second-Order Conditions

8.A. Local and Global Maxima

In Chapter 7, we have discussed the sufficient conditions for optimality, confined to

the context of concave programming (or more broadly, quasi-concave programming).

Especially, we have concluded that when F is concave and G is convex, the first-order

conditions are sufficient for maximization. More accurately, the conditions are sufficient

for a global maximum. That is, x∗ satisfying the conditions does at least as well as any

other feasible x.

We obtain a global maximum in concave programming (quasi-concave programming) since

the convexity (quasi-convexity) properties are defined globally. For example, recall the

definition of convexity,

Definition 6.B.4 (Convex Function). A function f : S → R, defined on a convex set

S ⊂ RN , is convex if

f(αxa + (1 − α)xb) ≤ αf(xa) + (1 − α)f(xb), (6.4)

for all xa, xb ∈ S and for all α ∈ [0, 1].

From the definition, (6.4) needs to hold over the full domain of f . Similar requirements

appear for concavity and quasi-convextiy (quasi-concavity). These properties ensure that

the desired curvature is over the full domain and thus sufficient for a global maximum.

The conclusions of a global maximiximum are ideal, however, in applications, we may

not have functions that have the desired convexity property. In this chapter, we will

focus on the curvature of the objective and constraint functions in a small neighborhood

of the proposed optimum. The conditions are expressed in terms of the second-order

derivatives of the functions at the point. Such conditions are sufficient for local optima –

x∗ satisfying the conditions does better than any other feasible x in a sufficiently small

neighborhood of x∗.
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This is a useful property when global conditions are not met. Moreover, it has a valuable

by-product. It turns out that the second-order conditions play an instrumental role in

determining the comparative static responses of the optimum choice variables x. We

will discuss the comparative static result while we develop the theory of second-order

conditions.

8.B. Unconstrained Maximization

We will start with the simple cases of unconstrained maximization.

First, consider the following unconstrained maximization problem with a scalar x:

max
x

F (x).

Let x∗ be a candidate for the optimum choice. Expand F in a Taylor series around x∗:

F (x) = F (x∗) + F ′(x∗)(x − x∗) + 1
2F ′′(x∗)(x − x∗)2 + ... (8.1)

The first-order necessary condition is

F ′(x∗) = 0.

Then (8.1) becomes

F (x) = F (x∗)+ 1
2F ′′(x∗)(x−x∗)2 + ... =⇒ F (x)−F (x∗) = 1

2F ′′(x∗)(x−x∗)2 + ... (8.2)

For x sufficiently close to x∗, the quadratic term will dominate higher-order terms in the

Taylor expansion. Therefore,

(i) F ′′(x∗) > 0 =⇒ F (x) − F (x∗) > 0 =⇒ F (x) > F (x∗).

In other words, x∗ will not yield a maximum of F (x) in a small neighborhood. Of

course, it will not yield a maximum over the whole range of F . This argument gives

a second-order necessary condition for x∗ to yield a maximum, local or global:

F ′′(x∗) ≤ 0. (8.3)
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(ii) F ′′(x∗) < 0 =⇒ F (x) − F (x∗) < 0 =⇒ F (x) < F (x∗).

In other words, in a small neighborhood of x∗, we will have F (x∗) > F (x), irrespec-

tive of the signs of higher-order terms. Thus,

F ′′(x) < 0 (8.4)

is a second-order sufficient condition for x∗ to yield a local maximum.

Note the differences between the weak inequality condition (8.3) and the strict inequality

condition (8.4):

(i) (8.3) is a necessary condition, while (8.4) is a sufficient condition.

(ii) (8.3) is a condition for both local and global maximum, while (8.4) is a condition

only for local maximum.

In the later discussions, we will focus on the local sufficiency role of second-order condi-

tions. Please keep in mind that necessary conditions like (8.3) do exist.

A local maximum satisfying the second-order sufficient condition is called a regular max-

imum. If the maximum is “irregular”, that is , if F ′′(x) = 0, then we have to look at the

higher-order derivatives. Now, (8.2) becomes

F (x) − F (x∗) = 1
3!F

′′′(x∗)(x − x∗)3 + 1
4!F

′′′′(x∗)(x − x∗)4 + ...

Then, F ′′′(x∗) = 0 is a necessary condition; F ′′′(x∗) = 0 and F ′′′′(x) < 0 is a sufficient

condition. We will leave aside such complications and focus on the regular maximum.

Comparative Statics. Now suppose that the problem involves a parameter θ, that is,

the objective function is F (x, θ). The first-order necessary condition is

Fx(x∗, θ) = 0. (8.5)

(8.5) implicitly defines x∗ as a function of θ. We want to know how the optimum choice

x∗ would change in response to a change of θ.
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Totally differentiate (8.5), we have1

Fxx(x∗, θ)dx∗ + Fxθ(x∗, θ)dθ = 0 or dx∗

dθ
= −Fxθ(x∗, θ)

Fxx(x∗, θ) . (8.6)

At a regular maximum, Fxx(x∗, θ) < 0, the sign of dx∗/dθ is the same as the sign of

Fxθ(x∗, θ). This demonstrates how the second-order condition helps us in assessing the

qualitative effects of parameter changes on the optimum choice.

An Economic Illustration. Consider the following revenue maximization problem:

max
x

R(x, θ) ≡ max
x

P (x, θ) · x,

where x is the output and θ is a shift parameter; P (x, θ) is the inverse demand curve.

Suppose

Rθ(x, θ) = Pθ(x, θ) · x > 0

for all x. That is, an increase in θ shifts the demand and the revenue curves upward. By

the first-order necessary condition,

Rx(x∗, θ) = Px(x∗, θ) · x∗ + P (x∗, θ) = 0. (8.7)

Totally differentiate (8.7), we have

Rxx(x∗, θ)dx∗ + Rxθ(x∗, θ)dθ = 0 =⇒ dx∗

dθ
= −Rxθ(x∗, θ)

Rxx(x∗, θ) (8.8)

At a regular maximum, we have Rxx(x∗, θ) < 0. Therefore, the sign of dx∗/dθ is the same

as the sign of Rxθ(x∗, θ). Thus, an increase in θ will increase the revenue-maximizing

output x∗ if Rxθ(x∗, θ) > 0. This is true if the increase in θ shifts the marginal revenue

upward:
dRx(x, θ)

dθ
> 0.

Of course, it is perfectly possible that as θ increases, the average revenue shifts up:

Pθ(x, θ) > 0; but the marginal revenue shifts down: dRx(x, θ)/dθ < 0. What is needed

1We could also write x∗ as a function of θ, and differentiate (8.5) with respect to θ. By chain rule,
Fxx(x∗(θ), θ) dx∗

dθ + Fxθ(x∗(θ), θ) = 0 =⇒ dx∗

dθ = − Fxθ(x∗,θ)
Fxx(x∗,θ) .
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is a twist that reduces the elasticity of demand (Ed > 0). To see this,

Rx(x, θ) = Px(x, θ) + P (x, θ) = P (x, θ)
!

Px(x, θ) x

P (x, θ) + 1
"

= P (x, θ)
#
1 − 1

Ed

$
.

Even though, an increase in θ increases P (x, θ), it is still possible that Rx(x, θ) goes down

when Ed decreases with θ. If the marginal revenue does shift down (dRx(x, θ)/dθ < 0),

then by (8.8), a favorable shift of demand will cause output to fall.

More Choice Variables. Let us turn to the case with a vector of choice variables. Now

the Taylor expansion becomes

F (x) = F (x∗) + Fx(x∗)(x − x∗) + 1
2(x − x∗)T Fxx(x∗)(x − x∗) + ... (8.9)

= F (x∗) +
n%

j=1

&
Fj(x∗)(xj − x∗

j)
'

+ 1
2

n%

j=1

n%

k=1
Fjk(xj − x∗

j)(xk − x∗
k) + ...

Here, Fxx is the symmetric square matrix of the second-order partial derivatives Fjk ≡

∂F/∂xj∂xk and the superscript T denotes the transpose operation to change the column

vector into a row vector.

Similar to the scalar case, we could obtain the second-order necessary condition as well as

the second-order sufficient condition. The first-order necessary condition is Fx(x∗) = 0.

Then (8.9) becomes

F (x) = F (x∗) + 1
2(x − x∗)T Fxx(x∗)(x − x∗) + ...

=⇒ F (x) − F (x∗) = 1
2(x − x∗)T Fxx(x∗)(x − x∗) + ...

For x sufficiently close to x∗, the quadratic term dominates high-order terms. Therefore,

(i) (x − x∗)T Fxx(x∗)(x − x∗) ≤ 0 is the second-order necessary condition for x∗ to yield

a local or global maximum;

(ii) (x − x∗)T Fxx(x∗)(x − x∗) < 0 is the second-order sufficient condition for x∗ to yield

a local maximum.

We will next link the second-order derivative test with the mathematical concepts of

Negative (Semi-)Definiteness of matrices.
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Negative (Semi-)Definite Matrix.

Definition 8.B.1 (Negative Definite). A symmetric N ×N matrix M is negative definite

if

yT My < 0 (8.10)

for all non-zero y ∈ RN .

Definition 8.B.2 (Negative Semi-definite). A symmetric N × N matrix M is negative

semi-definite if

yT My ≤ 0 (8.11)

for all y ∈ RN .

Example 1. M =

(

))))))*

−2 1 0

1 −2 1

0 1 −2

+

,,,,,,-
is negative definite since for any non-zero y =

(

))))))*

y1

y2

y3

+

,,,,,,-
,

we have

yT My =
#
y1 y2 y3

$

(

))))))*

−2 1 0

1 −2 1

0 1 −2

+

,,,,,,-

(

))))))*

y1

y2

y3

+

,,,,,,-
=

#
−2y1 + y2 y1 − 2y2 + y3 y2 − 2y3

$

(

))))))*

y1

y2

y3

+

,,,,,,-

= −
&
y2

1 + (y1 − y2)2 + (y2 − y3)2 + y2
3

'
< 0.

This result is the negative of sum of squares, and therefore non-positive. Furthermore,

the result is zero only if y1 = y2 = y3 = 0 that is, when y is the zero vector. Therefore,

for any non-zero vector y, the result is always negative.

Example 2. M =

(

))*
−1 1

1 −1

+

,,- is negative semi-definite since for any y =

(

))*
y1

y2

+

,,-, we have

yT My =
#
y1 y2

$
(

))*
−1 1

1 −1

+

,,-

(

))*
y1

y2

+

,,- =
#
−y1 + y2 y1 − y2

$
(

))*
y1

y2

+

,,- = −(y1 + y2)2 ≤ 0.

This result is the negative of sum of squares, and therefore non-positive. When y1 = −y2,

for example y =

(

))*
1

−1

+

,,-, the result is 0.
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Note that a matrix M with all negative entries may not be negative definite. Example 3

illustrates the case where all entries in M is negative whereas M is not negative definite.

Example 3. M =

(

))*
−1 −2

−2 −1

+

,,- is not negative definite since for y =

(

))*
−1

1

+

,,- we have

yT My =
#
−1 1

$
(

))*
−1 −2

−2 −1

+

,,-

(

))*
−1

1

+

,,- =
#
−1 1

$
(

))*
−1

1

+

,,- = 2 > 0.

Similarly, we could define positive (semi-)definite matrices analogously.

Definition 8.B.3 (Positive Definite). A symmetric N × N matrix M is positive definite

if

yT My > 0 (8.12)

for all non-zero y ∈ RN .

Definition 8.B.4 (Positive Semi-definite). A symmetric N × N matrix M is positive

semi-definite if

yT My ≥ 0 (8.13)

for all y ∈ RN .

Remark. A matrix that is not positive semi-definite and not negative semi-definite is

called indefinite.

There are various ways to check the definiteness of matrices. In Examples 1, 2 and

3, we have used the definition to check the definiteness. Below, we will introduce the

determinantal test for definiteness.

Before discussing the general theorem, we need to learn some new concepts.

Definition 8.B.5 (Principal Submatrix and Principal Minor). Let M be a N ×N matrix.

A k × k submatrix of M formed by deleting n − k rows and the same n − k columns of

M is called the kth order principal submatrix of M . The determinant of a principal

submatrix is called the kth order principal minor of M .
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Example 4. For a general 3 × 3 matrix M =

(

))))))*

a11 a12 a13

a21 a22 a23

a31 a32 a33

+

,,,,,,-
.

1. There is one 3rd order principal minor, namely, det M ;

2. There are three 2nd order principal minors, namely,

a) det

(

))*
a11 a12

a21 a22

+

,,-, formed by deleting the 3rd row and the 3rd column;

b) det

(

))*
a11 a13

a31 a33

+

,,-, formed by deleting the 2nd row and the 2nd column;

c) det

(

))*
a22 a23

a32 a33

+

,,-, formed by deleting the 1st row and the 1st column.

3. There are three 1st order principal minors, namely,

a) det
#
a11

$
, formed by deleting the 2nd and 3rd rows and colomns;

b) det
#
a22

$
, formed by deleting the 1st and 3rd rows and colomns;

c) det
#
a33

$
, formed by deleting the 1st and 2nd rows and colomns.

Definition 8.B.6 (Leading Principal Submatrix and Leading Principal Minor). Let M

be a N × N matrix. The kth order principal submatrix of M obtained by deleting the last

n − k rows and columns of M is called the kth order leading principal submatrix of

M ; and its determinant is called the kth order leading principal minor of M .

Example 5. For the general 3 × 3 matrix in Example 4,

1. The 3rd order leading principal minor is det M ;

2. The 2nd order leading principal minor is det

(

))*
a11 a12

a21 a22

+

,,-;

3. The 1st order leading principal minor is det
#
a11

$
.

The following two theorems provide the algorithm for testing the definiteness of a sym-

metric matrix.
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Theorem 8.1. Let M be an N × N symmetric matrix. Then

1. M is positive definite if and only if all its leading principal minors are positive;

2. M is negative definite if and only if all its leading principal minors of odd order are

negative; and all its leading principal minors of even order are positive.

Theorem 8.2. Let M be an N × N symmetric matrix. Then

1. M is positive semi-definite if and only if all its principal minors are non-negative;

2. M is negative semi-definite if and only if all its principal minors of odd order are

non-positive ; and all its principal minors of even order are non-negative.

Remark. Please note that to check the semi-definiteness of matrices, we must unfortu-

nately check not only the leading principal minors, but all principal minors.

Returning to our maximization problem. We could rewrite the second-order sufficient

(necessary) conditions using the terminology of (semi-)definiteness of matrices.

(i) The second-order necessary condition is that Fxx(x∗) is negative semi-definite;

(ii) The second-order sufficient condition is that Fxx(x∗) is negative definite.

Remark. The second-order partial derivative matrix, Fxx, is called Hessian Matrix.

Concavity. After obtaining the second-order necessary condition and sufficient condi-

tion, we would like to compare and contrast them with the property of concavity, which

is defined globally.

Recall the property of concavity, expressed in terms of the first-order derivatives:

Proposition 7.A.1 (Concave Function). A differentiable function f : S → R, defined

on a convex set S ⊂ RN , is concave if and only if

fx(xa)(xb − xa) ≥ f(xb) − f(xa), (7.1)

for all xa, xb ∈ S .
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For twice continusouly differentiable functions, this concavity property could be inter-

preted in terms of second-order derivatives.

Theorem 8.3. The (twice continuously differentiable) function f : S → R is concave if

and only if fxx is negative semi-definite for every x ∈ S. If fxx is negative definite for

every x ∈ S, then the function is strictly concave.

Proof. See Appendix A.

The link between concavity and the second-order necessary condition is clear: concavity

requires Fxx to be negative semi-definite for every x, whereas the second-order necessary

condition only requires Fxx to be negative semi-definite for the candidate optimum x∗.

This is why the second-order conditions are useful: it is applicable to the functions that

do not have the desired concavity property over their whole domain of definition. Of

course, on the other hand, if the function do have the concavity property, it will satisfy

the second-order necessary condition.

The Remark below summarizes this observation.

Remark. To apply the second-order conditions we derived in this chapter, the objective

function need not be concave (defined globally). It only needs to be “concave” at the point

x∗: Fxx(x∗) is negative semi-definite.

Comparative Statics. Similar to the scalar variable case, we could derive the compar-

ative static result by totally differentiating the first-order necessary condition and then

applying the second-order conditions. See Example 8.4 Part I for an application.

8.C. Constrained Optimization

We will begin with the simplest case of two choice variables and one equality constraint.

max
x1,x2

F (x1, x2)

s.t. G(x1, x2) = c

where F and G are increasing functions of their arguments.
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We have seen these figures (Figure 8.1) in Chapter 6 and mentioned that the relative

curvature of F and G matters for maximization: the contour of F should be more convex

than that of G.

(a)

(b) (c)

Figure 8.1: Optimization

To express the idea algebraically, we think of x2 as a function of x1 along the contour of

F and G, and find the second-order derivative of this function.

For F , the function of the contour is F (x1, x2) = v. Total differentiation gives

F1(x1, x2)dx1 + F2(x1, x2)dx2 = 0 =⇒ dx2

dx1
= −F1(x1, x2)

F2(x1, x2)
. (8.14)

To obtain the curvature, we need to differentiate (8.14) with respect x1 (remember now

we think of x2 as a function of x1):

d2x2

dx2
1

= − d
dx1

!
F1(x1, x2(x1))
F2(x1, x2(x1))

"

= −
F2

&
F11 + F12

dx2
dx1

'
− F1

&
F21 + F22

dx2
dx1

'

F2
2
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= −
F2

&
F11 − F12

F1
F2

'
− F1

&
F21 − F22

F1
F2

'

F2
2 =./01

F12=F21

−F2
2F11 − 2F1F2F12 + F1

2F22

F2
3 .

Remark. The symmetry of the second derivative matrix follows from the Schwarz’s the-

orem: if F has continuous second partial derivative at a, then, ∂2f(a)
∂xi∂xj

= ∂2f(a)
∂xj∂xi

.

A similar expression could be derived for the second-order derivative along the constraint

curve:
d2x2

dx2
1

= −G2
2G11 − 2G1G2G12 + G1

2G22

G2
3 .

The second-order sufficient condition for x∗ to be a local optimum is that d2x2/dx1
2 along

the F contour should be greater than that along the G contour:

− F2
2F11 − 2F1F2F12 + F1

2F22

F2
3 > −G2

2G11 − 2G1G2G12 + G1
2G22

G2
3

=⇒. /0 1
FOC: Fj=λGj

− λ2G2
2F11 − 2λG1λG2F12 + λ2G1

2F22

λ3G2
3 > −G2

2G11 − 2G1G2G12 + G1
2G22

G2
3

=⇒. /0 1
Gj>0,λ>0

G2
2 (F11 − λG11) − 2G1G2(F12 − λG12) + G1

2(F22 − λG22) < 0,

evaluated at x∗. This is more neatly expressed in matrix notation:

det

(

))))))*

0 −G1 −G2

−G1 F11 − λG11 F12 − λG12

−G2 F21 − λG21 F22 − λG22

+

,,,,,,-
> 0, (8.15)

evaluated at x∗.

Generalization to more variables and more constraints. Next, we provide without

proof the conditions for the general problem with n choice variables and m equation

constraints (m < n). Similar to the matrix notation in (8.15), we form the partitioned

matrix:
(

))*
0 −Gx

−Gx
T Fxx − λGxx

+

,,- , (8.16)

evaluated at x∗. The top left partition 0 is m × m; the bottom right partition Fxx − λGxx

is n × n; and Gx is m × n.
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Remark. The matrix
(

))*
0 −Gx

−Gx
T Fxx − λGxx

+

,,-

is called Bordered Hessian Matrix.

To check the second-order sufficient condition, we need to look at n − m of the bordered

Hessian’s leading principal minors. Intuitively, we can think of the m constraints as

reducing the problem to one with n − m free variables.2 The smallest minor we consider

consisting of the truncated first 2m + 1 rows and columns, the next consisting of the

truncated first 2m + 2 rows and columns, and so on, with the last being the determinant

of the entire bordered Hessian. A sufficient condition for a local maximum of F is that

the smallest minor has the same sign as (−1)m+1 and that the rest of the principal minors

alternate in sign. The result is summarized in Theorem 8.4 below.

Theorem 8.4 (Second-order Sufficient Condition for Constrained Maximization Prob-

lem). If the last n − m leading principal minors of the bordered Hessian matrix at the

proposed optimum x∗ is such that the smallest minor (the (2m+1)th minor) has the same

sign as (−1)m+1 and the rest of the principal minors alternate in sign, then x∗ is the local

maximum of the constrained maximization problem.

It is easy to check that (8.15) satisfies the sufficient condition for a local maximum for

the two-variable one-constraint case:

1. For the two-variable one-constraint case (n = 2, m = 1), we need to look at n−m =

1 leading principal minors. Therefore, we only need to compute the determinant of

the bordered Hessian.

2. The sign requirement for maximum is (−1)m+1 = (−1)2 > 0.

2For example, the maximization problem: maxx,y,z x + y2 + z subject to x + y + z = 1 can be reduced
to maxx,y x + y2 + (1 − x − y) with no constraint.
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Example 6. Consider the following maximization problem with three variables (n = 3)

and two constraints (m = 2):
max
x,y,z

F (x, y, z) ≡ z

s.t. G1(x, y, z) ≡ x + y + z = 12

G2(x, y, z) ≡ x2 + y2 − z = 0

The Lagrangian is L(x, y, z, λ, µ) = z + λ(12 − x − y − z) + µ(−x2 − y2 + z).

The first-order necessary conditions are

∂L/∂x = −λ − 2µx = 0

∂L/∂y = −λ − 2µy = 0

∂L/∂z = 1 − λ + µ = 0

∂L/∂λ = 12 − x − y − z = 0

∂L/∂µ = −x2 − y2 + z = 0

The stationary points are (x∗, y∗, z∗, λ, µ) = (2, 2, 8, 4
5 , −1

5) and (−3, −3, 18, 6
5 , 1

5).

The bordered Hessian matrix is
(

))))))))))))))*

0 0 −G1
x −G1

y −G1
z

0 0 −G2
x −G2

y −G2
z

−G1
x −G2

x L11 L12 L13

−G1
y −G2

y L21 L22 L23

−G1
z −G2

z L31 L32 L33

+

,,,,,,,,,,,,,,-

=

(

))))))))))))))*

0 0 −1 −1 −1

0 0 −2x −2y 1

−1 −2x −2µ 0 0

−1 −2y 0 −2µ 0

−1 1 0 0 0

+

,,,,,,,,,,,,,,-

We need to check n − m = 1 leading principal minors, i.e., we only need to check

the determinant of the bordered Hessian. For local maximum, the sign requirement is

(−1)m+1 = (−1)3 < 0.

1. For the first proposed optimum (x∗, y∗, z∗, λ, µ) = (2, 2, 8, 4
5 , −1

5), the determinant

of the bordered Hessian is 20;

2. For the second proposed optimum (x∗, y∗, z∗, λ, µ) = (−3, −3, 18, 6
5 , 1

5), the determi-

nant of the bordered Hessian is −20.

Thus, the 2nd proposed optimum (x∗, y∗, z∗, λ, µ) = (−3, −3, 18, 6
5 , 1

5) is a local maximum.
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Example 7. Consider the following maximization problem with three variables (n = 3)

and one constraint (m = 1):
max
x,y,z

F (x, y, z) ≡ x + y + z

s.t. G1(x, y, z) ≡ x2 + y2 + z2 = 3

The Lagrangian is L(x, y, z, λ) = x + y + z + λ(3 − x2 − y2 − z2).

The first-order necessary conditions are

∂L/∂x = 1 − 2λx = 0

∂L/∂y = 1 − 2λy = 0

∂L/∂z = 1 − 2λz = 0

∂L/∂λ = 3 − x2 − y2 − z2 = 0

The stationary points are (x∗, y∗, z∗, λ) = (−1, −1, −1, −1
2) and (1, 1, 1, 1

2).

The bordered Hessian matrix is
(

))))))))))*

0 −G1
x −G1

y −G1
z

−G1
x L11 L12 L13

−G1
y L21 L22 L23

−G1
z L31 L32 L33

+

,,,,,,,,,,-

=

(

))))))))))*

0 −2x −2y −2z

−2x −2λ 0 0

−2y 0 −2λ 0

−2z 0 0 −2λ

+

,,,,,,,,,,-

We need to check n − m = 2 leading principal minors, i.e., the 3rd order and the entire

bordered Hessian. For local maximum, the sign requirement is (−1)m+1 = (−1)2 > 0 for

the 3rd order leading principal minor and < 0 for the entire bordered Hessian.

1. For the first proposed optimum (x∗, y∗, z∗, λ) = (−1, −1, −1, −1
2), the 3rd order

leading principal minor is −8 < 0 and the determinant of the bordered Hessian is

−12 < 0;

2. For the second proposed optimum (x∗, y∗, z∗, λ) = (1, 1, 1, 1
2), the 3rd order leading

principal minor is 8 > 0 and the determinant of the bordered Hessian is −12 < 0.

Thus, the 2nd proposed optimum (x∗, y∗, z∗, λ) = (1, 1, 1, 1
2) is a local maximum.
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Comparative Statics. For the constrained maximization problem, we could derive the

comparative static results by totally differentiating the first-order necessary condition and

the constrained equations, and then applying the second-order conditions. See Example

8.4 Part II for an application.

Inequality Constraints. Finally, we consider the maximization problem

max
x

F (x)

s.t. G(x) ≤ c.

After applying the Kuhn-Tucker first-order necessary conditions and solving for the sta-

tionary points, we know which constraints are binding and which are not in those candi-

date optima. It seems that for each stationary point, to check the second-order sufficient

condition, we could treat the binding constraints as the equality constraints and simply

ignore the slack constraints. The intuition is correct in general, but there is one tricky

point: it is possible that the inequality constraint is binding but at the same time its cor-

responding Lagrange multiplier is equal to 0. These inequality constraints are degenerate

inequality constraints.

The conclusion is that to check the second-order sufficient condition, we should only

keep the binding constraints with strictly positive corresponding Lagrange multipliers.

In other words, we form the bordered Hessian Matrix using only the constraints with

strictly positive Lagrange multipliers and then apply Theorem 8.4.

8.D. Envelope Properties

In Chapter 5, we established the envelope property of the maximum value function:

V (θ) = max
x

{F (x, θ) | G(x) ≤ c}.

V (θ) is the upper envelope of the family of functions F (x, θ) in each of which x is held

fixed. Figure 8.2a, which is the same as Figure 5.1, illustrates the envelope theorem.

Subsequently, we have considered the more general problem of short-run and long-run
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maximum value functions, where the vector of choice variables x is partitioned into sub-

vectors (y, z) and z is held fixed in the short-run. V (θ), the long-run optimum value

function, is the upper envelope of the family of value functions V (z, θ), the short-run

maximum value functions. Figure 8.2b, which is the same as Figure 5.4, illustrates the

short-run and long-run curves.

(a) Envelope Theorem (b) Short-run and Long-run Curves

Figure 8.2: Envelope Properties

We have also mentioned the curvature properties of the envelopes. In Figure 8.2a, V is

more convex than each F . In Figure 8.2b, V (θ) is more convex than V (z, θ). That is,

the fewer variables are held fixed, the more convex should the maximum value function

be. This second-order envelope property is the subject of this section.

Following the same notation of Chapter 5, let Z(θ) be the long-run optimum value of z.

Then, the long-run and short-run value coincide at Z(θ):

V (θ) = V (Z(θ), θ). (8.17)

Besides, two curves are tangential at Z(θ):

Vθ(θ) = Vθ(Z(θ), θ). (8.18)

Now consider a deviation from θ to θ′, we have

V (Z(θ), θ′) ≤ V (Z(θ′), θ′) = V (θ′).

17
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Expanding V (Z(θ), θ′) and V (θ′) around θ in Taylor series, we have

V (Z(θ), θ) + Vθ(Z(θ), θ)(θ′ − θ) + 1
2Vθθ(Z(θ), θ)(θ′ − θ)2 + ...

≤V (θ) + Vθ(θ)(θ′ − θ) + 1
2Vθθ(θ)(θ′ − θ)2 + ... (8.19)

By the first-order envelope properties (8.17) and (8.18), Equation (8.19) becomes

(Vθθ(Z(θ), θ) − Vθθ(θ))(θ′ − θ)2 + ... ≤ 0. (8.20)

Consider θ′ sufficiently close to θ, the quadratic term in the expansion would dominate

the rest of the terms. For the inequality to hold, a necessary condition is

Vθθ(Z(θ), θ) ≤ Vθθ(θ). (8.21)

This proves that the long-run maximum value function is at least as convex as the short-

run value function at the point where the two are tangent. For suitably “regular” maxima,

we have a strict inequality in (8.21).

8.E. Examples

Example 8.1: Consumer Theory.

Consider the consumer’s expenditure minimization problem:

min
x

px (EMP)

s.t. u(x) ≥ u.

In Example 5.2, we define the consumer’s expenditure function E(p, u) as the minimum

value to the expenditure minimization problem (EMP) above. We denote the optimum

quantity as the compensate demand function C(p, u). The envelope property implies:

C(p, u) = Ep(p, u). (8.22)

In Example 6.2, we showed that the expenditure function E(p, u) is concave in p. Now

by Theorem 8.3, we know that it means that Epp(p, u) is negative semi-definite.

18
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Differentiating (8.22) with respect to p:

Cp(p, u) = Epp(p, u). (8.23)

(i) Because the second derivative matrix Epp(p, u) is symmetric by Schwarz’s theorem,

Cp(p, u) is symmetric:
∂Cj

∂pk

= ∂Ck

∂pj

= Ejk.

This is the symmetry of substitution effects of price changes.

(ii) Epp(p, u) is negative semi-definite. That is, yT Epp(p, u)y ≤ 0 for all y ∈ Rn. In

particular, we could choose y = ej, where ej is a vector with its jth component

equal to 1 and all other components 0. Then

ejT
Epp(p, u)ej = Ejj ≤ 0 =⇒ ∂Cj

∂pj

≤ 0. (8.24)

This is true for all j. Therefore, the own substitution effects of price changes are

non-positive.

The second result follows even more simply from the very concept of maximum. Suppose

pa, pb are two price vectors, and xa, xb are the corresponding compensated demands, both

attain the same utility level u. By the definition of xa and xb, we have

paxa ≤ paxb and pbxb ≤ pbxa.

Adding the two inequalities

paxa + pbxb ≤ paxb + pbxa =⇒ (pb − pa)(xb − xa) ≤ 0. (8.25)

(8.25) is a general version of (8.24): if pb and pa differ only in their jth component, then

(8.25) reduces to

(pb
j − pa

j )(xb
j − xa

j ) ≤ 0.

This argument is more general in another sense: it does not require the differentiability,

quasi-concavity, etc.
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Example 8.2: The LeChatelier Samuelson Principal.

Consider the consumer’s expenditure minimization problem (EMP) again. In this ex-

ample, we focus on the second-order envelope properties. Consider a change in p1 and

compare the following two situations:

(i) The quantities of all goods are free to change optimally;

(ii) The quantity x2 must be kept fixed at its initially optimal level.

Let E(p1 | p−1, u) denotes the expenditure function in situation (i) and E(p1 | x2, p−1, u)

denotes the expenditure function in situation (ii) where x2 must be kept fixed. Let

C(p1 | p−1, u) and C(p1 | x2, p−1, u) be the corresponding compensated demand.

Figure 8.3 shows the envelope properties of the curves:

1. The first-order envelope property shows that the curves will be tangential at the

point where x2 is at its optimal value;

2. The second-order envelope property shows that E(p1 | p−1, u) is more concave3 than

E(p1 | x∗
2

′, p−1, u) and E(p1 | x∗
2

′′, p−1, u):

Ep1p1(p1 | p−1, u) ≤ Ep1p1(p1 | x∗
2

′, p−1, u)

and Ep1p1(p1 | p−1, u) ≤ Ep1p1(p1 | x∗
2

′′, p−1, u).

We know from (8.23) in Example 8.1 that

C1
p1(p1 | p−1, u) = Ep1p1(p1 | p−1, u)

C1
p1(p1 | x2, p−1, u) = Ep1p1(p1 | x2, p−1, u)

Therefore,
C1

p1(p1 | p−1, u) ≤ C1
p1(p1 | x2, p−1, u)

=⇒. /0 1
C1

p1 (p1|p−1,u)≤0,C1
p1 (p1|x2,p−1,u)≤0

222C1
p1(p1 | p−1, u)

222 ≥
222C1

p1(p1 | x2, p−1, u)
222

i.e., 22222
∂x1

∂p1

22222
x2 free

≥
22222
∂x1

∂p1

22222
x2 fixed

(8.26)

3This is a minimization problem, so the result changes from the “more convex” in the initial version
to “more concave” here.
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In other words, fixing quantity of some other good 2 makes the compensated demand for

good 1 less responsive to its own price. Roughly speaking, any imposed rigidity in one

sector of the economy causes a reduction in the responsiveness to prices in other sectors.

This is true irrespective of whether good 1 and good 2 are substitutes or complements.

This is known as the LeChatelier Samuelson Principle.

Figure 8.3: Expenditure Functions

Example 8.3: Derived Demand.

Consider the producer’s cost minimization problem:

min
x

wx

s.t. f(x) ≥ y

where w is the vector of input prices, x is a vector of input quantities, y is the target

output level, and f is the production function. Let C(w, y) be the minimized cost.

Similar to the consumer’s expenditure minimization problem in Example 8.1, the envolope
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property implies

x∗ = Cw(w, y) (8.27)

where x∗ is the cost-minimizing input choice vector.

In the production context, different from “utility” in the consumer’s context, “output”

has a natural scale. Therefore, we could discuss the production technology. In particular,

if the returns to scale are constant, i.e., if f(αx) = αf(x) for all α ∕= 0, then C(w, y) is

proportional to output y.

To see this,

C(w, y) = {w(αx) | f(αx) ≥ y} ⇐⇒. /0 1
constant returns to scale

C(w, y) = {w(αx) | αf(x) ≥ y}

⇐⇒ C(w, y)
α

=
3

wx | f(x) ≥ y

α

4
= C(w,

y

α
)

Therefore,
1
α

C(w, y) = C(w,
y

α
), (8.28)

for all α ∕= 0, i.e., C(w, y) is proportional to y.

Let α = y, then (8.28) becomes 1
y
C(w, y) = C(w, 1) =⇒ C(w, y) = yC(w, 1). Therefore,

C(w, y) = yc(w), (8.29)

where c(w) = C(w, 1), the minimum cost of producing one unit of output.

Now consider a competitive equilibrium of an industry with a cost curve given by (8.29)

and a demand curve D(p). The equilibrium is attained when price equals marginal cost:

p = c(w). (8.30)

The output is found from the demand curve:

y = D(p) =./01
(8.30)

D(c(w)). (8.31)

The input demand is

x =./01
(8.27)

Cw(w, y) =./01
(8.29)

ycw(w). (8.32)
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Substituting (8.31) into (8.32), we have

x = D(c(w))cw(w). (8.33)

This is called “derived demand”. By chain rule,

∂xj

∂wk

= D(c(w))cjk(w) + D′(c(w))ck(w)cj(w)

In terms of elasticity, we have

wk

xj

∂xj

∂wk

= θk(σjk − η), (8.34)

where θk = wkxk

yc
is the share of the kth input in average cost; σjk = ccjk

cjck
is the elasticity

of substitution between j and k; η = −pD′(p)
D(p) is the elasticity of demand. Equation (8.34)

splits the effect of wk on xj into two parts:

(i) Substitution Effect (σjk): own substitution effect is always weakly negative (con-

cavity of c implies ckk ≤ 0, so σkk ≤ 0); for a different input j ∕= k, the effect

depends on whether j and k are substitutes or complements.

(ii) Output Effect (η): an increase in wk increases the cost, reducing the equilibrium

output along the demand curve and further the demand for all inputs..

Example 8.4: Use of Second-order Conditions.

Part I. Consider a firm that buys a vector x of inputs at prices w, produced output

y = f(x), and sells it for revenue R(y). The firm’s profit maximization problem is

max
x

F (x, w) ≡ max
x

R(f(x)) − wx,

where w is a row vector of input prices.

First-order necessary condition gives

Fx(x∗, w) = R′(f(x∗))fx(x∗) − w = 0. (8.35)
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Totally differentiate (8.35), we have

Fxx(x∗, w)dx∗ + Fxw(x∗, w)dwT = 0 =⇒ dx∗ = −Fxx(x∗, w)−1Fxw(x∗, w)dwT . (8.36)

From the functional form of F , we have Fxw(x∗, w) = −I. Plugging it into (8.36), we

have

dx∗ = Fxx(x∗, w)−1dwT =⇒ dwdx∗ = dwFxx(x∗, w)−1dwT .

By the second-order necessary condition, Fxx(x∗) is negative semi-definite. Besides, the

inverse of a negative semi-definite matrix is also negative semi-definite.4 So

dwdx∗ = dwFxx(x∗, w)−1dwT ≤ 0.

If the maximum is “regular”, that is, the second-order sufficient condition is satisfied,

then

dwdx∗ < 0.

This result tells us how x∗ would change in response to a change in w.

Part II. Consider the consumer’s utility maximization problem:

max
x

U(x)

s.t. px = I.

The first-order necessary condition is

Ux(x∗) − λp = 0. (8.37)

We want to find the pure substitution effect of a price change. So, for the price change

dp, we compensate the consumer dI = x∗T dpT . Under such compensation, the initial

optimal bundle x∗ is still affordable, i.e., x∗ satisfies the new budget constraint:

(p + dp)x∗ = px∗ + x∗T dpT = I + dI.

4To see this, consider a symmetric negative-semidefinite matrix M and its inverse M−1. First, M−1

is also symmetric since (M−1)T = (MT )−1 =./01
M is symmetric

M−1. Then, we will check yT M−1y ≤ 0 for all y.

yT M−1y = yT M−1MM−1y =./01
M−1 is symmetric

yT (M−1)T MM−1y = (M−1y)T M(M−1y) ≤./01
M is negative semi-definite.

0.
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The optimal choice x∗ and the Lagrange multiplier λ change as p changes. Totally

differentiate (8.37) gives

Uxx(x∗)dx∗ − pT dλ − λdpT = 0. (8.38)

Totally differentiate the budget constraint gives

pdx∗ + x∗T dpT = dI = x∗T dpT =⇒ pdx∗ = 0. (8.39)

The second-order sufficient condition we use here should be “Lxx(x∗, λ∗) is negative defi-

nite”. (But not the bordered Hessian is negative definite. Indeed, the bordered Hessian is

not negative definite. The bordered Hessian only obeys the sign requirements in Theorem

8.4. It can be shown that if Lxx(x∗, λ∗) is negative definite, then the bordered Hessian

obeys the sign requirements.)

The calculations are as follows. Left multiply both sides of (8.38) by dx∗T gives

dx∗T Uxx(x∗)dx∗ − dx∗T pT dλ − λdx∗T dpT = 0.

• By negative definiteness of Lxx(x∗, λ∗) = Uxx(x∗), we have dx∗T Uxx(x∗)dx∗ < 0.

• By (8.39), dx∗T pT = 0.

• In addition, λ > 0.

Therefore, dpdx∗ < 0.

The result indicates that the sign of the own substitution effect is negative.
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Appendix A

Theorem 8.3. The (twice continuously differentiable) function f : S → R is concave if

and only if fxx is negative semi-definite for every x ∈ S. If fxx is negative definite for

every x ∈ S, then the function is strictly concave.

Proof.

(i) “concavity =⇒ negative semi-definiteness”: Suppose that f(·) is concave. Fix some

x ∈ S and some arbitrary z ∈ RN , and take the second-order Taylor expansion:

f(x + αz) = f(x) + fx(x)(αz) + α2

2 zT fxx(x + βz)z, (8.40)

for some β ∈ [0, α]. By Proposition 7.A.1, concavity of f implies

f(x + αz) ≤ f(x) + fx(x)(αz).

This could be seen by taking xa = x, xb = x + αz in (7.1). Together with (8.40),

we have
α2

2 zT fxx(x + βz)z ≤ 0.

Taking α arbitrarily small, then β is also arbitrarily small, so

zT fxx(x)z ≤ 0,

which means that fxx is negative semi-definite at x. Since the above is true for

every x ∈ S, we have proved the negative semi-definiteness of fxx for every x ∈ S.

(ii) “negative semi-definiteness =⇒ concavity”: Since fxx is negative semidefinite for

all x ∈ S,

zT fxx(x + βz)z ≤ 0,

for all z and β. Together with (8.40), we have

f(x + αz) ≤ f(x) + fx(x)(αz)
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for all α and z. That is,

f(xb) ≤ f(xa) + fx(xa)(xb − xa)

for all xa and xb. Thus, f is concave.

(iii) “negative definiteness =⇒ strict concavity”: this part of proof is similar to (ii).

Remark. Theorem 8.3 does not assert that negative definiteness of fxxf(x) must hold

whenever f(·) is strictly concave. In fact, this is not true, f(x) = −x4 is strictly concave,

but d2f(0)/dx2 = 0.
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