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Introduction

e In this chapter, we will combine the idea of convexity with

a more conventional calculus approach.

e The result is that the Lagrange or Kuhn-Tucker condi-
tions, in conjunction with convexity properties of the ob-

jective and constraint functions, are sufficient for optimal-

ity.



7.A. Concave Functions and Their Derivatives

e The first step is to express the concavity (convexity) of

functions in terms of their derivatives.

Definition 6.B.5 (Concave Function). A function f:S —

R, defined on a convex set S C R, is concave if

flaz® + (1= a)z’) > af(z") + (L - a)f(a’),  (6.5)

for all 2, 2° € S and for all a € [0, 1].



Concave Function
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Concave Function

e To express the concavity of f(x) in terms of its derivative,

we now draw the tangent to f(x) at z°.

e The requirement of concavity says that the graph of the

function should lie on or below the tangent.

e Or expressed differently,

,/>,;,1”""‘,f,!':’ ) Z

where f,(2%) is the slope of the tangent to f(x) at .



Concave Function

e Such an expression holds for higher dimensions.

e The result is summarized in Proposition 7.A.1 below.

Proposition 7.A.1 (Concave Function). A differentiable
function f : S — R, defined on a convex set S C RV, is

concave if and only if
folz®)(a® —a®) > f(a®) — f(2?), (7.1)

for all 2%, 2 € S .



Convex Function

Similarly, for a differentiable convex function f, we have

fala®)(@® = a%) < f(a") = f(a%). (7.2)



7.B. Concave Programming

e A particularly important class of optimization problems
has a concave objective function and convex constraint

functions.

e The term concave programming is often used to describe

the general problem of this kind.



Concave Programming

Consider the maximization problem

max F'(z)

s.t. G(z) <,

where F' is differentiable and concave, and each component

constraint function G is differentiable and convex.



Concave Programming
We will interpret the problem using the terminology of the

production problem: max F'(z)
A ——

revenue from outputs

st. G(z) <e,
N————
resource constraints

e x: the vector of outputs

c: a fixed vector of input supplies

G(z): the vector of inputs needed to produce

X(¢): the optimum choice funcion

V(c): the maximum value function
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Concave Programming

Claim 1. V(c) is a non-decreasing function.

e feasible x for a given ¢ remains feasible when any compo-

nent of ¢ increases, so maximum value cannot decrease.
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Concave Programming
Claim 2. V(c) is a concave.

To show concavity of V(c), we need to show:
for any two input supply vectors ¢ and ¢ and any number
a € [0, 1], we have

Viac+ (1 —a)d) > aV(c)+ (1 — a)V ().
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Claim 2: V(c) is a concave (Intuition)

e Convexity of (G rules out economies of scale or specializa-
tion in production, ensuring that a weighted average of
outputs can be produced using the same weighted average

of inputs.

e Concavity of F' ensures that the resulting revenue is at
least as high as the same weighted average of the separate

revenues.

13



Concave Function

Recall the alternative interpretation of a concave function:

Claim. f is a concave function if and only if F = {(z,v)|v <

f(x)} is a convex set.
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Concave Function

e In our current context, as V(c) is a concave function, the
set {(c,v)|v < V(c)} is a convex set.

e This is an (m + 1)-dimensional set, the collection of all
points (¢, v) such that v < V(c).

e That is, revenue of v can be produced using the input

vector c.
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Non-decreasing and Concave V(c)

VA
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Separation

e Since A is a convex set, it can be separated from other
convex sets.

e Choose a point (c¢*,v*) € A such that v* = V(c*).

e (c*,v*) must be a boundary point since for any r > 0,

there exists € € (0,7)
(i) v*—(r—e) < v* = V(c*) implies that the point (¢*, v*—
(r—e))isin A;
(ii) v*+(r—e) > v* = V(c*) implies that the point (c¢*, v*+

(r —e)) is not in A. 17



Separation

e Define /5 as the set of all points (¢, v) such that

c<c and v > 0",
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Separation

e 3 is a convex set.

e A and B have no common interior points.
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Separation

e We could apply Separation Theorem.

e (c*,v*) is a common boundary point of 4 and B.

e We could write the equation of the separating hyperplane
as follows: v — Ac = b = wv* — Ac¢*, where ¢ is a scalar,
and A is a m-dimensional row vector.

e The signs are so chosen that

<b forall (c,v) € A
Lt — Ac (7.6)

>0 forall (c,v) € B.
20



Separation

Remark. : and A\ must both be non-negative.
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Separation

Now comes the more subtle question:

Question. Can ¢ be zero?
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Consequence of 1 =0

(i) e For tv — Ac = b to be meaningful, (¢, \) must be non-

Zero.

Therefore, A\; # 0 for at least one .

Given that A\; > 0 for all ¢, \; > 0 for at least one 7.

*

(ii) e Equation of hyperplane becomes —Ac = b = —\c*.

For all (¢,v) € A, =A¢ < =Ac*, or A(c —¢*) > 0.
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Consequence of 1 =0

e In scalar constraint case, A > 0.
e \(c—c¢*) >0 implies ¢ — ¢* > 0.
e Graphically, separating line is vertical at ¢*, and set A
lies entirely to the right of it.
— No feasible points to the left of ¢*: production is
impossible if input supply falls short of this level.
— In some applications, this can happen because of
indivisibilities.
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Consequence of : =0

Possible Separating Lines
N

Separating Line

v e

v="V(c)
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Consequence of : =0

As ¢ approaches c*,
(i) In case 7.1a, marginal revenue product goes to infinity.
e only a vertical separating line
(ii) In case 7.1b, marginal revenue product is finite.
e a vertical separating line

e many non-vertical separating lines with positive ¢
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Constraint Qualification

e We would like to ensure a positive ¢ so that marginal
revenue product of a resource is finite.

e We do this by ensuring the existence of ¢ such that ¢ < ¢*.

e Due to the existence of case (ii) above, such conditions

are only sufficient but not necessary.
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Constraint Qualification

Claim. If there exists an z° such that G(2°) < ¢* and F(x°)

is defined, then ¢ > 0.

e This requirement is constraint qualification for concave

programming problem.

e It is sometimes called Slater condition.

28



Constraint Qualification: Intuition

e For scalar ¢, such a condition works since
(i) (G(z°), F(z°)) € A and
(ii) (G(x°), F(z°)) is a point to the left of ¢*.
(G(a?) <)

e Separating line cannot have an infinite slope at c*.
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Constraint Qualification

We prove that Slater condition implies ¢ > 0 in general.
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Normalization

e Separation property (7.6) is unaffected if we multiply by
b, « and \; by the same positive number.

e Once we can be sure that ¢ # 0, we can choose a scale to
make ¢ = 1.

e In economic terms, ¢ and A\ constitute a system of shadow
prices, ¢ for revenue and A for the inputs.

e Only relative prices matter for economic decisions, in set-
ting ¢« = 1, we are choosing revenue to be the numéraire.

e We will adopt this normalization henceforth. ;
1



Shadow Price Interpretation of A

e Observe that by the separation property (7.6), for all

(c,v) € A,
v—Ac < 0F =\

e That is, (¢*,v*) achieves the maximum value of (v — Ac¢)
among all points (c,v) € A.

e If we interpret A as the vector of shadow prices of inputs,
then (v — Ac) is the profit that accrues when a producer

uses inputs ¢ to produce revenue v.
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Shadow Price Interpretation of A

e Since all points in A represents feasible production plans,
a profit-maximizing producer will pick (¢*, v*).

e This means that the producer need not be aware that in
fact the availability of inputs is limited to c*.

e He may think that he is free to choose any ¢ but ends up
choosing the right c*.

e [t is the prices A that brings home to him the scarcity.
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Shadow Price Interpretation of A

e The principle behind this interpretation is general and
important: constrained choice can be converted into un-
constraint choice if proper scarcity costs or shadow values

of constraints are netted out of criterion function.

e As it will become clear later, this is the most important

feature of Lagrange’s Method in concave programming.
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Generalized Marginal Products

e For any ¢, the point (¢, V(c)) is in A.
e So by the separation property, we have
V(e) = Ae < V(") — A7,
or V(ec)=V(c") < Ae—c). (7.9)
e If V(c) is differentiable, then by Proposition 7.A.1, con-

cavity of V(c¢) means

Vie) =V (c") < Vi(c")(e—c"). (7.10)

e (7.9) and (7.10) suggest A = V.(c*) (shadow prices) 95



Generalized Marginal Products

e However, the problem is that V' may not be differentiable.

e Let us consider a general point (¢, V(¢)) with its associ-
ated multiplier vector .

e Compare this with a neighboring point where only the
i" input is increase: (c + he', V(¢ + he')), where h is a

positive scalar.
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Generalized Marginal Products

e Then by separation property

Vie) = V(c") < Ae— ). (7.9)

we have

V(e + he;) UG 1)

e We show that by concavity of V', LHS of (7.11) is a non-

increasing function of A.
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Generalized Marginal Products

Graphically, [V(CL,:)_V(C)] is simply the slope of the chord.
VA
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Generalized Marginal Products

e Therefore, LHS expression must attain the maximum as
h goes to zero from positive values.

e This limit is defined as the “rightward” partial derivative
of V with respect to the i coordinate of c: V;*(c).

(2

e Therefore,

V(e+ he;) — V)l (7.11)

implies V" (c) < \,.

39



Generalized Marginal Products

e Similarly, we could repeat the analysis for h < 0.

e Now we have

V{ethe)) =V o

x >\ (7.13)

e Taking the limit from the negative values of h gives the
“leftward” partial derivative V, (c).

e This proves V, (¢) > \;.
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Generalized Marginal Products
e Combining the two, we have
Vo (e) > X > Vi (c). (7.14)

e This result generalizes the notion of diminishing marginal
returns and relates the multipliers to these generalized

marginal products.

41



Generalized Marginal Products

v A VI (c)

v
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Choice Variables

e So far the vector of choice variables x has been kept in

the background.

e Let’s now consider it explicitly.
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Choice Variables

e (G(x*),F(2*)) € A, separation property gives

F(z*) = M\G(z") < V(c) — )\ci)\ c—G(x")] <0

F(a*)=V(c)
- i)\i {Ci - Gl(x*)} <0.
i=1
e Since \; > 0 and G(x) < ¢; for all i, we have
A [¢; — Gi(z*)] > 0 for all .
e Therefore, .
A lei— Gia™)| =0,

e This is just complementary slackness.

(7.15)
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Choice Variables

e For any z, the point (G(z), F(z)) € A.
e Separation property gives

F(z) = AG(z) < V(c) = Ae = F(2") — A\G(z") for all x.
~~ ~
separation property F(x*)=V(c) and (7.15)

e 2" maximizes F'(x) — AG(x) without any constraints.
e This means that the shadow prices allow us to convert the
original constrained revenue-maximization problem into

an unconstrained profit-maximization problem.
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Necessary Conditions for Concave Programming

Theorem 7.1 (Necessary Conditions for Concave Program-
ming). Suppose that F' is a concave function and G is a
vector convex function, and that there exists an x? satisfy-
ing G(2°) < c. If 2* maximizes F(z) subject to G(z) < ¢,
then there is a row vector A such that

(i) 2* maximizes F'(z) — AG(z) without any constraints, and

(ii)) A >0, G(z*) < ¢ with complementary slackness.

46



Necessary Conditions for Concave Programming

e Theorem 7.1 does not require F' and G to have derivatives.

But if the functions are differentiable, then we have first-

order necessary conditions for maximization problem (i):

F.(z") — AG.(z") = 0. (7.16)

In terms of the Lagrangian £(z, A), (7.16) becomes L, (z*, \).

This is just condition of Lagrange’s Theorem.

We could further add non-negativity constraints on x, and

get Kuhn-Tucker Theorem.
47



Necessary Conditions for Concave Programming

e Concave programming goes beyond general Lagrange or
Kuhn-Tucker conditions.

e In general, there was no claim that z* maximized the
Lagrangian.

e However, when F' is concave and G is convex, part (i) of
Theorem 7.1 is easily transformed into L(x, \) < L(x*, \)

for all z, so z* does maximize the Lagrangian.
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Necessary Conditions for Concave Programming

Our interpretation of Lagrange’s method as converting the
constrained revenue-maximization into unconstrained profit-
maximization must be confined to the case of concave pro-

gramming.
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Sufficient Conditions for Concave Programming

e First-order necessary conditions are sufficient to yield a
true maximum in the concave programming problem.
e The argument proceeds in two parts.
1. Suppose z* satisfies (i) and (ii) in Theorem 7.1, then
x* maximizes F'(x) subject to G(z) < c.
2. Suppose z* satisfies first-order condition (and F' con-

cave, G convex), then (i) holds.
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Sufficient Conditions for Concave Programming

Theorem 7.2 (Sufficient Conditions for Concave Program-

ming). If * and A are such that

(i) «* maximizes F'(x) — AG(z) without any constraints, and
(ii) A >0, G(z*) < ¢ with complementary slackness,

then z* maximizes F'(x) subject to G(x) < c. If F — \G is
concave (for which in turn it suffices to have F' concave and

G convex), then  F,(z*) — AG (z*) =0 (7.16)

implies (i) above. “



Sufficient Conditions for Concave Programming

Note that no constraint qualification appears in the sufficient

conditions.
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7.C. Quasi-concave Programming

e In the separation approach of Chapter 6, F' was merely
quasi-concave and each component constraint function in
G was quasi-convex.

e In this chapter, the stronger assumption of concavity and

convexity has been made so far.
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Quasi-concave Programming

e In fact, the weaker assumptions of quasi-concavity (quasi-

convexity) make little difference to necessary conditions.

e They yield sufficient conditions like the ones above for
concave programming, but only in the presence of some

further technical conditions that are complex to establish.

e For interested students, please refer to the paper “Ar-
row and Enthoven (1961). Quasi-concave Programming.

Econometrica, 779-800.”
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Quasi-concave Programming
We will discuss only a limited version of quasi-concave pro-
gramming, namely, the one where objective function is quasi-

concave and constraint function is linear:!

max F(x) (MP1)

s.t. pxr < b,

where p is a row vector and b is a number.

!The mirror-image case of a linear objective and a quasi-convex
constraint can be treated in the same way. 55



Quasi-concave Programming

Recall the definition of Quasiconcavity:

Definition 6.B.3 (Quasi-concave Function). A function f :

S — R, defined on a convex set S C RV, quasi-concave
e if the set {z|f(x) > c} is convex for all ¢ € R,

e or equivalently, if f(az®+(1—a)z®) > min{f(z?), f(2®)},

for all 2%, 2* and for all « € [0, 1].
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Quasi-concave Programming

We need to establish some property of quasi-concave func-

tion, relating to the derivatives.

For a quasi-concave differentiable function F' : § — R,
Fo(2*)(2® — 2%) > 0. (7.21)

for all 22, 2° such that F(2%) > F(2%).

o7



Quasi-concave Programming

e Now consider the maximization problem

max F(z) (MP1)

s.t. pxr < b,

e First-order necessary conditions are

Fo(z*)—Ap=0 (7.22)

pr* < band A > 0, with complementary slackness

o8



Quasi-concave Programming
We claim that (7.22) is also sufficient when A > 0 and the

constraint is binding.? Formally,

Claim. If F' is continuous and quasi-concave, z* and A > 0
satisfy first-order necessary conditions, then z* solves the

quasi-concave programming problem.

2Appendix B provides an example of a spurious stationary point
where (7.22) holds with A = 0. 59



Quasi-concave Programming

LA F) = F@xY)

E(x") = Ap

v

X1
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Quasi-concave Programming
e F,(z*) is normal to the contour of F'(x) at z*.

e p is normal to the constraint pr = b at z*.

The usual tangency condition is equivalent to the normal

vectors being parallel.

Equation (7.22) expresses this, with the constant of pro-

portionality equal to .
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7.D. Uniqueness

e The above sufficient conditions for concave as well as
quasi-concave programming are weak in the sense that
they establish that no other feasible choice x can do bet-

ter than x*.

e They do not rule out existence of other feasible choices

that yield F(x) = F(z*).

e In other words, they do not establish the uniqueness of

the optimum.
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Uniqueness
As discussed in Chapter 6, a strenghening of the concept of

concavity or quasi-concavity gives uniqueness.

Definition 7.D.1 (Strictly Concave Function). A function
f S — R, defined on a convex set S C RV, is strictly

concave if

flaz® + (1 - a)a’) > af(2) + (1 —a)f(a"),  (7.24)
for all 2, 2° € S and for all a € (0, 1).
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Uniqueness

Claim. If objective function F'in concave programming prob-

lem is strictly concave, then maximizer z* is unique.

Proof by contradiction.
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7.E. Examples

Example 7.1: Linear Programming
An important special case of concave programming is the

theory of linear programming.

max F(z)=ax (Primal)

st. G(r) = Bx <cand x >0,

where a is an n-dimensional row vector and B an m-by-n

matrix.
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Example 7.1: Linear Programming

e Now

F,(z) = a and G,(x) = B.

e When the constraint functions are linear, no constraint

qualification is needed.

e All conditions of concave programming are fulfilled, and

Kuhn-Tucker conditions are both necessary and sufficient.
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Example 7.1: Linear Programming
e The Lagrangian is

L(z,\) = ax + M\c — Bx]. (7.25)

e The optimum x* and \* satisfy Kuhn-Tucker conditions:

a—AN"B <0, ¥ > 0, with complementary slackness,  (7.26)

¢ — Bx* >0, \* > 0, with complementary slackness.  (7.27)
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Example 7.1: Linear Programming

e (7.26) and (7.27) contain 2™*™ combinations of patterns

of equations and inequalities.

e As a special feature of the linear programming problem,
if k& of the constraints in (7.27) hold with equality, then
exactly (n—k) non-negativity constraints in (7.26) should

bind.

e When this is the case, the corresponding equations for A

is also of the correct number m.
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Example 7.1: Linear Programming

Next, consider a new linear programming problem:

max —yc (Dual)

st. —yB < —aandy >0,

where y is a m-dimensional row vector and vectors a, ¢ and

matrix B are exactly as before.
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Example 7.1: Linear Programming

e We introduce a column vector p of multipliers and define
the Lagrangian:

L(xz,\) = —yc+ [—a+ yBp. (7.28)

e Optimum y* and p* satisfy the necessary and sufficient

Kuhn-Tucker conditions:

—c+ Bp* <0, y* >0, with complementary slackness, (7.29)
—a+y*'B >0, u* > 0,with complementary slackness. (7.30)
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Example 7.1: Linear Programming

e (7.29) is exactly the same as (7.27) and (7.30) is exactly
the same as (7.26), if we replace y* by A* and p* by z*.

e In other words, optimum z* and A\* solve new problem.

e New problem is said to be dual to the original, which is
then called the primal problem in the pair.

e This captures an important economic relationship between

prices and quantities in economics.
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Example 7.1: Linear Programming

e We interpret the primal problem as follows:

max a <X
T S~
output prices output quantities

st. Bx < ¢ andz >0,
<~ T~

inputs for producing  input supplies

e Solving the primal problem, we get x* and \*.

e )" is vector of shadow prices of the inputs.
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Example 7.1: Linear Programming
e Rewriting dual problem in terms of \.

e From previous analysis, A* solves dual problem.

A* :m/\in{)\c])\BZaand)\ZO}

e Thus, shadow prices minimize cost of the input c.
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Example 7.1: Linear Programming

e ;" component of AB is 3_; \;B;;: cost of bundle of inputs
needed to produce one unit of good 7, calculated using
shadow prices.

e Constraint Y ; \;B;; > a;: input cost of good j is at least
as great as unit value of output of good j. This is true
for all good j.

e In other words, shadow prices of inputs ensure that no
good can make a strictly positive profit — a standard

“competitive” condition in economics.
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Example 7.1: Linear Programming

Complementary slackness in (7.26) ensures that

(i) If unit cost of production of j, >>; \; B;;, exceeds its prices
aj, then z; = 0. That is, if production of j would entail a
loss when calculated using the shadow prices, then good
7 would not be produced.

(ii) If good j is produced in positive quantity, z; > 0, then
unit cost exactly equals the price, >7; A\;B;; = a;. That is,

profit is exactly 0.
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Example 7.1: Linear Programming

e Complementary slackness in (7.26) and (7.27) imply
[a—\N'Blz* =0 = az* = \*"Bz”

Nc— Bz =0 = Nc=\Bz"

e Combining the two, we have ax* = \*¢ (7.31)

e This says that value of optimum output equals cost of
factor supplies.

e This result can be interpreted as circular flow of income,

that is, national product equals national income.
76



Example 7.1: Linear Programming

e Finally, it is easy to check that if we take dual problem
as our starting-point and go through mechanical steps to

finding its dual, we return to primal.

e In other words, duality is reflexive.
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Example 7.1: Linear Programming

e This is the essence of the duality theory of linear pro-
gramming.

e One final remark is that we took optimum z* as our start-
ing point, however, solution may not exist, because con-
straints may be mutually inconsistent, or they may define
an unbounded feasible set.

e This issue beyond our discussion here and is left to more

advanced texts.
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Example 7.2: Failure of Profit-maximizing
For a scalar z, consider the following maximization problem:

max F(z)=¢€"

s. t. Glx) =z < 1.

F(z) is increasing, and maximum occurs at z = 1.
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Example 7.2: Failure of Profit-maximizing

R
Y
Il

~
R

N

R

80



Example 7.2: Failure of Profit-maximizing

e Kuhn-Tucker Theorem applies.

e Lagrangian is

L(z,\) =e"+ N1 —2).

e Kuhn-Tucker necessary conditions are
OL/0x =€e* — X\ =0;

OL/ON=1—1x >0 and \ > 0, with complementary slackness.

e Solutionisz* =1 and \ = e.
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Example 7.2: Failure of Profit-maximizing

e However, z = 1 does not maximize F'(x) — A\G(x) without

constraints.

e In fact, e —ex can be made arbitrarily large by increasing

x beyond 1.

e Here, Lagrange’s method does not convert original con-
strained maximization problem into an unconstrained profit-

maximization problem, because ' is not concave.
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