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Introduction

• In this chapter, we will combine the idea of convexity with

a more conventional calculus approach.

• The result is that the Lagrange or Kuhn-Tucker condi-

tions, in conjunction with convexity properties of the ob-

jective and constraint functions, are sufficient for optimal-

ity.
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7.A. Concave Functions and Their Derivatives

• The first step is to express the concavity (convexity) of

functions in terms of their derivatives.

Definition 6.B.5 (Concave Function). A function f : S →

R, defined on a convex set S ⊂ RN , is concave if

f(αxa + (1 − α)xb) ≥ αf(xa) + (1 − α)f(xb), (6.5)

for all xa, xb ∈ S and for all α ∈ [0, 1].
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Concave Function
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Concave Function

• To express the concavity of f(x) in terms of its derivative,

we now draw the tangent to f(x) at xa.

• The requirement of concavity says that the graph of the

function should lie on or below the tangent.

• Or expressed differently,

fx(xa)(xb − xa) ≥ f(xb) − f(xa),

where fx(xa) is the slope of the tangent to f(x) at xa.
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Concave Function

• Such an expression holds for higher dimensions.

• The result is summarized in Proposition 7.A.1 below.

Proposition 7.A.1 (Concave Function). A differentiable

function f : S → R, defined on a convex set S ⊂ RN , is

concave if and only if

fx(xa)(xb − xa) ≥ f(xb) − f(xa), (7.1)

for all xa, xb ∈ S .
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Convex Function

Similarly, for a differentiable convex function f , we have

fx(xa)(xb − xa) ≤ f(xb) − f(xa). (7.2)
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7.B. Concave Programming

• A particularly important class of optimization problems

has a concave objective function and convex constraint

functions.

• The term concave programming is often used to describe

the general problem of this kind.
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Concave Programming

Consider the maximization problem

max
x

F (x)

s.t. G(x) ≤ c,

where F is differentiable and concave, and each component

constraint function Gi is differentiable and convex.
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Concave Programming

We will interpret the problem using the terminology of the

production problem: max
x

F (x)
! "# $

revenue from outputs

s.t. G(x) ≤ c
! "# $

resource constraints

,

• x: the vector of outputs

• c: a fixed vector of input supplies

• G(x): the vector of inputs needed to produce x

• X(c): the optimum choice funcion

• V (c): the maximum value function
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Concave Programming

Claim 1. V (c) is a non-decreasing function.

• feasible x for a given c remains feasible when any compo-

nent of c increases, so maximum value cannot decrease.
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Concave Programming

Claim 2. V (c) is a concave.

To show concavity of V (c), we need to show:

for any two input supply vectors c and c′ and any number

α ∈ [0, 1], we have

V (αc + (1 − α)c′) ≥ αV (c) + (1 − α)V (c′).
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Claim 2: V (c) is a concave (Intuition)

• Convexity of G rules out economies of scale or specializa-

tion in production, ensuring that a weighted average of

outputs can be produced using the same weighted average

of inputs.

• Concavity of F ensures that the resulting revenue is at

least as high as the same weighted average of the separate

revenues.
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Concave Function

Recall the alternative interpretation of a concave function:

Claim. f is a concave function if and only if F = {(x, v)|v ≤

f(x)} is a convex set.
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Concave Function

• In our current context, as V (c) is a concave function, the

set {(c, v)|v ≤ V (c)} is a convex set.

• This is an (m + 1)-dimensional set, the collection of all

points (c, v) such that v ≤ V (c).

• That is, revenue of v can be produced using the input

vector c.
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Non-decreasing and Concave V (c)
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Separation

• Since A is a convex set, it can be separated from other

convex sets.

• Choose a point (c∗, v∗) ∈ A such that v∗ = V (c∗).

• (c∗, v∗) must be a boundary point since for any r > 0,

there exists ε ∈ (0, r)

(i) v∗−(r−ε) < v∗ = V (c∗) implies that the point (c∗, v∗−

(r − ε)) is in A;

(ii) v∗+(r−ε) > v∗ = V (c∗) implies that the point (c∗, v∗+

(r − ε)) is not in A.
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Separation

• Define B as the set of all points (c, v) such that

c ≤ c∗ and v ≥ v∗.
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Separation

• B is a convex set.

• A and B have no common interior points.
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Separation

• We could apply Separation Theorem.

• (c∗, v∗) is a common boundary point of A and B.

• We could write the equation of the separating hyperplane

as follows: ιv − λc = b = ιv∗ − λc∗, where ι is a scalar,

and λ is a m-dimensional row vector.

• The signs are so chosen that

ιv − λc

%
&&&'

&&&(

≤ b for all (c, v) ∈ A

≥ b for all (c, v) ∈ B.

(7.6)
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Separation

Remark. ι and λ must both be non-negative.
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Separation

Now comes the more subtle question:

Question. Can ι be zero?
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Consequence of ι = 0

(i) • For ιv − λc = b to be meaningful, (ι, λ) must be non-

zero.

• Therefore, λi ∕= 0 for at least one i.

• Given that λi ≥ 0 for all i, λi > 0 for at least one i.

(ii) • Equation of hyperplane becomes −λc = b = −λc∗.

• For all (c, v) ∈ A, −λc ≤ −λc∗, or λ(c − c∗) ≥ 0.
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Consequence of ι = 0

• In scalar constraint case, λ > 0.

• λ(c − c∗) ≥ 0 implies c − c∗ ≥ 0.

• Graphically, separating line is vertical at c∗, and set A

lies entirely to the right of it.

– No feasible points to the left of c∗: production is

impossible if input supply falls short of this level.

– In some applications, this can happen because of

indivisibilities.

24



Consequence of ι = 0

(a) (b)
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Consequence of ι = 0

As c approaches c∗,

(i) In case 7.1a, marginal revenue product goes to infinity.

• only a vertical separating line

(ii) In case 7.1b, marginal revenue product is finite.

• a vertical separating line

• many non-vertical separating lines with positive ι
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Constraint Qualification

• We would like to ensure a positive ι so that marginal

revenue product of a resource is finite.

• We do this by ensuring the existence of c such that c < c∗.

• Due to the existence of case (ii) above, such conditions

are only sufficient but not necessary.
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Constraint Qualification

Claim. If there exists an xo such that G(xo) ≪ c∗ and F (xo)

is defined, then ι > 0.

• This requirement is constraint qualification for concave

programming problem.

• It is sometimes called Slater condition.
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Constraint Qualification: Intuition

• For scalar c, such a condition works since

(i) (G(xo), F (xo)) ∈ A and

(ii) (G(xo), F (xo)) is a point to the left of c∗.

(G(xo) < c∗ )

• Separating line cannot have an infinite slope at c∗.
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Constraint Qualification

We prove that Slater condition implies ι > 0 in general.
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Normalization

• Separation property (7.6) is unaffected if we multiply by

b, ι and λi by the same positive number.

• Once we can be sure that ι ∕= 0, we can choose a scale to

make ι = 1.

• In economic terms, ι and λ constitute a system of shadow

prices, ι for revenue and λ for the inputs.

• Only relative prices matter for economic decisions, in set-

ting ι = 1, we are choosing revenue to be the numéraire.

• We will adopt this normalization henceforth.
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Shadow Price Interpretation of λ

• Observe that by the separation property (7.6), for all

(c, v) ∈ A,
v − λc ≤ v∗ − λc∗.

• That is, (c∗, v∗) achieves the maximum value of (v − λc)

among all points (c, v) ∈ A.

• If we interpret λ as the vector of shadow prices of inputs,

then (v − λc) is the profit that accrues when a producer

uses inputs c to produce revenue v.
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Shadow Price Interpretation of λ

• Since all points in A represents feasible production plans,

a profit-maximizing producer will pick (c∗, v∗).

• This means that the producer need not be aware that in

fact the availability of inputs is limited to c∗.

• He may think that he is free to choose any c but ends up

choosing the right c∗.

• It is the prices λ that brings home to him the scarcity.
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Shadow Price Interpretation of λ

• The principle behind this interpretation is general and

important: constrained choice can be converted into un-

constraint choice if proper scarcity costs or shadow values

of constraints are netted out of criterion function.

• As it will become clear later, this is the most important

feature of Lagrange’s Method in concave programming.
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Generalized Marginal Products

• For any c, the point (c, V (c)) is in A.

• So by the separation property, we have

V (c) − λc ≤ V (c∗) − λc∗,

or V (c) − V (c∗) ≤ λ(c − c∗). (7.9)

• If V (c) is differentiable, then by Proposition 7.A.1, con-

cavity of V (c) means

V (c) − V (c∗) ≤ Vc(c∗)(c − c∗). (7.10)

• (7.9) and (7.10) suggest λ = Vc(c∗) (shadow prices)
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Generalized Marginal Products

• However, the problem is that V may not be differentiable.

• Let us consider a general point (c, V (c)) with its associ-

ated multiplier vector λ.

• Compare this with a neighboring point where only the

ith input is increase: (c + hei, V (c + hei)), where h is a

positive scalar.
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Generalized Marginal Products

• Then by separation property

V (c) − V (c∗) ≤ λ(c − c∗). (7.9)

we have
[V (c + hei) − V (c)]

h
≤ λi. (7.11)

• We show that by concavity of V , LHS of (7.11) is a non-

increasing function of h.
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Generalized Marginal Products

Graphically, [V (c+hei)−V (c)]
h

is simply the slope of the chord.
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Generalized Marginal Products

• Therefore, LHS expression must attain the maximum as

h goes to zero from positive values.

• This limit is defined as the “rightward” partial derivative

of V with respect to the ith coordinate of c: V +
i (c).

• Therefore,
[V (c + hei) − V (c)]

h
≤ λi. (7.11)

implies V +
i (c) ≤ λi.
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Generalized Marginal Products

• Similarly, we could repeat the analysis for h < 0.

• Now we have

[V (c + hei)) − V (c)]
h

≥ λi. (7.13)

• Taking the limit from the negative values of h gives the

“leftward” partial derivative V −
i (c).

• This proves V −
i (c) ≥ λi.
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Generalized Marginal Products

• Combining the two, we have

V −
i (c) ≥ λi ≥ V +

i (c). (7.14)

• This result generalizes the notion of diminishing marginal

returns and relates the multipliers to these generalized

marginal products.

41



Generalized Marginal Products
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Choice Variables

• So far the vector of choice variables x has been kept in

the background.

• Let’s now consider it explicitly.
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Choice Variables

• (G(x∗), F (x∗)) ∈ A , separation property gives

F (x∗) − λG(x∗) ≤ V (c) − λc =⇒! "# $
F (x∗)=V (c)

λ [c − G(x∗)] ≤ 0

=⇒
m)

i=1
λi

*
ci − Gi(x∗)

+
≤ 0.

• Since λi ≥ 0 and Gi(x) ≤ ci for all i, we have

λi [ci − Gi(x∗)] ≥ 0 for all i.

• Therefore,
λi

*
ci − Gi(x∗)

+
= 0. (7.15)

• This is just complementary slackness. 44



Choice Variables

• For any x, the point (G(x), F (x)) ∈ A.

• Separation property gives

F (x) − λG(x) ≤!"#$
separation property

V (c) − λc =!"#$
F (x∗)=V (c) and (7.15)

F (x∗) − λG(x∗) for all x.

• x∗ maximizes F (x) − λG(x) without any constraints.

• This means that the shadow prices allow us to convert the

original constrained revenue-maximization problem into

an unconstrained profit-maximization problem.
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Necessary Conditions for Concave Programming

Theorem 7.1 (Necessary Conditions for Concave Program-

ming). Suppose that F is a concave function and G is a

vector convex function, and that there exists an xo satisfy-

ing G(xo) ≪ c. If x∗ maximizes F (x) subject to G(x) ≤ c,

then there is a row vector λ such that

(i) x∗ maximizes F (x) − λG(x) without any constraints, and

(ii) λ ≥ 0, G(x∗) ≤ c with complementary slackness.
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Necessary Conditions for Concave Programming

• Theorem 7.1 does not require F and G to have derivatives.

• But if the functions are differentiable, then we have first-

order necessary conditions for maximization problem (i):

Fx(x∗) − λGx(x∗) = 0. (7.16)

• In terms of the Lagrangian L(x, λ), (7.16) becomes Lx(x∗, λ).

• This is just condition of Lagrange’s Theorem.

• We could further add non-negativity constraints on x, and

get Kuhn-Tucker Theorem.
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Necessary Conditions for Concave Programming

• Concave programming goes beyond general Lagrange or

Kuhn-Tucker conditions.

• In general, there was no claim that x∗ maximized the

Lagrangian.

• However, when F is concave and G is convex, part (i) of

Theorem 7.1 is easily transformed into L(x, λ) ≤ L(x∗, λ)

for all x, so x∗ does maximize the Lagrangian.
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Necessary Conditions for Concave Programming

Our interpretation of Lagrange’s method as converting the

constrained revenue-maximization into unconstrained profit-

maximization must be confined to the case of concave pro-

gramming.
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Sufficient Conditions for Concave Programming

• First-order necessary conditions are sufficient to yield a

true maximum in the concave programming problem.

• The argument proceeds in two parts.

1. Suppose x∗ satisfies (i) and (ii) in Theorem 7.1, then

x∗ maximizes F (x) subject to G(x) ≤ c.

2. Suppose x∗ satisfies first-order condition (and F con-

cave, G convex), then (i) holds.
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Sufficient Conditions for Concave Programming

Theorem 7.2 (Sufficient Conditions for Concave Program-

ming). If x∗ and λ are such that

(i) x∗ maximizes F (x) − λG(x) without any constraints, and

(ii) λ ≥ 0, G(x∗) ≤ c with complementary slackness,

then x∗ maximizes F (x) subject to G(x) ≤ c. If F − λG is

concave (for which in turn it suffices to have F concave and

G convex), then Fx(x∗) − λGx(x∗) = 0 (7.16)

implies (i) above.
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Sufficient Conditions for Concave Programming

Note that no constraint qualification appears in the sufficient

conditions.
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7.C. Quasi-concave Programming

• In the separation approach of Chapter 6, F was merely

quasi-concave and each component constraint function in

G was quasi-convex.

• In this chapter, the stronger assumption of concavity and

convexity has been made so far.
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Quasi-concave Programming

• In fact, the weaker assumptions of quasi-concavity (quasi-

convexity) make little difference to necessary conditions.

• They yield sufficient conditions like the ones above for

concave programming, but only in the presence of some

further technical conditions that are complex to establish.

• For interested students, please refer to the paper “Ar-

row and Enthoven (1961). Quasi-concave Programming.

Econometrica, 779-800.”
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Quasi-concave Programming

We will discuss only a limited version of quasi-concave pro-

gramming, namely, the one where objective function is quasi-

concave and constraint function is linear:1

max
x

F (x) (MP1)

s.t. px ≤ b,

where p is a row vector and b is a number.

1The mirror-image case of a linear objective and a quasi-convex
constraint can be treated in the same way. 55



Quasi-concave Programming

Recall the definition of Quasiconcavity:

Definition 6.B.3 (Quasi-concave Function). A function f :

S → R, defined on a convex set S ⊂ RN , quasi-concave

• if the set {x|f(x) ≥ c} is convex for all c ∈ R,

• or equivalently, if f(αxa+(1−α)xb) ≥ min{f(xa), f(xb)},

for all xa, xb and for all α ∈ [0, 1].
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Quasi-concave Programming

We need to establish some property of quasi-concave func-

tion, relating to the derivatives.

For a quasi-concave differentiable function F : S → R,

Fx(xa)(xb − xa) ≥ 0. (7.21)

for all xa, xb such that F (xb) ≥ F (xa).
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Quasi-concave Programming

• Now consider the maximization problem

max
x

F (x) (MP1)

s.t. px ≤ b,

• First-order necessary conditions are

Fx(x∗) − λp = 0 (7.22)

px∗ ≤ b and λ ≥ 0, with complementary slackness
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Quasi-concave Programming

We claim that (7.22) is also sufficient when λ > 0 and the

constraint is binding.2 Formally,

Claim. If F is continuous and quasi-concave, x∗ and λ > 0

satisfy first-order necessary conditions, then x∗ solves the

quasi-concave programming problem.

2Appendix B provides an example of a spurious stationary point
where (7.22) holds with λ = 0. 59



Quasi-concave Programming
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Quasi-concave Programming

• Fx(x∗) is normal to the contour of F (x) at x∗.

• p is normal to the constraint px = b at x∗.

• The usual tangency condition is equivalent to the normal

vectors being parallel.

• Equation (7.22) expresses this, with the constant of pro-

portionality equal to λ.
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7.D. Uniqueness

• The above sufficient conditions for concave as well as

quasi-concave programming are weak in the sense that

they establish that no other feasible choice x can do bet-

ter than x∗.

• They do not rule out existence of other feasible choices

that yield F (x) = F (x∗).

• In other words, they do not establish the uniqueness of

the optimum.
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Uniqueness

As discussed in Chapter 6, a strenghening of the concept of

concavity or quasi-concavity gives uniqueness.

Definition 7.D.1 (Strictly Concave Function). A function

f : S → R, defined on a convex set S ⊂ RN , is strictly

concave if

f(αxa + (1 − α)xb) > αf(xa) + (1 − α)f(xb), (7.24)

for all xa, xb ∈ S and for all α ∈ (0, 1).
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Uniqueness

Claim. If objective function F in concave programming prob-

lem is strictly concave, then maximizer x∗ is unique.

Proof by contradiction.
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7.E. Examples

Example 7.1: Linear Programming

An important special case of concave programming is the

theory of linear programming.

max
x

F (x) ≡ ax (Primal)

s.t. G(x) ≡ Bx ≤ c and x ≥ 0,

where a is an n-dimensional row vector and B an m-by-n

matrix.
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Example 7.1: Linear Programming

• Now

Fx(x) = a and Gx(x) = B.

• When the constraint functions are linear, no constraint

qualification is needed.

• All conditions of concave programming are fulfilled, and

Kuhn-Tucker conditions are both necessary and sufficient.
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Example 7.1: Linear Programming

• The Lagrangian is

L(x, λ) = ax + λ[c − Bx]. (7.25)

• The optimum x∗ and λ∗ satisfy Kuhn-Tucker conditions:

a − λ∗B ≤ 0, x∗ ≥ 0, with complementary slackness, (7.26)

c − Bx∗ ≥ 0, λ∗ ≥ 0, with complementary slackness. (7.27)
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Example 7.1: Linear Programming

• (7.26) and (7.27) contain 2m+n combinations of patterns

of equations and inequalities.

• As a special feature of the linear programming problem,

if k of the constraints in (7.27) hold with equality, then

exactly (n−k) non-negativity constraints in (7.26) should

bind.

• When this is the case, the corresponding equations for λ

is also of the correct number m.
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Example 7.1: Linear Programming

Next, consider a new linear programming problem:

max
y

−yc (Dual)

s.t. − yB ≤ −a and y ≥ 0,

where y is a m-dimensional row vector and vectors a, c and

matrix B are exactly as before.
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Example 7.1: Linear Programming

• We introduce a column vector µ of multipliers and define

the Lagrangian:

L(x, λ) = −yc + [−a + yB]µ. (7.28)

• Optimum y∗ and µ∗ satisfy the necessary and sufficient

Kuhn-Tucker conditions:

− c + Bµ∗ ≤ 0, y∗ ≥ 0, with complementary slackness, (7.29)

− a + y∗B ≥ 0, µ∗ ≥ 0, with complementary slackness. (7.30)
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Example 7.1: Linear Programming

• (7.29) is exactly the same as (7.27) and (7.30) is exactly

the same as (7.26), if we replace y∗ by λ∗ and µ∗ by x∗.

• In other words, optimum x∗ and λ∗ solve new problem.

• New problem is said to be dual to the original, which is

then called the primal problem in the pair.

• This captures an important economic relationship between

prices and quantities in economics.
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Example 7.1: Linear Programming

• We interpret the primal problem as follows:

max
x

a!"#$
output prices

x!"#$
output quantities

s.t. Bx!"#$
inputs for producing x

≤ c!"#$
input supplies

and x ≥ 0,

• Solving the primal problem, we get x∗ and λ∗.

• λ∗ is vector of shadow prices of the inputs.
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Example 7.1: Linear Programming

• Rewriting dual problem in terms of λ.

• From previous analysis, λ∗ solves dual problem.

λ∗ = min
λ

{λc | λB ≥ a and λ ≥ 0}

• Thus, shadow prices minimize cost of the input c.
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Example 7.1: Linear Programming

• jth component of λB is ,
i λiBij: cost of bundle of inputs

needed to produce one unit of good j, calculated using

shadow prices.

• Constraint ,
i λiBij ≥ aj: input cost of good j is at least

as great as unit value of output of good j. This is true

for all good j.

• In other words, shadow prices of inputs ensure that no

good can make a strictly positive profit – a standard

“competitive” condition in economics.
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Example 7.1: Linear Programming

Complementary slackness in (7.26) ensures that

(i) If unit cost of production of j, ,
i λiBij, exceeds its prices

aj, then xj = 0. That is, if production of j would entail a

loss when calculated using the shadow prices, then good

j would not be produced.

(ii) If good j is produced in positive quantity, xj > 0, then

unit cost exactly equals the price, ,
i λiBij = aj. That is,

profit is exactly 0.
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Example 7.1: Linear Programming

• Complementary slackness in (7.26) and (7.27) imply

[a − λ∗B]x∗ = 0 =⇒ ax∗ = λ∗Bx∗

λ∗[c − Bx∗] = 0 =⇒ λ∗c = λ∗Bx∗

• Combining the two, we have ax∗ = λ∗c (7.31)

• This says that value of optimum output equals cost of

factor supplies.

• This result can be interpreted as circular flow of income,

that is, national product equals national income.
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Example 7.1: Linear Programming

• Finally, it is easy to check that if we take dual problem

as our starting-point and go through mechanical steps to

finding its dual, we return to primal.

• In other words, duality is reflexive.
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Example 7.1: Linear Programming

• This is the essence of the duality theory of linear pro-

gramming.

• One final remark is that we took optimum x∗ as our start-

ing point, however, solution may not exist, because con-

straints may be mutually inconsistent, or they may define

an unbounded feasible set.

• This issue beyond our discussion here and is left to more

advanced texts.
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Example 7.2: Failure of Profit-maximizing

For a scalar x, consider the following maximization problem:

max
x

F (x) ≡ ex

s. t. G(x) ≡ x ≤ 1.

F (x) is increasing, and maximum occurs at x = 1.
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Example 7.2: Failure of Profit-maximizing
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Example 7.2: Failure of Profit-maximizing

• Kuhn-Tucker Theorem applies.

• Lagrangian is

L(x, λ) = ex + λ(1 − x).

• Kuhn-Tucker necessary conditions are

∂L/∂x = ex − λ = 0;

∂L/∂λ = 1 − x ≥ 0 and λ ≥ 0, with complementary slackness.

• Solution is x∗ = 1 and λ = e.
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Example 7.2: Failure of Profit-maximizing

• However, x = 1 does not maximize F (x)−λG(x) without

constraints.

• In fact, ex−ex can be made arbitrarily large by increasing

x beyond 1.

• Here, Lagrange’s method does not convert original con-

strained maximization problem into an unconstrained profit-

maximization problem, because F is not concave.
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