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8.A. Local and Global Maxima

e In Chapter 7, we have discussed sufficient conditions for
optimality, confined to context of concave programming
(or more broadly, quasi-concave programming).

e Especially, when F' is concave and G is convex, FOCs are
sufficient for maximization.

e More accurately, the conditions are sufficient for a global
maximum.

e That is, x* satisfying the conditions does at least as well

as any other feasible x.



Local and Global Maxima

e We obtain a global maximum in concave programming
(quasi-concave programming) since
(quasi-)convexity properties are defined globally.

e For example, recall the definition of convexity,

Definition 6.B.4 (Convex Function). A function f : S —

R, defined on a convex set S C RY, is convex if
flaz® + (1 —a)z®) < af(z®) + (1 —a)f(zb), (6.4)

for all 2¢, 2 € S and for all o € [0, 1].



Local and Global Maxima
e (6.4) needs to hold over the full domain of f.

e Such properties ensure that desired curvature is over the

full domain and thus sufficient for a global maximum.



Local and Global Maxima

e The conclusions of a global maximiximum are ideal.

e However, in applications, we may not have functions that

have desired convexity property.



Local and Global Maxima

e [n this chapter, we will focus on curvature of the objective
and constraint functions in a small neighborhood of the
proposed optimum.

e The conditions are expressed in terms of second-order
derivatives of functions at the point.

e Such conditions are sufficient for local optima —

x* satisfying the conditions does better than any other

feasible x in a sufficiently small neighborhood of z*.



Local and Global Maxima

e [t is a useful property when global conditions are not met.

e Moreover, it has a valuable by-product: SOCs play an
instrumental role in determining comparative static re-

sponses of optimum choice variables x.

e We will discuss comparative static result while we develop

the theory of SOCs.



8.B. Unconstrained Maximization

e We will start with simple cases of unconstrained maxi-

mization.

e First, consider unconstrained maximization problem with
a scalar x:

max F (x).

e Let x* be a candidate for optimum choice.



Unconstrained Maximization

e Expand F' in a Taylor series around z*:

F@%:F@ﬂ+F%ﬁﬂx—xﬂ+%F%fﬂx—ﬂf+w.@1)

e First-order necessary condition is F”'(z*) = 0.
e Then (8.1) becomes

m@—Fuw=%Fhﬂ@—ﬁf+m (8.2)

e For x sufficiently close to x*, quadratic term will dominate

higher-order terms in Taylor expansion.



Unconstrained Maximization

For z in the small neighborhood of x*.
(i) F"(z*) >0 = F(x) — F(z*) >0 = F(z) > F(z").

e 2* will not be a maximum of F'(z) in the neighborhood.

e [t will not be a maximum over the whole range of F'.

e This argument gives a second-order necessary condi-
tion for x* to yield a maximum, local or global:

F'(z*) < 0. (8.3)
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Unconstrained Maximization

(i) F"(z*) <0 = F(x)— F(z*) <0 = F(x) < F(z").
e In a small neighborhood of x*, we will have

F(z*) > F(z), irrespective of signs of higher-order

terms.
e Thus, F'(z) <0 (8.4)

is a second-order sufficient condition for z* to yield a
local maximum.
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Unconstrained Maximization
Note the differences between the weak inequality condition
F"(z*) <0 (8.3)
and the strict inequality condition
F"(z) <0 (8.4)
(i) (8.3) is a necessary condition, while (8.4) is a sufficient

condition.

(ii) (8.3) is a condition for both local and global maximum,

while (8.4) is a condition only for local maximum.
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Unconstrained Maximization

e A local maximum satisfying second-order sufficient con-
dition is called a regular maximum.
e If the maximum is “irregular”, that is , if F”(z) = 0, then

we have to look at higher-order derivatives.

1

F(z)—F(x%) 3

F”/(x*)(x—x*)3+—F’/"(x*)(x—x*)4+...

e Then, F"'(z*) = 0 is a necessary condition; F"'(z*) = 0
and F""(x) < 0 is a sufficient condition.

e We will focus on the regular maximum.
13



Comparative Statics

e Now suppose that the problem involves a parameter 6,
that is, the objective function is F'(x,#).
e FOC is
F.(z*,0) = 0. (8.5)

(8.5) implicitly defines z* as a function of 6.
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Comparative Statics

e Totally differentiate FOC, we have

Foo(z*,0)dz” + Fo(x*,0)d0 = 0
dz*  Fye(a*,0)

A0~ Fuu(ar,0)

or

e At a regular maximum, F,,(z*,0) <0,

sign of dz*/df is same as sign of Fy(x*,6).
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An Economic lllustration

e Consider the following revenue maximization problem:
max R(z,0) = max P(z,0) -z,

where z is the output and 6 is a shift parameter; P(z,0)
is the inverse demand curve.

e Suppose Ry(x,0) = Py(x,0) -z > 0 for all .

e That is, an increase in @ shifts the demand and the rev-

enue curves upward .
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An Economic lllustration

e By the first-order necessary condition,

R,(z*,0) = P.,(z",0) - 2" + P(z",0) = 0. (8.7)

e Totally differentiate (8.7), we have

R,.(2*,0)dz" + Ryp(2™,0)df =0

:>da:*_ R.g(x*,0)
df  Re.(z*,0)

(8.8)

e At a regular maximum, we have R,,(z*,60) < 0.

e Therefore, sign of dz*/df is same as sign of Ry(z*,0).
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An Economic lllustration

e Thus, if R.(xz*,60) > 0, an increase in # will increase
revenue-maximizing output x*.
e This is true if the increase in # shifts marginal revenue

upward:
dR,(x,0)

10 > 0.
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An Economic lllustration
e Of course, it is perfectly possible that as 6 1,

(i) average revenue shifts up: Py(z,6) > 0;

(ii) marginal revenue shifts down: dR,(z,6)/d6 < 0.

e What is needed is a twist that reduces elasticity of de-

mand (E; > 0). To see this,

Ru(x,0) = P,(x,0) + P(z,0) = P(x,0) {1 - EH |

e If marginal revenue does shift down , then a favorable

shift of demand will cause output to fall. 19



More Choice Variables

e Let us turn to the case with a vector of choice variables.

e Now Taylor expansion becomes
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More Choice Variables

e FOC is F,(z*) = 0.
e Then (8.9) becomes

Flz) — F(z*) = %(x ) F(a)(z — o) + ...
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More Choice Variables

e For z sufficiently close to x*, quadratic term dominates

high-order terms. Therefore,

(i) (z—2")T Fpp(z*)(x —2*) < 0 is second-order necessary
condition for x* to yield a local or global maximum;
(ii) (z —2*)T Fpp(2*)(x — 2*) < 0 is second-order sufficient

condition for x* to yield a local maximum.

22



More Choice Variables

We will next link second-order derivative test with mathe-

matical concepts of Negative (Semi-)Definiteness of matrices.
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Negative (Semi-)Definite Matrix

Definition 8.B.1 (Negative Definite). A symmetric N x N

matrix M is negative definite if
yI My <0 (8.10)

for all non-zero y € RV,
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Negative (Semi-)Definite Matrix

Definition 8.B.2 (Negative Semi-definite). A symmetric

N x N matrix M is negative semi-definite if
y" My <0 (8.11)

for all y € RV,
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Negative (Semi-)Definite Matrix

-2 1
Example 8.B.1. M =|1 -9

0 1

0
1

-2

is negative definite.
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Negative (Semi-)Definite Matrix

-1 1
Example 8.B.2. M =

1 -1

is negative semi-definite.
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Negative (Semi-)Definite Matrix

e Note that a matrix M with all negative entries may not

be negative definite.

e Example 8.B.3 illustrates the case where all entries in M

is negative whereas M is not negative definite.
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Negative (Semi-)Definite Matrix

-1 -2

Example 8.B.3. M = is not negative definite.
-2 -1

In particular, for y = - , we have y" My > 0.

1
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Positive (Semi-)Definite Matrix
Similarly, we could define positive (semi-)definite matrices

analogously.

Definition 8.B.3 (Positive Definite). A symmetric N x N

matrix M is positive definite if
y' My >0 (8.12)

for all non-zero y € RV
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Positive (Semi-)Definite Matrix

Definition 8.B.4 (Positive Semi-definite). A symmetric N x

N matrix M is positive semi-definite if
y" My >0 (8.13)

for all y € RV,
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Indefinite Matrix

Remark. A matrix that is not positive semi-definite and not

negative semi-definite is called indefinite.
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Definiteness of Matrices

e There are various ways to check definiteness of matrices.

e In Examples 8.B.1, 8.B.2 and 8.B.3, we have used the

definition to check the definiteness.

e Below, we will introduce determinantal test for definite-

ness.
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Principal Minor
Before discussing the general theorem, we need to learn some

new concepts.

Definition 8.B.5 (Principal Submatrix and Principal Mi-
nor). Let M be a N x N matrix. A k x k submatrix of M
formed by deleting n — k rows and the same n — k columns
of M is called the k' order principal submatrix of M. The
determinant of a principal submatrix is called the k™ order

principal minor of M.
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Principal Minor

Example 8.B.4.

For a general 3 x 3 matrix M =

a1

21

a3

Q12

22

a32

a13

23| -

a33

35



Leading Principal Minor

Definition 8.B.6 (Leading Principal Submatrix and Lead-
ing Principal Minor). Let M be a N x N matrix. The k%
order principal submatrix of M obtained by deleting the last
n — k rows and columns of M is called the k* order leading
principal submatrix of M; and its determinant is called the

k' order leading principal minor of M.

36



Leading Principal Minor

Example 8.B.5. For the 3 x 3 matrix in Example 8.B.4,

1. The 3" order leading principal minor is det M;

ail Qa2
2. The 2" order leading principal minor is det ;

Q21 Q22

3. The 1% order leading principal minor is det [an}
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Definiteness of Matrices
The following two theorems provide the algorithm for testing

definiteness of a symmetric matrix.
Theorem 8.1. Let M be an N x N symmetric matrix. Then

1. M is positive definite if and only if all its leading principal

minors are positive;

2. M is negative definite if and only if all its leading princi-
pal minors of odd order are negative; and all its leading

principal minors of even order are positive.
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Definiteness of Matrices
Theorem 8.2. Let M be an N x N symmetric matrix. Then

1. M is positive semi-definite if and only if all its principal

minors are non-negative;

2. M is negative semi-definite if and only if all its principal
minors of odd order are non-positive ; and all its principal

minors of even order are non-negative.
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Definiteness of Matrices

Remark. Please note that to check semi-definiteness of ma-
trices, we must unfortunately check not only the leading prin-

cipal minors, but all principal minors.
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Definiteness of Matrices

e Returning to our maximization problem.

e We rewrite SOCs using (semi-)definiteness of matrices.

(i) Second-order necessary condition: F,,(z*) is negative semi-
definite;
(ii) Second-order sufficient condition: F,,(z*) is negative def-

inite.

Remark. F,, is called Hessian Matrix.
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Concavity

e We would like to compare and contrast SOCs with the

property of concavity, which is defined globally.

Proposition 7.A.1 (Concave Function). A differentiable
function f : S — R, defined on a convex set S C RV, is

concave if and only if
folz®)(a® —a®) > f(a®) — f(2?), (7.1)

for all 2%, 2 € S .
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Concavity
For twice continusouly differentiable functions, concavity could

be interpreted in terms of second-order derivatives.

Theorem 8.3.
e (Twice continuously differentiable) function f : § — R
is concave if and only if f,, is negative semi-definite for

every xr € S.

o If f,. is negative definite for every z € §, then the func-

tion is strictly concave.
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Concavity

(i) Concavity requires F,, to be negative semi-definite for
every &;
(ii) Second-order necessary condition only requires F, to be

negative semi-definite for z*.
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Concavity

e This is why SOCs are useful: it is applicable to functions
that do not have desired concavity property over their

whole domain of definition.

e Of course, on the other hand, if the function do have the
concavity property, it will satisfy second-order necessary

condition.

45



Concavity

Remark. To apply SOCs we derived in this chapter, objec-

tive function need not be concave (defined globally).

e Objective function only needs to be “concave” at x*:

F,.(z*) is negative semi-definite.
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Comparative Statics

e Similar to scalar variable case, we could derive compara-

tive static result by
1. totally differentiating FOC;

2. applying SOC.

e See Example 8.4 Part I for an application.
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8.C. Constrained Optimization

We will begin with the simplest case of two choice variables

and one equality constraint.

s Flon )

s.t. G(z1,22) = ¢

where F' and G are increasing functions of their arguments.
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Constrained Optimization

X2

v

X1
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Constrained Optimization

X2

\ 4

X1

(b)
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Constrained Optimization

X2

4

v

X1

()

o1



Constrained Optimization

e We have mentioned in Chapter 6 that relative curvature of
F and G matters for maximization: contour of F' should

be more convex than that of G.

e To express the idea algebraically, we think of x5 as a func-
tion of z1 along contour of F' and GG, and find second-order

derivative of this function.
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Constrained Optimization
e For F'| function of contour is F'(z1,x2) = v.

e Total differentiation gives

dz Fi(xq,x2)
= — . 8.14
dzy F2($1,$2) ( )

e To obtain curvature, differentiate (8.14) with respect z;:

d2372 . F22F11 — 2F1F2F12 + F12F22
d.’L’% B F23 .

(In the derivation, we used Fio = Fy)
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Constrained Optimization

Remark. Symmetry of second derivative matrix follows from

Schwarz’s theorem: if F' has continuous second partial deriva-

tive at a, then, gifa(ii = g;fé?c)l :
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Constrained Optimization

A similar expression could be derived for second-order deriva-

tive along constraint curve:

d®zy _G22G11 — 2G1G2Ghs + G1*Gas
dl‘% N G23 .
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Constrained Optimization
Second-order sufficient condition for x* to be a local optimum
is that d%xy/dx,? along the F contour should be greater than

that along the G contour, implying
G22 (Fll — >\G11) — 2G1G2(F12 — )\Glg) + G12(F22 — )\Ggg) <0

evaluated at z*.
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Constrained Optimization

This is more neatly expressed in matrix notation:

0 e —Gy
det | -G, F;1 —A\Gi1 Fia — AGpa| >0, (8.15)
—Gy Fyy — AGo1 Fap — AGag

evaluated at z*.
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Generalization to more variables and more constraints

e Next, we provide without proof conditions for general
problem with n choice variables and m equation con-
straints (m < n).

e Similar to matrix notation in (8.15), we form the parti-

tioned matrix: 0 G,
, (8.16)

evaluated at x*.
e Top left partition 0 is m xm; bottom right partition F,,—

AG,,p isn x n; and G, is m X n. 58



Generalization to more variables and more constraints

Remark. Matrix

0 -G,

is called Bordered Hessian Matrix.
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Generalization to more variables and more constraints

e For second-order sufficient condition, we need to look at

n — m of bordered Hessian’s leading principal minors.

e Intuitively, we can think of m constraints as reducing the

problem to one with n — m free variables.

e For example, maximization problem:
max,, .+ y> + z subject tox +y+ 2 =1
can be reduced to

max,, = + y> + (1 — x — y) with no constraint.
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Generalization to more variables and more constraints

e Smallest minor we consider consisting of truncated first
2m + 1 rows and columns, next consisting of truncated
first 2m + 2 rows and columns, and so on, with last being

determinant of entire bordered Hessian.

o A sufficient condition for a local maximum of F' is that
smallest minor has same sign as (—1)"*! and that rest of

the principal minors alternate in sign.
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Generalization to more variables and more constraints

Theorem 8.4 (Second-order Sufficient Condition for Con-
strained Maximization Problem). If the last n — m leading
principal minors of bordered Hessian matrix at proposed op-
timum 2™ is such that

e smallest minor ((2m+1)" minor) has same sign as (—1)™*1,

e rest of principal minors alternate in sign,

then z* is local maximum.
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Generalization to more variables and more constraints
It is easy to check that (8.15) satisfies the sufficient condition

for a local maximum for two-variable one-constraint case:

1. For two-variable one-constraint case (n = 2,m = 1), we
need to look at n—m = 1 leading principal minors. There-
fore, we only need to compute determinant of bordered

Hessian.

2. Sign requirement for maximum is (—1)™** = (—1)? > 0.
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Generalization to more variables and more constraints

Example 8.C.1. Consider the maximization problem with

three variables (n = 3) and two constraints (m = 2):

max F(z,y,2) = z
Y,z
st. Glz,y,2)=c+y+2=12

G*r,y,2) =2 +y* —2=0
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More variables and more constraints: Example 8.C.1
e Stationary points are (z*,y*, z* A\, u) = (2,2,8,%,—%)
6 1
and (—3, —3, 18, 59 g)

e Bordered Hessian matrix is

1 1 1
0 0 -G -G, -G} 0 0 -1 -1 -1
0 0 -G2 G2 —G? 0 0 —2z -2y 1
z v z
*G; *G,ZE L11 Li2 L1z | = | -1 -2z —2u 0 0
-Gy -Gi Lz Loz Lo -1 -2y 0 —2u 0
—Gi —Gi L31 L32 L33 -1 1 0 0 0
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More variables and more constraints: Example 8.C.1

e We need to check n — m = 1 leading principal minors,
i.e., we only need to check determinant of the bordered
Hessian.

e Sign requirement for maximum is (—1)™* = (=1)3 < 0.
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More variables and more constraints: Example 8.C.1

1. 1% proposed optimum: (z*,y*, 2%, \, u) = (2,2, 8, %, —%)

e Determinant of bordered Hessian is 20 > 0.
2. 2" proposed optimum: (z*,y*, 2%, A\, pu) = (=3,-3,18,2,1)
e Determinant of bordered Hessian is —20 < 0.
Therefore, 2"? proposed optimum (z*,y*, 2", \, ) =

(—3,-3,18,2,1) is a local maximum.
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Generalization to more variables and more constraints

Example 8.C.2. Consider the following maximization prob-

lem with three variables (n = 3) and one constraint (m = 1):

max F(z,y,2) =x+y+ =z

$7y7z

st. GYa,y,2) =2 + > + 22 =3
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More variables and more constraints: Example 8.C.2

e Stationary points are (z*,y* 2", \) = (—1,—1,—1,—%)
and (1,1,1, 3).
e Bordered Hessian matrix is
0 -G, -G, -Gi 0 -2z -2y -2z
—Gi £11 £12 £13 -2 =2\ 0 0
—Gé £21 EQQ £23 —2y 0 -2\ 0
—Gi £31 £32 £33 —2z 0 0 —2A
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More variables and more constraints: Example 8.C.2

e We need to check n — m = 2 leading principal minors,
i.e., 3" order and entire bordered Hessian.

e For local maximum, sign requirement is

L. (=1)™*! = (=1)2 > 0 for the 3" order leading princi-

pal minor and

2. < 0 for entire bordered Hessian.
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More variables and more constraints: Example 8.C.2
1. First proposed optimum: (z*,y*, 2*, \) = (-1, -1, —1, —%)
e 374 order leading principal minor is —8 < 0;
e Determinant of bordered Hessian is —12 < 0.
2. Second proposed optimum: (z*,y*, z*, \) = (1,1, 1, %)
e 374 order leading principal minor is 8 > 0;
e Determinant of bordered Hessian is —12 < 0.

Thus, 2" proposed optimum (z*,y*, 2*,A) = (1,1,1,3) is a

local maximum.
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Comparative Statics

e For constrained maximization problem, we could derive

comparative static results by
(i) totally differentiating FOCs and constrained equations;

(ii) applying SOCs.

e See Example 8.4 Part II for an application.
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Inequality Constraints

Finally, we consider maximization problem

max F'(z)
s.t. G(z) <c.
e After applying Kuhn-Tucker first-order necessary condi-
tions and solving for stationary points, we know which

constraints are binding and which are not in those candi-

date optima.
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Inequality Constraints

e [t seems that for each stationary point, we could treat
binding constraints as equality constraints and simply ig-
nore slack constraints.

e The intuition is correct in general, but there is one tricky
point: it is possible that inequality constraint is binding
but at the same time its corresponding Lagrange multi-
plier is equal to 0.

e These inequality constraints are degenerate inequality con-

straints.
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Inequality Constraints

e Conclusion is that to check second-order sufficient condi-
tion, we should only keep binding constraints with strictly

positive corresponding Lagrange multipliers.

e In other words, we form bordered Hessian Matrix using
only constraints with strictly positive Lagrange multipli-

ers and then apply Theorem 8.4.
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8.D. Envelope Properties

In Chapter 5, we established envelope property of maximum

value function:
V(0) = max{F(z,0) | G(z) < c}.

e V() is upper envelope of family of functions F(z,0) in

each of which z is held fixed.
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Envelope Properties

e Subsequently, we have considered more general problem
of short-run and long-run maximum value functions, where
vector of choice variables x is partitioned into subvectors

(y,2) and z is held fixed in short-run.

e V/(0), long-run optimum value function, is upper envelope
of family of value functions V' (z,#), short-run maximum

value functions.
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Envelope Properties

A V(g)

F(x*',0)

F(x*l/' 6)

[ > T

! e”

(a) Envelope Theorem

A 4
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Envelope Properties

N V(9)

V(Z(6"),0)

V(Z(6"),6)

=~ J50

"

(b) Short-run and Long-run Curves

v
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Envelope Properties

e We have also mentioned curvature properties of envelopes.

In Figure (a), V' is more convex than each F.

In Figure (b), V(0) is more convex than V(z,0).

That is, the fewer variables are held fixed, the more con-

vex should the maximum value function be.

Second-order envelope property is the subject of this sec-

tion.
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Envelope Properties

e Following same notation of Chapter 5, let Z(#) be long-
run optimum value of z.

e Then, long-run and short-run value coincide at Z(6):
V(0) =V(Z(9),0). (8.17)
e Besides, two curves are tangential at Z(0):

Vo(0) = Vy(Z(6),0). (8.18)
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Envelope Properties

e Now consider a deviation from 6 to ', we have

V(Z(0),0) <V(Z(0),0)=V().
e Expand V(Z(0),60') and V(¢') around 6 in Taylor series:

V(Z(0),0) + Vs(Z(6),0)(0 — 0) + %VQQ(Z(&), 0)(@ —0)2 + ...

<V(6) + Vo(O)(O' — 6) + Voo O)(F' — 6" + . (8.19)
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Envelope Properties

By first-order envelope properties (8.17) and (8.18), we have

(Voo (Z(0),0) — Vg (0))(0' — 0)* 4 ... < 0. (8.20)
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Envelope Properties

e Consider ¢ sufficiently close to #, quadratic term in the
expansion would dominate rest of the terms.

e For the inequality (8.20) to hold, a necessary condition is

Vao(Z(0),0) < Vao(6). (8.21)
e This proves that long-run maximum value function is at
least as convex as short-run value function at the point

where the two are tangent.
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Envelope Properties

For suitably “regular” maxima, we have a strict inequality

in (8.21).
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8.E. Examples

Example 8.1: Consumer Theory

Consider the consumer’s expenditure minimization problem:

min p (EMP)

s.t. u(z) > u.
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Example 8.1: Consumer Theory

e In Example 5.2, we define consumer’s expenditure func-
tion E(p,u) as minimum value to expenditure minimiza-
tion problem (EMP) above.

e We denote optimum quantity as compensate demand func-
tion C(p, u).

e Envelope property implies:

Cp,u) = Eylp,u). (8.22)
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Example 8.1: Consumer Theory

e In Example 6.2, we showed that expenditure function
E(p,u) is concave in p.

e Now by Theorem 8.3, we know that it means that E,,(p, u)
is negative semi-definite.

e Differentiating
C(p,u) = Ey(p,u) (8.22)

with respect to p:

Cp(p: u) = Epp(pv u). (8.23)
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Example 8.1: Consumer Theory

(i) Because second derivative matrix E,,(p,u) is symmetric

by Schwarz’s theorem, C,(p, u) is symmetric:

ocr _oct _
3pk_5pj -k

This is symmetry of substitution effects of price changes.
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Example 8.1: Consumer Theory

(i) e

E

pp

That is, y" E,,(p,u)y < 0 for all y € R™.

(p,u) is negative semi-definite.

In particular, we could choose y = ¢’
T : ocy
Then ¢’” E,,(p,u)e’ = E;; <0 = . <0. (8.24)
J
This is true for all j.

Therefore, own substitution effects of price changes are

non-positive.
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Example 8.1: Consumer Theory

e Second result follows even more simply from the very con-
cept of maximum.
e For interested students, please refer to textbook or lecture

notes.
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Example 8.2: The LeChatelier Samuelson Principal

e Consider consumer’s expenditure minimization problem
(EMP) again.

e Now, we focus on second-order envelope properties.

e Consider a change in p; and compare the following two

situations:
(i) Quantities of all goods are free to change optimally;
(ii) Quantity x5 must be kept fixed at its initially optimal

level.
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Example 8.2: The LeChatelier Samuelson Principal

e Let E(py | p—1,u) denotes the expenditure function in sit-
uation (i) and E(p; | 22, p_1,u) denotes the expenditure

function in situation (ii) where xo must be kept fixed.

e Let C(py | p—1,u) and C(p; | w9, p_1,u) be the corre-

sponding compensated demand.
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Example 8.2: The LeChatelier Samuelson Principal

L R R

i\
E(pilp-1,w)

v

P1
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Example 8.2: The LeChatelier Samuelson Principal

Envelope properties of the curves:

1. First-order envelope property shows that curves will be
tangential at point where x5 is at its optimal value;
2. Second-order envelope property shows that E(p; | p_1,u)

is more concave than 7 (p, | 23" p . u)and F(p, | 25" p

Epipi(p1 | p-1,u) < Epp, (0

and Ep,p, (p1 | p-1,u) < Epyp, (p
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Example 8.2: The LeChatelier Samuelson Principal

e We know from (8.23) in Example 8.1 that
C;l <p1 ‘ D-1, u) = Ep1p1 (pl | DP-1, u)

C; (1 | @2, p-1,u) = Eppy (p1 | 2, p-1,0)

e Therefore, C;l (p1 | p-1,u) < C;I (p1 | 22, p-1,u)

1
’ b (01| Pty )‘ > ’Cpl(pl | $2,p—1>u)’
Cp, (P1lp—1u )<OC (p1lz2,p—1,u)<0

1.e., 0.7}1

op

07’1

8.25
= o (8.25)

zo free zo fixed
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Example 8.2: The LeChatelier Samuelson Principal

e Fixing quantity of some other good 2 makes compensated
demand for good 1 less responsive to its own price.

e Roughly speaking, any imposed rigidity in one sector of
economy causes a reduction in the responsiveness to prices
in other sectors.

e This is true irrespective of whether good 1 and good 2 are
substitutes or complements.

e This is known as LeChatelier Samuelson Principle.
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Example 8.4: Use of Second-order Conditions (Part 1)

e Consider a firm that buys a vector x of inputs at prices w,

produced output y = f(x), and sells it for revenue R(y).

e Firm’s profit maximization problem is
max F(z,w) = max R(f(x)) — wex,

where w is a row vector of input prices.
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Example 8.4: Use of Second-order Conditions (Part 1)

Result:

e Second-order necessary condition implies
dwdz* = dme(x*,w)_ldwT <0.

e If the maximum is “regular”, that is, second-order suffi-

cient condition is satisfied, then

dwdz* < 0.
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Example 8.4: Use of Second-order Conditions (Part Il)

e Consider the consumer’s utility maximization problem:

max Ul(x)

s.t. pxr = 1.

e We want to find pure substitution effect of a price change.
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Example 8.4: Use of Second-order Conditions (Part Il)
Result:

e If the second-order sufficient condition “L,,(z*, \*) is neg-

ative definite” is satisfied, then

dpdz® < 0.

e That is, sign of own substitution effect is negative.
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