
Dynamic Optimization

Chapter 7. Concave Programming

7.A. Concave Functions and Their Derivatives

In this chapter, we will combine the idea of convexity with a more conventional calculus

approach. The result is that the Lagrange or Kuhn-Tucker conditions, in conjunction

with convexity properties of the objective and constraint functions, are sufficient for

optimality.

The first step is to express the concavity (convexity) of functions in terms of their deriva-

tives. In chapter 6, we have learned the definition of concave functions:

Definition 6.B.5 (Concave Function). A function f : S → R, defined on a convex set

S ⊂ RN , is concave if

f(αxa + (1 − α)xb) ≥ αf(xa) + (1 − α)f(xb), (6.5)

for all xa, xb ∈ S and for all α ∈ [0, 1].

We have also shown a similar graph to Figure 7.1 below, and interpreted concavity graph-

ically: the graph of the function lies on or above the chord joining any two points of it.

Figure 7.1: Concave Function

1



Dynamic Optimization

To express the concavity of f(x) in terms of its derivative, we now draw the tangent to

f(x) at xa. The requirement of concavity says that the graph of the function should lie

on or below the tangent. Or expressed differently,

fx(xa)(xb − xa) ≥ f(xb) − f(xa),

where fx(xa) is the slope of the tangent to f(x) at xa.

Such an expression holds for higher dimensions. The result is summarized in Proposition

7.A.1 below.

Proposition 7.A.1 (Concave Function). A differentiable function f : S → R, defined

on a convex set S ⊂ RN , is concave if and only if

fx(xa)(xb − xa) ≥ f(xb) − f(xa), (7.1)

for all xa, xb ∈ S .

Proof. See Appendix A.

Similarly, for a differentiable convex function f , we have

fx(xa)(xb − xa) ≤ f(xb) − f(xa). (7.2)

A particularly important class of optimization problems has a concave objective function

and convex constriant functions; the term concave programming is often used to describe

the general problem of this kind, and it is the subject of the next section.

7.B. Concave Programming

Consider the maximization problem

max
x

F (x)

s.t. G(x) ≤ c,

where F is differentiable and concave, and each component constraint function Gi is

differentiable and convex.

2



Dynamic Optimization

Below we will interpret the problem using the terminology of the production problem.

But the mathematics is independent of this interpretation.

max
x

F (x)
! "# $

revenue from outputs

s.t. G(x) ≤ c
! "# $

resource constraints

,

where x is the vector of outputs, c is a fixed vector of input supplies, and G(x) is the

vector of inputs needed to produce x.

Let X(c) denote the optimum choice funcion, and V (c) the maximum value function.

Claim 1. V (c) is a non-decreasing function.

This is because an x that was feasible for a given value of c remains feasible when any

component of c increases, so the maximum value cannot decrease.

Claim 2. V (c) is a concave.

To show concavity of V (c), we need to show that for any two input supply vectors c and

c′ and any number α ∈ [0, 1], we have

V (αc + (1 − α)c′) ≥ αV (c) + (1 − α)V (c′).

That is, it should be possible to achieve revenue at least as high as αV (c) + (1 − α)V (c′)

when the input supply vector is αc + (1 − α)c′.

Let x∗ = X(c) and x∗′ = X(c′). Since the optimal choices must be feasible, we have

G(x∗) ≤ c and G(x∗′) ≤ c′. (7.3)

We will show that the output vector αx∗ + (1 − α)x∗′ is feasible under the input supply

vector αc + (1 − α)c′. And that it yields revenue at least as high as αV (c) + (1 − α)V (c′).

(i) αx∗ + (1 − α)x∗′ is feasible since for each i, the convexity of Gi implies

Gi(αx∗ + (1 − α)x∗′) ≤!"#$
convexity

αGi(x∗) + (1 − α)Gi(x∗′) ≤!"#$
(7.3)

αci + (1 − α)c′
i.

3



Dynamic Optimization

(ii) αx∗ + (1 − α)x∗′ yields revenue at least as high as αV (c) + (1 − α)V (c′) since the

concavity of F implies

F (αx∗ + (1 − α)x∗′) ≥!"#$
concavity

αF (x∗) + (1 − α)F (x∗′) = αV (c) + (1 − α)V (c′). (7.4)

Therefore, we have found a feasible output vector that generates the target revenue.

The maximum revenue must be no smaller than the revenue generated from the feasible

output vector:

V (αc + (1 − α)c′) ≥ F (αx∗ + (1 − α)x∗′). (7.5)

Combining (7.4) and (7.5), we have

V (αc + (1 − α)c′) ≥ αV (c) + (1 − α)V (c′).

This is the result we want to prove.

The economics behind this result is that the convexity of G rules out economies of scale or

specialization in production, ensuring that a weighted average of outputs can be produced

using the same weighted average of inputs. Then, the concavity of F ensures that the

resulting revenue is at least as high as the same weighted average of the separate revenues.

Recall that we have established an alternative interpretation of a concave function in

Chapter 6:

Claim. f is a concave function if and only if F = {(x, v)|v ≤ f(x)} is a convex set.

In our current context, as V (c) is a concave function, the set {(c, v)|v ≤ V (c)} is a

convex set. This is an (m+1)-dimensional set, the collection of all points (c, v) such that

v ≤ V (c). That is, revenue of v can be produced using the input vector c.

Figure 7.2 shows this set as the shaded area A when c is a scalar. Since V is non-

decreasing and concave, the set has a frontier that shows a positive but diminishing

marginal product of the input in producing revenue. Note that the frontier of V may not

be smooth. We will explain this point in the part Generalized Marginal Products.

4



Dynamic Optimization

Figure 7.2: Value Function in Concave Programming

Since A is a convex set, it can be separated from other convex sets. To do this, choose a

point (c∗, v∗) in A such that v∗ = V (c∗). (c∗, v∗) must be a boundary point since for any

r > 0, there exists ε ∈ (0, r)

(i) v∗ − (r − ε) < v∗ = V (c∗) implies that the point (c∗, v∗ − (r − ε)) is in A;

(ii) v∗ + (r − ε) > v∗ = V (c∗) implies that the point (c∗, v∗ + (r − ε)) is not in A.

Now, define B as the set of all points (c, v) such that c ≤ c∗ and v ≥ v∗.

Graphically, B is shown in Figure 7.2 as the shaded green area. It is clear from the graph

that B is a convex set and does not share interior points with A. Formally,

(i) Convexity of B. For any two points (c, v), (c′, v′) ∈ B, that is, (c, v), (c′, v′)

satisfying c ≤ c∗, v ≥ v∗ and c′ ≤ c∗, v′ ≥ v∗, and any real number α ∈ [0, 1], we

have αc + (1 − α)c′ ≤ αc∗ + (1 − α)c∗ = c∗; αv + (1 − α)v′ ≥ αv∗ + (1 − α)v∗ = v∗,

that is, (αc + (1 − α)c′, αv + (1 − α)v′) ∈ B.

(ii) No Common Interior. Points in A satisfy v ≤ V (c). For points (c, v) ∈ B,

v ≥ v∗ = V (c∗) ≥!"#$
V (c) is non-decreasing.

V (c) =⇒ v ≥ V (c).

Therefore, A and B do not have interior points in common.

5



Dynamic Optimization

We could apply the Separation Theorem. Recognizing that (c∗, v∗) is a common boundary

point of A and B, we could write the equation of the separating hyperplane as follows:

ιv − λc = b = ιv∗ − λc∗,

where ι is a scalar, and λ is a m-dimensional row vector. The signs are so chosen that

ιv − λc

%
&&&'

&&&(

≤ b for all (c, v) ∈ A

≥ b for all (c, v) ∈ B.

(7.6)

The parameters and signs are deliberately chosen. As it will becomes clear later, ι and λ

are both non-negative, and are linked to the shadow prices.

Remark. ι and λ must both be non-negative.

(i) ι ≥ 0: Suppose ι < 0. Consider the point (c∗, v∗+1) ∈ B. However, ι(v∗+1)−λc∗ =

b + ι < b, contradicting with (7.6).

(ii) λi ≥ 0 for i = 1, 2, ..., m: Suppose λi < 0. Consider the point (c∗ − ei, v∗),

where ei is a vector with its ith component equal to 1 and all other components 0.

(c∗ − ei, v∗) ∈ B. However, ιv∗ − λ(c∗ − ei) = b + λi < b, contradicting with (7.6).

Now comes the more subtle question:

Question. Can ι be zero?

Let’s see the consequence of ι = 0.

(i) For the equation of the hyperplane ιv − λc = b to be meaningful, the combined

vector (ι, λ) must be non-zero. Therefore, λi ∕= 0 for at least one i. Given that

λi ≥ 0 for all i, it means λi > 0 for at least one i.

(ii) The equation of the hyperplane becomes −λc = b = −λc∗. For all (c, v) ∈ A, we

have −λc ≤ −λc∗, or λ(c − c∗) ≥ 0.

In the scalar constraint case, in such a situation, we have λ > 0. Therefore, λ(c−c∗) ≥

0 implies c − c∗ ≥ 0. Graphically, the separating line is vertical at c∗, and the set A lies

entirely to the right of it. Put it differently, there are no feasible points to the left of c∗:

the production is impossible if input supply falls short of this level. In some applications,

this can happen because of indivisibilities.

6



Dynamic Optimization

Figure 7.3 shows two ways in which this can happen.

(a) (b)

Figure 7.3: Failure of Constraint Qualification

The two cases differ in the behavior of V (c) as c approaches c∗.

(i) In case 7.3a, the marginal revenue product of the resource goes to infinity as c

approaches c∗. And only a vertical separating line exists.

(ii) In case 7.3b, the marginal revenue product is finite. And except for the vertical

separating line, there also exist separating lines with finite slopes (positive ι).

We would like to ensure a positive ι so that the marginal revenue product of a resource

is finite. And we do this by ensuring the existence of c such that c < c∗. Due to the

existence of case (ii) above, such conditions are only sufficient but not necessary.

Claim. If there exists an xo such that G(xo) ≪ c∗ and F (xo) is defined, then ι > 0.

This requirement is the constraint qualification for the concave programming problem. It

is sometimes called the Slater condition.

Intuitively, for a scalar c, such a condition works since by construction, (G(xo), F (xo)) ∈ A

and (G(xo), F (xo)) is a point to the left of c∗. Thus, the separating line cannot have an

infinite slope at c∗.

We will next prove that the Slater condition implies ι > 0 in general.

7



Dynamic Optimization

Proof. We prove by contradiction. Suppose that the condition holds but ι = 0.

Then, on one hand, λi ≥ 0 for all i and λi > 0 for at least one i.

Therefore, by G(xo) ≪ c∗ ⇐⇒ Gi(xo) < c∗
i , we have

=⇒ λ(G(xo) − c∗) =
m)

i=1
λi(Gi(xo) − c∗

i ) < 0. (7.7)

On the other hand, (G(xo), F (xo)) ∈ A since revenue of F (xo) can be generated using

the input vector G(xo). Therefore, by the separation property,

− λG(xo) =!"#$
ι=0

ιF (xo) − λG(xo) ≤!"#$
separation property

ιv∗ − λc∗ =!"#$
ι=0

−λc∗

=⇒ λ(G(xo) − c∗) ≥ 0. (7.8)

(7.7) and (7.8) contradict each other. This contradiction forces us to conclude that the

initial supposition ι = 0 must be wrong.

Normalization. The separation property (7.6) is unaffected if we multiply by b, ι and

λi by the same positive number. Once we can be sure that ι ∕= 0, we can choose a

scale to make ι = 1. In economic terms, ι and λ constitute a system of shadow prices,

ι for revenue and λ for the inputs. Only relative prices matter for ecoonomic decisions,

in setting ι = 1, we are choosing revenue to be the numéraire. We will adopt this

normalization henceforth.

Shadow Price Interpretation of λ. Observe that by the separation property (7.6), for

all (c, v) ∈ A,
v − λc ≤ v∗ − λc∗.

That is, (c∗, v∗) achieves the maximum value of (v − λc) among all points (c, v) ∈ A.

If we interpret λ as the vector of shadow prices of inputs, then (v − λc) is the profit

that accrues when a producer uses inputs c to produce revenue v. Since all points in A

represents feasible production plans, the result says that a profit-maximizing producer

will pick (c∗, v∗). This means that the producer need not be aware that in fact the

availability of inputs is limited to c∗. He may think that he is free to choose any c but

ends up choosing the right c∗. It is the prices λ that brings home to him the scarcity.

8



Dynamic Optimization

The principle behind this interpretation is general and important: constrained choice can

be converted into unconstraint choice if the proper scarcity costs or shadow values of the

constraints are netted out of the criterion function. As it will become clear later, this is

the most important feature of Lagrange’s Method in concave programming.

Generalized Marginal Products. For any c, the point (c, V (c)) is in A. So by the

separation property, we have
V (c) − λc ≤ V (c∗) − λc∗,

or V (c) − V (c∗) ≤ λ(c − c∗). (7.9)

This looks very much like the concavity property (7.1). If V (c) is differentiable, then by

Proposition 7.A.1, concavity of V (c) means

V (c) − V (c∗) ≤ Vc(c∗)(c − c∗). (7.10)

(7.9) and (7.10) suggest λ = Vc(c∗), and confirm our interpretation of λ as shadow prices.

However, the problem is that V may not be differentiable. Let us consider a general point

(c, V (c)) with its associated multiplier vector λ.1 Compare this with a neighboring point

where only the ith input is increase: (c + hei, V (c + hei)), where h is a positive scalar and

ei is a vector with its ith component equal to 1 and all others 0. Then, (7.9) becomes

V (c + hei) − V (c) ≤ λhei = hλi

=⇒ [V (c + hei) − V (c)]
h

≤ λi. (7.11)

We will show that by the concavity of V , the left-hand side of (7.11) is a non-increasing

function of h. To see this, consider two points (c + hei, V (c + hei)) and (c + αhei, V (c +

αhei)) for some h > 0 and α ∈ (0, 1). Then by concavity of V ,

V (c + αhei)) ≥ αV (c + hei)) + (1 − α)V (c)

=⇒ V (c + αhei)) − V (c) ≥ α
*
V (c + hei)) − V (c)

+

=⇒ V (c + αhei)) − V (c)
αh

≥ V (c + hei)) − V (c)
h

(7.12)

1The asterisks, having served the purpose of distinguishing a particular point in the (c, v) space for
separation, will be dropped from now on.

9



Dynamic Optimization

Since αh < h, (7.12) implies that the left-hand side of (7.11), namely, V (c+hei))−V (c)
h

is

non-increasing in h.

Graphically, it is simply the slope of the chord. See Figure 7.4. It is not hard to see that

the slope is larger when h decreases.

Figure 7.4: Convavity of V (c)

Therefore, the left-hand side of (7.11) must attain the maximum as h goes to zero from

positive values. This limit is defined as the “rightward” partial derivative of V with

respect to the ith coordinate of c: V +
i (c). Therefore, (7.11) implies V +

i (c) ≤ λi.

Similarly, we could repeat the analysis for h < 0. Now, (7.9) implies

V (c + hei)) − V (c) ≤ λhei = hλi

=⇒ [V (c + hei)) − V (c)]
h

≥ λi. (7.13)

Taking the limit from the negative values of h gives the “leftward” partial derivative

V −
i (c). This proves V −

i (c) ≥ λi.

Combining the two, we have

V −
i (c) ≥ λi ≥ V +

i (c). (7.14)

This result generalizes the notion of diminishing marginal returns and relates the multi-

pliers to these generalized marginal products.

10



Dynamic Optimization

Figure 7.5 illustrates this for the case of a scalar c.

Figure 7.5: Generalized Marginal Products

Choice Variables. So far the vector of choice variables x has been kept in the back-

ground. Let’s now consider it explicitly. The point (G(x∗), F (x∗)) ∈ A since revenue of

F (x∗) can be generated using the input vector G(x∗). The separation property gives

F (x∗) − λG(x∗) ≤ V (c) − λc =⇒! "# $
F (x∗)=V (c)

λ [c − G(x∗)] ≤ 0.

That is, ,m
i=1 λi [ci − Gi(x∗)] ≤ 0. Since λi ≥ 0 and Gi(x) ≤ ci for all i, we have

λi [ci − Gi(x∗)] ≥ 0 for all i. Therefore,

λi

*
ci − Gi(x∗)

+
= 0. (7.15)

This is just the notion of complementary slackness we have learned before.

Finally, for any x, the point (G(x), F (x)) ∈ A since revenue of F (x) can be generated

using the input vector G(x). Recognizing (7.15), the separation property gives

F (x) − λG(x) ≤!"#$
separation property

V (c) − λc =!"#$
F (x∗)=V (c) and (7.15)

F (x∗) − λG(x∗)

for all x.

11



Dynamic Optimization

That is, x∗ maximizes F (x)−λG(x) without any constraints. This means that the shadow

prices allow us to convert the original constrained revenue-maximization problem into an

unconstrained profit-maximization problem.

All of the above reasoning can now be summarized into the basic theorem of this section:

Theorem 7.1 (Necessary Conditions for Concave Programming). Suppose that F is a

concave function and G is a vector convex function, and that there exists an xo satisfying

G(xo) ≪ c. If x∗ maximizes F (x) subject to G(x) ≤ c, then there is a row vector λ such

that

(i) x∗ maximizes F (x) − λG(x) without any constraints, and

(ii) λ ≥ 0, G(x∗) ≤ c with complementary slackness.

Note that Theorem 7.1 does not require F and G to have derivatives. But if the functions

are differentiable, then we have the first-order necessary conditions for the maximization

problem (i):

Fx(x∗) − λGx(x∗) = 0. (7.16)

In terms of the Lagrangian L(x, λ), (7.16) becomes Lx(x∗, λ). This is just the condition

of Lagrange’s Theorem with Inequality Constraints. We could further add the non-

negativity constraints on x, and get Kuhn-Tucker Theorem.2

There is one respect in which concave programming goes beyond the general Lagrange

or Kuhn-Tucker conditions. The first-order necessary conditions (7.16) are not sufficient

to ensure maximum. In general, there was no claim that x∗ maximized the Lagrangian.

However, when F is concave and G is convex, part (i) of Theorem 7.1 is easily transformed

into L(x, λ) ≤ L(x∗, λ) for all x, so x∗ does maximize the Lagrangian. Therefore, our

interpretation of Lagrange’s method as converting the constrained revenue-maximization

into unconstrained profit-maximization must be confined to the case of concave program-

ming.

2One way do to this is to recognize x ≥ 0 or −x ≤ 0, as another n inequality constraints, associate
with them an n-dimensional multiplier µ and repeat the previous analysis.

12



Dynamic Optimization

Sufficiency. The first-order necessary conditions are sufficient to yield a true maximum

in the concave programming problem. The argument proceeds in two parts.

1. Suppose x∗ satisfies (i) and (ii) in Theorem 7.1. Then, for any feasible x, we have

F (x∗) − λG(x∗) ≥!"#$
(i)

F (x) − λG(x)

=⇒ F (x∗) − λc ≥!"#$
(ii) complementary slackness: λ[c−G(x∗)]=0

F (x) − λG(x)

=⇒ F (x∗) ≥ F (x) + λ[c − G(x)] ≥!"#$
x is feasible: G(x)≤c

F (x).

Thus, x∗ maximizes F (x) subject to G(x) ≤ c.

2. Suppose x∗ satisfies the first-order condition (7.16). Since F is concave, G is convex,

and λ ≥ 0, then F − λG is concave. Then, by Proposition 7.A.1,

[F (x) − λG(x)] − [F (x∗) − λG(x∗)] ≤!"#$
Proposition 7.A.1: Concavity

[Fx(x) − λGx(x)] (x − x∗) =!"#$
(7.16)

0.

Therefore,

F (x) − λG(x) ≤ F (x∗) − λG(x∗),

or x∗ maximizes F (x) − λG(x) without any constraints.

This result is summarized into the theorem below:

Theorem 7.2 (Sufficient Conditions for Concave Programming). If x∗ and λ are such

that

(i) x∗ maximizes F (x) − λG(x) without any constraints, and

(ii) λ ≥ 0, G(x∗) ≤ c with complementary slackness,

then x∗ maximizes F (x) subject to G(x) ≤ c. If F − λG is concave (for which in turn it

suffices to have F concave and G convex), then

Fx(x∗) − λGx(x∗) = 0 (7.16)

implies (i) above.

Note that no constraint qualification appears in the sufficient conditions.

13



Dynamic Optimization

7.C. Quasi-concave Programming

In the separation approach of Chapter 6, F was merely quasi-concave and each component

constraint function in G was quasi-convex. In this chapter, the stronger assumption of

concavity and convexity has been made so far. In fact, the weaker assumptions of quasi-

concavity and quasi-convexity make little difference to the necessary conditions. They

yield sufficient conditions like the ones above for concave programming, but only in the

presence of some further technical conditions that are quite complex to establish. For

interested students, please refer to the paper “Arrow and Enthoven (1961). Quasi-concave

Programming. Econometrica, 779-800.”

We will discuss only a limited version of quasi-concave programming, namely, the one

where the objective function is quasi-concave and the constraint function is linear:3

max
x

F (x) (MP1)

s.t. px ≤ b,

where p is a row vector and b is a number.

Recall the definition of Quasiconcavity:

Definition 6.B.3 (Quasi-concave Function). A function f : S → R, defined on a convex

set S ⊂ RN , quasi-concave if the set {x|f(x) ≥ c} is convex for all c ∈ R, or equivalently,

if f(αxa + (1 − α)xb) ≥ min{f(xa), f(xb)}, for all xa, xb and for all α ∈ [0, 1].

First, we need to establish some property of quasi-concave function, relating to the deriva-

tives. For a quasi-concave objective function F , suppose F (xb) ≥ F (xa). Then,

F ((1 − α)xa + αxb) ≥ F (xa), (7.17)

for all α ∈ [0, 1]. Let h(α) = F ((1 − α)xa + αxb) = F (xa + α(xb − xa)). Then, (7.17)

becomes

h(α) ≥ h(0) =⇒ h(α) − h(0)
α

≥ 0. (7.18)

3The mirror-image case of a linear objective and a quasi-convex constraint can be treated in the same
way.

14



Dynamic Optimization

By the definition of derivative,

lim
α→0

-
h(α) − h(0)

α

.

= h′(0).

Since (7.18) holds when α → 0, we have

h′(0) ≥ 0. (7.19)

On the other hand, by chain rule,

h′(α) = Fx(xa + α(xb − xa))(xb − xa)

=⇒ h′(0) = Fx(xa)(xb − xa) (7.20)

(7.19) and (7.20), we have

Fx(xa)(xb − xa) ≥ 0. (7.21)

This holds for all xa, xb such that F (xb) ≥ F (xa).

Now consider the maximization problem (MP1). The first-order necessary conditions are

Fx(x∗) − λp = 0 (7.22)

px∗ ≤ b and λ ≥ 0, with complementary slackness

We claim that (7.22) is also sufficient when λ > 0 and the constraint is binding.4 Formally,

Claim. If F is continuous and quasi-concave, x∗ and λ > 0 satisfy the first-order neces-

sary conditions, then x∗ solves the quasi-concave programming problem.

Proof. Suppose that there exists x such that F (x) > F (x∗) ≡ v∗. We will show that x

is not feasible, that is, px > b.

By (7.21), F (x) > F (x∗) implies

Fx(x∗)(x − x∗) ≥ 0. (7.23)

4Appendix B provides an example of a spurious stationary point where (7.22) holds with λ = 0.

15



Dynamic Optimization

Substituting (7.22) into (7.23), we have

λp(x − x∗) ≥ 0 =⇒! "# $
λ>0

p(x − x∗) ≥ 0 or px ≥ px∗ =!"#$
constraint binding

b.

In other words, the upper contour set of F (x) for the value v∗ is contained in the half-space

on or above the constraint line. To complete the proof, we need to rule out px = b.

Since F is continuous and F (x) > F (x∗), x is an interior point of the upper contour set

of F (x) for the value v∗.5 Then if px = b, there exists y such that F (y) > F (x∗) and

py < b, leading to a contradiction with the previous result that F (x) > F (x∗) implies

px ≥ b.6 Therefore, we must have px > b. This completes the proof.

Figure 7.6 illustrate the quasi-concave programming problem with a linear constraint.

Figure 7.6: Quasi-concave Objective and Linear Constraint

Fx(x∗) is normal to the contour of F (x) at x∗. p is normal to the constraint px = b

at x∗. The usual tangency condition is equivalent to the normal vectors being parallel.

Equation (7.22) expresses this, with the constant of proportionality equal to λ.
5Continuity of F (x) means that for any ε > 0, there exists δ > 0, such that for all y satisfying

‖y − x‖ < δ, we have ‖F (y) − F (x)‖ < ε. We choose ε ∈ (0, F (x) − F (x∗)). Then, by continuity of F (x),
we can find δ such that for all y satisfying ‖y − x‖ < δ, we have F (y) ∈ (F (x) − ε, F (x) + ε). Therefore,
F (y) > F (x) − ε > F (x∗). Thus, x is an interior point of F (x) > F (x∗).

6The detailed argument goes as follows. Consider δ as defined in footnote 5. By footnote 5, for all
y satisfying ‖y − x‖ < δ, we have F (y) > F (x∗) . Since x is not an interior point of px ≥ b, then there
exists y such that ‖y − x‖ < δ and py < b. Therefore, we can find some y such that F (y) > F (x∗) but
py < b.

16



Dynamic Optimization

7.D. Uniqueness

The above sufficient conditions for concave as well as quasi-concave programming are

weak in the sense that they establish that no other feasible choice x can do better than

x∗. They do not rule out the existence of other feasible choices that yield F (x) = F (x∗).

In other words, they do not establish the uniqueness of the optimum.

As discussed in Chapter 6, a strenghening of the concept of concavity or quasi-concavity

gives uniqueness.

Definition 7.D.1 (Strictly Concave Function). A function f : S → R, defined on a

convex set S ⊂ RN , is strictly concave if

f(αxa + (1 − α)xb) > αf(xa) + (1 − α)f(xb), (7.24)

for all xa, xb ∈ S and for all α ∈ (0, 1).

Claim. If the objective function F in the concave programming problem is strictly con-

cave, then the maximizer x∗ is unique.

Proof. We prove by contradiction. Suppose that x∗′ is another solution. Then, F (x∗) =

F (x∗′) = v∗, and G(x∗) ≤ c, G(x∗′) ≤ c. Now consider αx∗ + (1 − α)x∗′.

(i) αx∗ + (1 − α)x∗′ is feasible since for each i, the convexity of Gi implies

Gi(αx∗ + (1 − α)x∗′) ≤!"#$
convexity

αGi(x∗) + (1 − α)Gi(x∗′) ≤!"#$
feasibility of x∗ and x∗′

αci + (1 − α)ci = ci.

(ii) αx∗ + (1 − α)x∗′ yields higher value than v∗ since the strict concavity of F implies

F (αx∗ + (1 − α)x∗′) >!"#$
strict concavity

αF (x∗) + (1 − α)F (x∗′) = αv∗ + (1 − α)v∗ = v∗.

Therefore, we have found a feasible choice αx∗ + (1 − αx∗′) which yields higher value

than v∗. This contradicts with the fact the x∗ and x∗′ are optimal. Therefore, the

initial supposition must be wrong and strict concavity of F implies the uniqueness of the

maximizer.

17



Dynamic Optimization

7.E. Examples

Example 7.1: Linear Programming.

An important special case of concave programming is the theory of linear programming.

Here the objective and constraint functions are linear:

max
x

F (x) ≡ ax (Primal)

s.t. G(x) ≡ Bx ≤ c and x ≥ 0,

where a is an n-dimensional row vector and B an m-by-n matrix. Now

Fx(x) = a and Gx(x) = B.

When the constraint functions are linear, no constraint qualification is needed.7

All conditions of concave programming are fulfilled, and the Kuhn-Tucker conditions are

both necessary and sufficient.

The Lagrangian is

L(x, λ) = ax + λ[c − Bx]. (7.25)

The optimum x∗ and λ∗8 satisfy the Kuhn-Tucker conditions:

a − λ∗B ≤ 0, x∗ ≥ 0, with complementary slackness, (7.26)

c − Bx∗ ≥ 0, λ∗ ≥ 0, with complementary slackness. (7.27)

(7.26) and (7.27) contain 2m+n combinations of patterns of equations and inequalities.

As a special feature of the linear programming problem, if k of the constraints in (7.27)

hold with equality, then exactly (n − k) non-negativity constraints in (7.26) should bind.

When this is the case, the corresponding equations for λ is also of the correct number m.

7Loosely, Constraint Qualification is to ensure that the first order approximation works. If Constraint
Qualification fails, there will be a discrepancy between the original problem and the linearly approximated
one. When the constraints are already linear, there is no need to find linear approximations to them, so
the issue does not arise.

8In this problem, we will have occasion to consider λ as variables. Therefore, the optimal value is
denoted as λ∗.

18



Dynamic Optimization

Next, consider a new linear programming problem:

max
y

−yc (Dual)

s.t. − yB ≤ −a and y ≥ 0,

where y is a m-dimensional row vector and the vectors a, c and the matrix B are exactly

as before.

We introduce a column vector µ of multipliers and define the Lagrangian:

L(x, λ) = −yc + [−a + yB]µ. (7.28)

The optimum y∗ and µ∗ satisfy the necessary and sufficient Kuhn-Tucker conditions:

− c + Bµ∗ ≤ 0, y∗ ≥ 0, with complementary slackness, (7.29)

− a + y∗B ≥ 0, µ∗ ≥ 0, with complementary slackness. (7.30)

(7.29) is exactly the same as (7.27) and (7.30) is exactly the same as (7.26), if we replace

y∗ by λ∗ and µ∗ by x∗. In other words, the optimum x∗ and λ∗ solve the new problem.

The new problem is said to be dual to the original, which is then called the primal

problem in the pair. This captures an important economic relationship between prices

and quantities in economics.

We interpret the primal problem as follows:

max
x

a!"#$
output prices

x!"#$
output quantities

s.t. Bx!"#$
inputs for producing x

≤ c!"#$
input supplies

and x ≥ 0,

Solving the primal problem, we get x∗ and λ∗. λ∗ is the vector of shadow prices of the

inputs. Rewriting the dual problem in terms of λ, we know from the previous analysis

that λ∗ solves the dual problem.

λ∗ = min
λ

{λc | λB ≥ a and λ ≥ 0}

Thus, the shadow prices minimize the cost of the input c.

19



Dynamic Optimization

Note that the jth component of λB is ,
i λiBij, which is the cost of the bundle of inputs

needed to produce one unit of good j, calculated using the shadow prices. The constraint
,

i λiBij ≥ aj means that the input cost of good j is at least as great as the unit value

of output of good j. This is true for all good j. In other words, the shadow prices of

inputs ensure that no good can make a strictly positive profit – a standard “competitive”

condition in economics.

Complementary slackness in (7.26) ensures that

(i) If the unit cost of production of j, ,
i λiBij, exceeds its prices aj, then xj = 0.

That is, if the production of j would entail a loss when calculated using the shadow

prices, then good j would not be produced.

(ii) If good j is produced in positive quantity, xj > 0, then the unit cost exactly equals

the price, ,
i λiBij = aj. That is, the profit is exactly 0.

This can be summarized by observing that complementary slackness in (7.26) and (7.27)

imply
[a − λ∗B]x∗ = 0 =⇒ ax∗ = λ∗Bx∗

λ∗[c − Bx∗] = 0 =⇒ λ∗c = λ∗Bx∗

Combining the two, we have

ax∗ = λ∗c (7.31)

This says that the value of the optimum output equals the cost of the factor supplies

evaluated at the shadow prices. This result can be interpreted as the familiar circular

flow of income, that is, national product equals national income.

Finally, it is easy to check that if we take the dual problem as our starting-point and go

through the mechanical steps to finding its dual, we return to the primal. In other words,

duality is reflexive.

This is the essence of the duality theory of linear programming. One final remark is

that we took the optimum x∗ as our starting point, however, the solution may not exist,

because the constraints may be mutually inconsistent, or they may define an unbounded

feasible set. This issue beyond our discussion here and is left to more advanced texts.

20



Dynamic Optimization

Example 7.2: Failure of Profit-maximizing.

For a scalar x, consider the following maximization problem:

max
x

F (x) ≡ ex

s. t. G(x) ≡ x ≤ 1.

F (x) is increasing, and the maximum occurs at x = 1. See Figure 7.7 below.

Figure 7.7: Convex F

Kuhn-Tucker Theorem applies. The Lagrangian is

L(x, λ) = ex + λ(1 − x).

Kuhn-Tucker necessary conditions are

∂L(x, λ)/∂x = ex − λ = 0;

∂L(x, λ)/∂λ = 1 − x ≥ 0 and λ ≥ 0, with complementary slackness.

The solution is %
&&&'

&&&(

x∗ = 1

λ = e.

However, x = 1 does not maximize F (x) − λG(x) without constraints. In fact, ex − ex

can be made arbitrarily large by increasing x beyond 1. Here, Lagrange’s method does

not convert the original constrained maximization problem into an unconstrained profit-

maximization problem. The difficulty is that F is not concave.

21



Dynamic Optimization

Appendix A

Proposition 7.A.1 (Concave Function). A differentiable function f : S → R, defined

on a convex set S ⊂ RN , is concave if and only if

fx(xa)(xb − xa) ≥ f(xb) − f(xa), (7.1)

for all xa, xb ∈ S .

Proof. First, from Definition 6.B.5, for all xa, xb ∈ S and all α ∈ [0, 1], we have

f((1 − α)xa + αxb) ≥ (1 − α)f(xa) + αf(xb)

=⇒ f(xa + α(xb − xa)) − f(xa) ≥ f(xa) + α(f(xb) − f(xa))

=⇒ f(xa + α(xb − xa)) − f(xa)
α

≥ f(xb) − f(xa) (7.32)

Let h(α) = f(xa + α(xb − xa)). Then, the left-hand side of (7.32) becomes

h(α) − h(0)
α

.

By the definition of derivative,

lim
α→0

-
h(α) − h(0)

α

.

= h′(0).

Since (7.32) holds when α → 0, we have

h′(0) ≥ f(xb) − f(xa). (7.33)

On the other hand, by chain rule,

h′(α) = fx(xa + α(xb − xa))(xb − xa)

=⇒ h′(0) = fx(xa)(xb − xa) (7.34)

(7.33) and (7.34), we have

fx(xb − xa)(xb − xa) ≥ f(xb) − f(xa),

which is (7.1).

Next, we look at the other direction. Let xa, xb ∈ S, and define xc = (1 − α)xa + αxb for

22



Dynamic Optimization

some α ∈ [0, 1]. Since S is convex, xc ∈ S. Since (7.1) holds for all values in S, we have

fx(xc)(xa − xc) ≥ f(xa) − f(xc) (7.35)

and fx(xc)(xb − xc) ≥ f(xb) − f(xc) (7.36)

Multiply (7.35) by (1 − α) and (7.36) by α, and adding the two, we have

(1 − α)fx(xc)(xa − xc) + αfx(xc)(xb − xc) ≥ (1 − α)(f(xa) − f(xc)) + α(f(xb) − f(xc))

=⇒ fx(xc)
*
(1 − α)xa + αxb − xc

+
≥ (1 − α)f(xa) + αf(xb) − f(xc)

=⇒ 0 ≥ (1 − α)f(xa) + αf(xb) − f((1 − α)xa + αxb)

=⇒ f((1 − α)xa + αxb) ≥ (1 − α)f(xa) + αf(xb),

which corresponds to Definition 6.B.5.

Appendix B

Consider the following maximization problem:

max
x

(x − 1)3

s. t. x − 2 ≤ 0.

By the first-order necessary conditions, we obtain two candidate solutions:
%
&&&'

&&&(

x = 1

λ = 0
and

%
&&&'

&&&(

x = 2

λ = 3

The first solution is a spurious stationary point, which is not a solution for maximum.

23


