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8.A. Local and Global Maxima

• In Chapter 7, we have discussed sufficient conditions for

optimality, confined to context of concave programming

(or more broadly, quasi-concave programming).

• Especially, when F is concave and G is convex, FOCs are

sufficient for maximization.

• More accurately, the conditions are sufficient for a global

maximum.

• That is, x∗ satisfying the conditions does at least as well

as any other feasible x.
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Local and Global Maxima

• We obtain a global maximum in concave programming

(quasi-concave programming) since

(quasi-)convexity properties are defined globally.

• For example, recall the definition of convexity,

Definition 6.B.4 (Convex Function). A function f : S →

R, defined on a convex set S ⊂ RN , is convex if

f(αxa + (1 − α)xb) ≤ αf(xa) + (1 − α)f(xb), (6.4)

for all xa, xb ∈ S and for all α ∈ [0, 1].
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Local and Global Maxima

• (6.4) needs to hold over the full domain of f .

• Such properties ensure that desired curvature is over the

full domain and thus sufficient for a global maximum.
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Local and Global Maxima

• The conclusions of a global maximiximum are ideal.

• However, in applications, we may not have functions that

have desired convexity property.
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Local and Global Maxima

• In this chapter, we will focus on curvature of the objective

and constraint functions in a small neighborhood of the

proposed optimum.

• The conditions are expressed in terms of second-order

derivatives of functions at the point.

• Such conditions are sufficient for local optima –

x∗ satisfying the conditions does better than any other

feasible x in a sufficiently small neighborhood of x∗.
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Local and Global Maxima

• It is a useful property when global conditions are not met.

• Moreover, it has a valuable by-product: SOCs play an

instrumental role in determining comparative static re-

sponses of optimum choice variables x.

• We will discuss comparative static result while we develop

the theory of SOCs.
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8.B. Unconstrained Maximization

• We will start with simple cases of unconstrained maxi-

mization.

• First, consider unconstrained maximization problem with

a scalar x:

max
x

F (x).

• Let x∗ be a candidate for optimum choice.
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Unconstrained Maximization

• Expand F in a Taylor series around x∗:

F (x) = F (x∗) + F ′(x∗)(x − x∗) + 1
2F ′′(x∗)(x − x∗)2 + ... (8.1)

• First-order necessary condition is F ′(x∗) = 0.

• Then (8.1) becomes

F (x) − F (x∗) = 1
2F ′′(x∗)(x − x∗)2 + ... (8.2)

• For x sufficiently close to x∗, quadratic term will dominate

higher-order terms in Taylor expansion.
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Unconstrained Maximization

For x in the small neighborhood of x∗.

(i) F ′′(x∗) > 0 =⇒ F (x) − F (x∗) > 0 =⇒ F (x) > F (x∗).

• x∗ will not be a maximum of F (x) in the neighborhood.

• It will not be a maximum over the whole range of F .

• This argument gives a second-order necessary condi-

tion for x∗ to yield a maximum, local or global:

F ′′(x∗) ≤ 0. (8.3)
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Unconstrained Maximization

(ii) F ′′(x∗) < 0 =⇒ F (x) − F (x∗) < 0 =⇒ F (x) < F (x∗).

• In a small neighborhood of x∗, we will have

F (x∗) > F (x), irrespective of signs of higher-order

terms.

• Thus, F ′′(x) < 0 (8.4)

is a second-order sufficient condition for x∗ to yield a

local maximum.

11



Unconstrained Maximization

Note the differences between the weak inequality condition

F ′′(x∗) ≤ 0 (8.3)

and the strict inequality condition

F ′′(x) < 0 (8.4)

(i) (8.3) is a necessary condition, while (8.4) is a sufficient

condition.

(ii) (8.3) is a condition for both local and global maximum,

while (8.4) is a condition only for local maximum.
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Unconstrained Maximization

• A local maximum satisfying second-order sufficient con-

dition is called a regular maximum.

• If the maximum is “irregular”, that is , if F ′′(x) = 0, then

we have to look at higher-order derivatives.

F (x)−F (x∗) = 1
3!F

′′′(x∗)(x−x∗)3+ 1
4!F

′′′′(x∗)(x−x∗)4+...

• Then, F ′′′(x∗) = 0 is a necessary condition; F ′′′(x∗) = 0

and F ′′′′(x) < 0 is a sufficient condition.

• We will focus on the regular maximum.
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Comparative Statics

• Now suppose that the problem involves a parameter θ,

that is, the objective function is F (x, θ).

• FOC is

Fx(x∗, θ) = 0. (8.5)

(8.5) implicitly defines x∗ as a function of θ.
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Comparative Statics

• Totally differentiate FOC, we have

Fxx(x∗, θ)dx∗ + Fxθ(x∗, θ)dθ = 0

or dx∗

dθ
= −Fxθ(x∗, θ)

Fxx(x∗, θ) . (8.6)

• At a regular maximum, Fxx(x∗, θ) < 0,

sign of dx∗/dθ is same as sign of Fxθ(x∗, θ).
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An Economic Illustration

• Consider the following revenue maximization problem:

max
x

R(x, θ) ≡ max
x

P (x, θ) · x,

where x is the output and θ is a shift parameter; P (x, θ)

is the inverse demand curve.

• Suppose Rθ(x, θ) = Pθ(x, θ) · x > 0 for all x.

• That is, an increase in θ shifts the demand and the rev-

enue curves upward.
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An Economic Illustration

• By the first-order necessary condition,

Rx(x∗, θ) = Px(x∗, θ) · x∗ + P (x∗, θ) = 0. (8.7)

• Totally differentiate (8.7), we have

Rxx(x∗, θ)dx∗ + Rxθ(x∗, θ)dθ = 0

=⇒ dx∗

dθ
= −Rxθ(x∗, θ)

Rxx(x∗, θ) (8.8)

• At a regular maximum, we have Rxx(x∗, θ) < 0.

• Therefore, sign of dx∗/dθ is same as sign of Rxθ(x∗, θ).
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An Economic Illustration

• Thus, if Rxθ(x∗, θ) > 0, an increase in θ will increase

revenue-maximizing output x∗.

• This is true if the increase in θ shifts marginal revenue

upward:
dRx(x, θ)

dθ
> 0.
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An Economic Illustration

• Of course, it is perfectly possible that as θ ↑,

(i) average revenue shifts up: Pθ(x, θ) > 0;

(ii) marginal revenue shifts down: dRx(x, θ)/dθ < 0.

• What is needed is a twist that reduces elasticity of de-

mand (Ed > 0). To see this,

Rx(x, θ) = Px(x, θ) + P (x, θ) = P (x, θ)
!
1 − 1

Ed

"
.

• If marginal revenue does shift down , then a favorable

shift of demand will cause output to fall. 19



More Choice Variables

• Let us turn to the case with a vector of choice variables.

• Now Taylor expansion becomes

F (x) =F (x∗) + Fx(x∗)(x − x∗)

+ 1
2(x − x∗)T Fxx(x∗)(x − x∗) + ... (8.9)

=F (x∗) +
n#

j=1

$
Fj(x∗)(xj − x∗

j)
%

+ 1
2

n#

j=1

n#

k=1
Fjk(xj − x∗

j)(xk − x∗
k) + ...
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More Choice Variables

• FOC is Fx(x∗) = 0.

• Then (8.9) becomes

F (x) − F (x∗) = 1
2(x − x∗)T Fxx(x∗)(x − x∗) + ...
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More Choice Variables

• For x sufficiently close to x∗, quadratic term dominates

high-order terms. Therefore,

(i) (x−x∗)T Fxx(x∗)(x−x∗) ≤ 0 is second-order necessary

condition for x∗ to yield a local or global maximum;

(ii) (x − x∗)T Fxx(x∗)(x − x∗) < 0 is second-order sufficient

condition for x∗ to yield a local maximum.
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More Choice Variables

We will next link second-order derivative test with mathe-

matical concepts of Negative (Semi-)Definiteness of matrices.
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Negative (Semi-)Definite Matrix

Definition 8.B.1 (Negative Definite). A symmetric N × N

matrix M is negative definite if

yT My < 0 (8.10)

for all non-zero y ∈ RN .
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Negative (Semi-)Definite Matrix

Definition 8.B.2 (Negative Semi-definite). A symmetric

N × N matrix M is negative semi-definite if

yT My ≤ 0 (8.11)

for all y ∈ RN .
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Negative (Semi-)Definite Matrix

Example 8.B.1. M =

&

''''''(

−2 1 0

1 −2 1

0 1 −2

)

******+
is negative definite.
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Negative (Semi-)Definite Matrix

Example 8.B.2. M =

&

''(
−1 1

1 −1

)

**+ is negative semi-definite.
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Negative (Semi-)Definite Matrix

• Note that a matrix M with all negative entries may not

be negative definite.

• Example 8.B.3 illustrates the case where all entries in M

is negative whereas M is not negative definite.
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Negative (Semi-)Definite Matrix

Example 8.B.3. M =

&

''(
−1 −2

−2 −1

)

**+ is not negative definite.

In particular, for y =

&

''(
−1

1

)

**+, we have yT My > 0.
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Positive (Semi-)Definite Matrix

Similarly, we could define positive (semi-)definite matrices

analogously.

Definition 8.B.3 (Positive Definite). A symmetric N × N

matrix M is positive definite if

yT My > 0 (8.12)

for all non-zero y ∈ RN .
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Positive (Semi-)Definite Matrix

Definition 8.B.4 (Positive Semi-definite). A symmetric N×

N matrix M is positive semi-definite if

yT My ≥ 0 (8.13)

for all y ∈ RN .
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Indefinite Matrix

Remark. A matrix that is not positive semi-definite and not

negative semi-definite is called indefinite.
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Definiteness of Matrices

• There are various ways to check definiteness of matrices.

• In Examples 8.B.1, 8.B.2 and 8.B.3, we have used the

definition to check the definiteness.

• Below, we will introduce determinantal test for definite-

ness.
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Principal Minor

Before discussing the general theorem, we need to learn some

new concepts.

Definition 8.B.5 (Principal Submatrix and Principal Mi-

nor). Let M be a N × N matrix. A k × k submatrix of M

formed by deleting n − k rows and the same n − k columns

of M is called the kth order principal submatrix of M . The

determinant of a principal submatrix is called the kth order

principal minor of M .
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Principal Minor

Example 8.B.4.

For a general 3 × 3 matrix M =

&

''''''(

a11 a12 a13

a21 a22 a23

a31 a32 a33

)

******+
.
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Leading Principal Minor

Definition 8.B.6 (Leading Principal Submatrix and Lead-

ing Principal Minor). Let M be a N × N matrix. The kth

order principal submatrix of M obtained by deleting the last

n − k rows and columns of M is called the kth order leading

principal submatrix of M ; and its determinant is called the

kth order leading principal minor of M .
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Leading Principal Minor

Example 8.B.5. For the 3 × 3 matrix in Example 8.B.4,

1. The 3rd order leading principal minor is det M ;

2. The 2nd order leading principal minor is det

&

''(
a11 a12

a21 a22

)

**+;

3. The 1st order leading principal minor is det
!
a11

"
.
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Definiteness of Matrices

The following two theorems provide the algorithm for testing

definiteness of a symmetric matrix.

Theorem 8.1. Let M be an N ×N symmetric matrix. Then

1. M is positive definite if and only if all its leading principal

minors are positive;

2. M is negative definite if and only if all its leading princi-

pal minors of odd order are negative; and all its leading

principal minors of even order are positive.
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Definiteness of Matrices

Theorem 8.2. Let M be an N ×N symmetric matrix. Then

1. M is positive semi-definite if and only if all its principal

minors are non-negative;

2. M is negative semi-definite if and only if all its principal

minors of odd order are non-positive ; and all its principal

minors of even order are non-negative.
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Definiteness of Matrices

Remark. Please note that to check semi-definiteness of ma-

trices, we must unfortunately check not only the leading prin-

cipal minors, but all principal minors.
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Definiteness of Matrices

• Returning to our maximization problem.

• We rewrite SOCs using (semi-)definiteness of matrices.

(i) Second-order necessary condition: Fxx(x∗) is negative semi-

definite;

(ii) Second-order sufficient condition: Fxx(x∗) is negative def-

inite.

Remark. Fxx is called Hessian Matrix.
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Concavity

• We would like to compare and contrast SOCs with the

property of concavity, which is defined globally.

Proposition 7.A.1 (Concave Function). A differentiable

function f : S → R, defined on a convex set S ⊂ RN , is

concave if and only if

fx(xa)(xb − xa) ≥ f(xb) − f(xa), (7.1)

for all xa, xb ∈ S .
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Concavity

For twice continusouly differentiable functions, concavity could

be interpreted in terms of second-order derivatives.

Theorem 8.3.

• (Twice continuously differentiable) function f : S → R

is concave if and only if fxx is negative semi-definite for

every x ∈ S.

• If fxx is negative definite for every x ∈ S, then the func-

tion is strictly concave.
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Concavity

(i) Concavity requires Fxx to be negative semi-definite for

every x;

(ii) Second-order necessary condition only requires Fxx to be

negative semi-definite for x∗.
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Concavity

• This is why SOCs are useful: it is applicable to functions

that do not have desired concavity property over their

whole domain of definition.

• Of course, on the other hand, if the function do have the

concavity property, it will satisfy second-order necessary

condition.
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Concavity

Remark. To apply SOCs we derived in this chapter, objec-

tive function need not be concave (defined globally).

• Objective function only needs to be “concave” at x∗:

Fxx(x∗) is negative semi-definite.
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Comparative Statics

• Similar to scalar variable case, we could derive compara-

tive static result by

1. totally differentiating FOC;

2. applying SOC.

• See Example 8.4 Part I for an application.
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8.C. Constrained Optimization

We will begin with the simplest case of two choice variables

and one equality constraint.

max
x1,x2

F (x1, x2)

s.t. G(x1, x2) = c

where F and G are increasing functions of their arguments.
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Constrained Optimization

(a)
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Constrained Optimization

(b)
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Constrained Optimization

(c)
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Constrained Optimization

• We have mentioned in Chapter 6 that relative curvature of

F and G matters for maximization: contour of F should

be more convex than that of G.

• To express the idea algebraically, we think of x2 as a func-

tion of x1 along contour of F and G, and find second-order

derivative of this function.
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Constrained Optimization

• For F , function of contour is F (x1, x2) = v.

• Total differentiation gives

dx2

dx1
= −F1(x1, x2)

F2(x1, x2)
. (8.14)

• To obtain curvature, differentiate (8.14) with respect x1:

d2x2

dx2
1

= −F2
2F11 − 2F1F2F12 + F1

2F22

F2
3 .

(In the derivation, we used F12 = F21)
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Constrained Optimization

Remark. Symmetry of second derivative matrix follows from

Schwarz’s theorem: if F has continuous second partial deriva-

tive at a, then, ∂2f(a)
∂xi∂xj

= ∂2f(a)
∂xj∂xi

.
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Constrained Optimization

A similar expression could be derived for second-order deriva-

tive along constraint curve:

d2x2

dx2
1

= −G2
2G11 − 2G1G2G12 + G1

2G22

G2
3 .
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Constrained Optimization

Second-order sufficient condition for x∗ to be a local optimum

is that d2x2/dx1
2 along the F contour should be greater than

that along the G contour, implying

G2
2 (F11 − λG11) − 2G1G2(F12 − λG12) + G1

2(F22 − λG22) < 0

evaluated at x∗.
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Constrained Optimization

This is more neatly expressed in matrix notation:

det

&

''''''(

0 −G1 −G2

−G1 F11 − λG11 F12 − λG12

−G2 F21 − λG21 F22 − λG22

)

******+
> 0, (8.15)

evaluated at x∗.
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Generalization to more variables and more constraints

• Next, we provide without proof conditions for general

problem with n choice variables and m equation con-

straints (m < n).

• Similar to matrix notation in (8.15), we form the parti-

tioned matrix:
&

''(
0 −Gx

−Gx
T Fxx − λGxx

)

**+ , (8.16)

evaluated at x∗.

• Top left partition 0 is m×m; bottom right partition Fxx−

λGxx is n × n; and Gx is m × n. 58



Generalization to more variables and more constraints

Remark. Matrix
&

''(
0 −Gx

−Gx
T Fxx − λGxx

)

**+

is called Bordered Hessian Matrix.
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Generalization to more variables and more constraints

• For second-order sufficient condition, we need to look at

n − m of bordered Hessian’s leading principal minors.

• Intuitively, we can think of m constraints as reducing the

problem to one with n − m free variables.

• For example, maximization problem:

maxx,y,z x + y2 + z subject to x + y + z = 1

can be reduced to

maxx,y x + y2 + (1 − x − y) with no constraint.
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Generalization to more variables and more constraints

• Smallest minor we consider consisting of truncated first

2m + 1 rows and columns, next consisting of truncated

first 2m + 2 rows and columns, and so on, with last being

determinant of entire bordered Hessian.

• A sufficient condition for a local maximum of F is that

smallest minor has same sign as (−1)m+1 and that rest of

the principal minors alternate in sign.
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Generalization to more variables and more constraints

Theorem 8.4 (Second-order Sufficient Condition for Con-

strained Maximization Problem). If the last n − m leading

principal minors of bordered Hessian matrix at proposed op-

timum x∗ is such that

• smallest minor ((2m+1)th minor) has same sign as (−1)m+1,

• rest of principal minors alternate in sign,

then x∗ is local maximum.
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Generalization to more variables and more constraints

It is easy to check that (8.15) satisfies the sufficient condition

for a local maximum for two-variable one-constraint case:

1. For two-variable one-constraint case (n = 2, m = 1), we

need to look at n−m = 1 leading principal minors. There-

fore, we only need to compute determinant of bordered

Hessian.

2. Sign requirement for maximum is (−1)m+1 = (−1)2 > 0.
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Generalization to more variables and more constraints

Example 8.C.1. Consider the maximization problem with

three variables (n = 3) and two constraints (m = 2):

max
x,y,z

F (x, y, z) ≡ z

s.t. G1(x, y, z) ≡ x + y + z = 12

G2(x, y, z) ≡ x2 + y2 − z = 0

64



More variables and more constraints: Example 8.C.1

• Stationary points are (x∗, y∗, z∗, λ, µ) = (2, 2, 8, 4
5 , −1

5)

and (−3, −3, 18, 6
5 , 1

5).

• Bordered Hessian matrix is
&

'''(

0 0 −G1
x −G1

y −G1
z

0 0 −G2
x −G2

y −G2
z

−G1
x −G2

x L11 L12 L13

−G1
y −G2

y L21 L22 L23

−G1
z −G2

z L31 L32 L33

)

***+
=

&

'''(

0 0 −1 −1 −1

0 0 −2x −2y 1

−1 −2x −2µ 0 0

−1 −2y 0 −2µ 0

−1 1 0 0 0

)

***+
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More variables and more constraints: Example 8.C.1

• We need to check n − m = 1 leading principal minors,

i.e., we only need to check determinant of the bordered

Hessian.

• Sign requirement for maximum is (−1)m+1 = (−1)3 < 0.
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More variables and more constraints: Example 8.C.1

1. 1st proposed optimum: (x∗, y∗, z∗, λ, µ) = (2, 2, 8, 4
5 , −1

5)

• Determinant of bordered Hessian is 20 > 0.

2. 2nd proposed optimum: (x∗, y∗, z∗, λ, µ) = (−3, −3, 18, 6
5 , 1

5)

• Determinant of bordered Hessian is −20 < 0.

Therefore, 2nd proposed optimum (x∗, y∗, z∗, λ, µ) =

(−3, −3, 18, 6
5 , 1

5) is a local maximum.
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Generalization to more variables and more constraints

Example 8.C.2. Consider the following maximization prob-

lem with three variables (n = 3) and one constraint (m = 1):

max
x,y,z

F (x, y, z) ≡ x + y + z

s.t. G1(x, y, z) ≡ x2 + y2 + z2 = 3
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More variables and more constraints: Example 8.C.2

• Stationary points are (x∗, y∗, z∗, λ) = (−1, −1, −1, −1
2)

and (1, 1, 1, 1
2).

• Bordered Hessian matrix is
&

''''''''''(

0 −G1
x −G1

y −G1
z

−G1
x L11 L12 L13

−G1
y L21 L22 L23

−G1
z L31 L32 L33

)

**********+

=

&

''''''''''(

0 −2x −2y −2z

−2x −2λ 0 0

−2y 0 −2λ 0

−2z 0 0 −2λ

)

**********+
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More variables and more constraints: Example 8.C.2

• We need to check n − m = 2 leading principal minors,

i.e., 3rd order and entire bordered Hessian.

• For local maximum, sign requirement is

1. (−1)m+1 = (−1)2 > 0 for the 3rd order leading princi-

pal minor and

2. < 0 for entire bordered Hessian.
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More variables and more constraints: Example 8.C.2

1. First proposed optimum: (x∗, y∗, z∗, λ) = (−1, −1, −1, −1
2)

• 3rd order leading principal minor is −8 < 0;

• Determinant of bordered Hessian is −12 < 0.

2. Second proposed optimum: (x∗, y∗, z∗, λ) = (1, 1, 1, 1
2)

• 3rd order leading principal minor is 8 > 0;

• Determinant of bordered Hessian is −12 < 0.

Thus, 2nd proposed optimum (x∗, y∗, z∗, λ) = (1, 1, 1, 1
2) is a

local maximum.
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Comparative Statics

• For constrained maximization problem, we could derive

comparative static results by

(i) totally differentiating FOCs and constrained equations;

(ii) applying SOCs.

• See Example 8.4 Part II for an application.
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Inequality Constraints

Finally, we consider maximization problem

max
x

F (x)

s.t. G(x) ≤ c.

• After applying Kuhn-Tucker first-order necessary condi-

tions and solving for stationary points, we know which

constraints are binding and which are not in those candi-

date optima.
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Inequality Constraints

• It seems that for each stationary point, we could treat

binding constraints as equality constraints and simply ig-

nore slack constraints.

• The intuition is correct in general, but there is one tricky

point: it is possible that inequality constraint is binding

but at the same time its corresponding Lagrange multi-

plier is equal to 0.

• These inequality constraints are degenerate inequality con-

straints.
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Inequality Constraints

• Conclusion is that to check second-order sufficient condi-

tion, we should only keep binding constraints with strictly

positive corresponding Lagrange multipliers.

• In other words, we form bordered Hessian Matrix using

only constraints with strictly positive Lagrange multipli-

ers and then apply Theorem 8.4.
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8.D. Envelope Properties

In Chapter 5, we established envelope property of maximum

value function:

V (θ) = max
x

{F (x, θ) | G(x) ≤ c}.

• V (θ) is upper envelope of family of functions F (x, θ) in

each of which x is held fixed.
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Envelope Properties

• Subsequently, we have considered more general problem

of short-run and long-run maximum value functions, where

vector of choice variables x is partitioned into subvectors

(y, z) and z is held fixed in short-run.

• V (θ), long-run optimum value function, is upper envelope

of family of value functions V (z, θ), short-run maximum

value functions.
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Envelope Properties

(a) Envelope Theorem
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Envelope Properties

(b) Short-run and Long-run Curves

79



Envelope Properties

• We have also mentioned curvature properties of envelopes.

• In Figure (a), V is more convex than each F .

• In Figure (b), V (θ) is more convex than V (z, θ).

• That is, the fewer variables are held fixed, the more con-

vex should the maximum value function be.

• Second-order envelope property is the subject of this sec-

tion.
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Envelope Properties

• Following same notation of Chapter 5, let Z(θ) be long-

run optimum value of z.

• Then, long-run and short-run value coincide at Z(θ):

V (θ) = V (Z(θ), θ). (8.17)

• Besides, two curves are tangential at Z(θ):

Vθ(θ) = Vθ(Z(θ), θ). (8.18)

81



Envelope Properties

• Now consider a deviation from θ to θ′, we have

V (Z(θ), θ′) ≤ V (Z(θ′), θ′) = V (θ′).

• Expand V (Z(θ), θ′) and V (θ′) around θ in Taylor series:

V (Z(θ), θ) + Vθ(Z(θ), θ)(θ′ − θ) + 1
2Vθθ(Z(θ), θ)(θ′ − θ)2 + ...

≤V (θ) + Vθ(θ)(θ′ − θ) + 1
2Vθθ(θ)(θ′ − θ)2 + ... (8.19)
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Envelope Properties

By first-order envelope properties (8.17) and (8.18), we have

(Vθθ(Z(θ), θ) − Vθθ(θ))(θ′ − θ)2 + ... ≤ 0. (8.20)

83



Envelope Properties

• Consider θ′ sufficiently close to θ, quadratic term in the

expansion would dominate rest of the terms.

• For the inequality (8.20) to hold, a necessary condition is

Vθθ(Z(θ), θ) ≤ Vθθ(θ). (8.21)

• This proves that long-run maximum value function is at

least as convex as short-run value function at the point

where the two are tangent.
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Envelope Properties

For suitably “regular” maxima, we have a strict inequality

in (8.21).
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8.E. Examples

Example 8.1: Consumer Theory

Consider the consumer’s expenditure minimization problem:

min
x

px (EMP)

s.t. u(x) ≥ u.
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Example 8.1: Consumer Theory

• In Example 5.2, we define consumer’s expenditure func-

tion E(p, u) as minimum value to expenditure minimiza-

tion problem (EMP) above.

• We denote optimum quantity as compensate demand func-

tion C(p, u).

• Envelope property implies:

C(p, u) = Ep(p, u). (8.22)
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Example 8.1: Consumer Theory

• In Example 6.2, we showed that expenditure function

E(p, u) is concave in p.

• Now by Theorem 8.3, we know that it means that Epp(p, u)

is negative semi-definite.

• Differentiating
C(p, u) = Ep(p, u) (8.22)

with respect to p:

Cp(p, u) = Epp(p, u). (8.23)
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Example 8.1: Consumer Theory

(i) Because second derivative matrix Epp(p, u) is symmetric

by Schwarz’s theorem, Cp(p, u) is symmetric:

∂Cj

∂pk

= ∂Ck

∂pj

= Ejk.

This is symmetry of substitution effects of price changes.
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Example 8.1: Consumer Theory

(ii) • Epp(p, u) is negative semi-definite.

• That is, yT Epp(p, u)y ≤ 0 for all y ∈ Rn.

• In particular, we could choose y = ej

• Then ejT
Epp(p, u)ej = Ejj ≤ 0 =⇒ ∂Cj

∂pj

≤ 0. (8.24)

• This is true for all j.

• Therefore, own substitution effects of price changes are

non-positive.
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Example 8.1: Consumer Theory

• Second result follows even more simply from the very con-

cept of maximum.

• For interested students, please refer to textbook or lecture

notes.
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Example 8.2: The LeChatelier Samuelson Principal

• Consider consumer’s expenditure minimization problem

(EMP) again.

• Now, we focus on second-order envelope properties.

• Consider a change in p1 and compare the following two

situations:

(i) Quantities of all goods are free to change optimally;

(ii) Quantity x2 must be kept fixed at its initially optimal

level.
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Example 8.2: The LeChatelier Samuelson Principal

• Let E(p1 | p−1, u) denotes the expenditure function in sit-

uation (i) and E(p1 | x2, p−1, u) denotes the expenditure

function in situation (ii) where x2 must be kept fixed.

• Let C(p1 | p−1, u) and C(p1 | x2, p−1, u) be the corre-

sponding compensated demand.
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Example 8.2: The LeChatelier Samuelson Principal
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Example 8.2: The LeChatelier Samuelson Principal

Envelope properties of the curves:

1. First-order envelope property shows that curves will be

tangential at point where x2 is at its optimal value;

2. Second-order envelope property shows that E(p1 | p−1, u)

is more concave than E(p1 | x∗
2

′, p−1, u) and E(p1 | x∗
2

′′, p−1, u):

Ep1p1(p1 | p−1, u) ≤ Ep1p1(p1 | x∗
2

′, p−1, u)

and Ep1p1(p1 | p−1, u) ≤ Ep1p1(p1 | x∗
2

′′, p−1, u).
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Example 8.2: The LeChatelier Samuelson Principal

• We know from (8.23) in Example 8.1 that

C1
p1(p1 | p−1, u) = Ep1p1(p1 | p−1, u)

C1
p1(p1 | x2, p−1, u) = Ep1p1(p1 | x2, p−1, u)

• Therefore, C1
p1(p1 | p−1, u) ≤ C1

p1(p1 | x2, p−1, u)

=⇒, -. /
C1

p1 (p1|p−1,u)≤0,C1
p1 (p1|x2,p−1,u)≤0

000C1
p1(p1 | p−1, u)

000 ≥
000C1

p1(p1 | x2, p−1, u)
000

i.e., 00000
∂x1

∂p1

00000
x2 free

≥
00000
∂x1

∂p1

00000
x2 fixed

(8.25)
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Example 8.2: The LeChatelier Samuelson Principal

• Fixing quantity of some other good 2 makes compensated

demand for good 1 less responsive to its own price.

• Roughly speaking, any imposed rigidity in one sector of

economy causes a reduction in the responsiveness to prices

in other sectors.

• This is true irrespective of whether good 1 and good 2 are

substitutes or complements.

• This is known as LeChatelier Samuelson Principle.
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Example 8.4: Use of Second-order Conditions (Part I)

• Consider a firm that buys a vector x of inputs at prices w,

produced output y = f(x), and sells it for revenue R(y).

• Firm’s profit maximization problem is

max
x

F (x, w) ≡ max
x

R(f(x)) − wx,

where w is a row vector of input prices.
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Example 8.4: Use of Second-order Conditions (Part I)

Result:

• Second-order necessary condition implies

dwdx∗ = dwFxx(x∗, w)−1dwT ≤ 0.

• If the maximum is “regular”, that is, second-order suffi-

cient condition is satisfied, then

dwdx∗ < 0.
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Example 8.4: Use of Second-order Conditions (Part II)

• Consider the consumer’s utility maximization problem:

max
x

U(x)

s.t. px = I.

• We want to find pure substitution effect of a price change.
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Example 8.4: Use of Second-order Conditions (Part II)

Result:

• If the second-order sufficient condition “Lxx(x∗, λ∗) is neg-

ative definite” is satisfied, then

dpdx∗ < 0.

• That is, sign of own substitution effect is negative.
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