
Dynamic Optimization

Chapter 11. Dynamic Programming

The main reference of this chapter is

• Chapters 2 to 5 of Stokey, N. L., Lucas, R. E., & Prescott, E. C. (1989). Recursive

Methods in Economic Dynamics. Harvard University Press.

We will not provide rigorous mathematical proofs. For interested students, please refer

to chapters 3 and 4 of Stokey, Lucas & Prescott (1989).

11.A. Life-cycle saving problem revisited

We consider an extremely simplified version of the life-cycle saving problem introduced

in Section 10.A of Chapter 10. In particular, assume

1. wage wt is 0, i.e., wt = 0 for all t;

2. interest rate is 0, i.e., rt = 0 for all t;

3. utility function takes the form u(c) = ln(c);

4. no discouting, i.e., β = 1;

5. terminal stock kT +1 = 0.

The problem is restated below with the above assumptions imposed.

Life-cycle saving problem (finite-horizon) Time is discrete and denoted by t = 0, 1, 2, ..., T .

The decision is on how much of the income to spend on consumption in each period. The

unspent income is saved and the overspent income is on debt. Let ct ≥ 0 be the con-

sumption in period t and kt+1 be the accumulated savings or debts at the beginning of

period t + 1. The budget constraint in period t is

ct + kt+1 = kt. (11.1)

k0 > 0 is given. Furthermore, kT +1 = 0 is imposed.

The individual only derives utility from consumption and chooses the consumption path

to maximize the total value of utilities in period t = 0:

U(c0, c1, ..., cT) =
T!

t=0
ln(ct).

1

Dynamic Optimization

The maximization principle The maximization problem is:

max
c0,c1,...,cT
k1,k2,...,kT

T!

t=0
ln(ct) (11.2)

s.t. ct + kt+1 = kt for all t = 0, ..., T

We could solve the problem using the method learned in Chapter 10.

Define Hamiltonian:

H(ct, kt, πt+1, t) = ln(ct) + πt+1(−ct)

FOCs are:

∂H

∂ct

= 1
ct

− πt+1 = 0 for all t = 0, ..., T

πt+1 − πt = −∂H∗

∂kt

= 0 for all t = 1, ..., T

kt+1 − kt = ∂H∗

∂πt+1
= −ct for all t = 0, ..., T (inter-temporal constraints)

1. Euler Equation:

ct+1 = ct for all t = 0, ..., T =⇒ ct = c0 for all t = 0, ..., T

2. From the constraints:
c0 + k1 = k0

c1 + k2 = k1

· · ·

cT + 0 = kT

Summing up, we have "T
t=0 ct = k0.

3. From 1 and 2, the solution is c∗
t = k0

T +1 for all t = 0, ..., T and k∗
t+1 = T −t

T +1k0 for all

t = 0, ..., T − 1.

Define the problem recursively Now let us look at the problem from a different

angle. Define the maximum value at t = 0 as a function of the initial stocks:

V0(k0) = max
c0,c1,...,cT
k1,k2,...,kT

{u(c0) + u(c1) + ... + u(cT)}

subject to budget constraints (11.1) for all t = 0, ..., T and terminal condition kT +1 = 0.

2

Dynamic Optimization

Then by the previously calculated optimal consumption path c∗
t = k0

T +1 for all t = 0, ..., T ,

we have

V0(k0) = (T + 1) ln
k0

T + 1
$
.

Given k1, we could similarly define the maximum value at t = 1 as a function of k1:

V1(k1) = max
c1,...,cT
k2,...,kT

{u(c1) + u(c2) + ... + u(cT)}

subject to the budget constraints (11.1) for all t = 1, ..., T and the terminal condition

kT +1 = 0. Then, we could use the maximum principle to solve this new problem. This

new problem only differs from the previous problem in that there is one less period and

the initial stock is k1 instead of k0. The maximum value is

V1(k1) = T ln
#k1

T

$
.

Next, consider a two-period problem:

W (k0) = max
c0,k1

{ln(c0) + V1(k1)
$
} = max

c0,k1
{ln(c0) + T ln

#k1

T

$
}

s.t. c0 + k1 = k0

To solve the problem, we could substitute the constraint into the objective function:

W (k0) = max
k1

{ln(k0 − k1) + T ln
#k1

T

$
}

FOC gives

− 1
k0 − k1

+ T

k1
= 0 =⇒ k1 = T

T + 1k0.

Plugging into the value function, we have

W (k0) = (T + 1) ln
k0

T + 1
$

= V0(k0).

It suggests:

V0(k0) = max
c0,k1

{ln(c0) + V1(k1)}

s.t. c0 + k1 = k0

3

Dynamic Optimization

Similarly, we could define

V2(k2) = max
c2,...,cT
k3,...,kT

{u(c2) + u(c3) + ... + u(cT)}

subject to the budget constraints (11.1) for all t = 2, ..., T and the terminal condition

kT +1 = 0, and verify

V1(k1) = max
c1,k2

{ln(c1) + V2(k2)}

s.t. c1 + k2 = k1

This argument works for all t = 0, ..., T − 1:

Vt(kt) = max
ct,kt+1

{ln(ct) + Vt+1(kt+1)} (11.3)

s.t. ct + kt+1 = kt

Therefore, for this simple problem, the equation (11.3) holds. This equation, called

Bellman Equation, expresses the value function as a combination of a flow payoff

and a (discounted) continuation payoff. Such a method of optimization over time as a

succession of static programming problems is called Dynamic Programming.

Life-cycle saving problem (infinite-horizon) Bellman Equation holds for infinite-horizon

problems as well. As an example, we consider an infinite-horizon version of this simplified

life-cycle saving problem. For the problem to be well-defined, we need discounting. Let

the discount factor be β ∈ (0, 1). So the objective function becomes

U(c) =
∞!

t=0
βt ln(ct).

The budget constraint in period t is still

ct + kt+1 = kt. (11.4)

k0 > 0 is given.

4

Dynamic Optimization

The maximization principle Define Hamiltonian:

H(ct, kt, πt+1, t) = βt ln(ct) + πt+1(−ct)

FOCs are:

∂H

∂ct

= βt 1
ct

− πt+1 = 0 for all t = 0, ..., T

πt+1 − πt = −∂H∗

∂kt

= 0 for all t = 1, ..., T

kt+1 − kt = ∂H∗

∂πt+1
= −ct for all t = 0, ..., T (inter-temporal constraints)

We also need the transversality condition limT →∞ πT +1kt+1 = 0.

1. Euler Equation:

ct+1 = βct for all t = 0, ..., T =⇒ ct = βtc0 for all t = 0, ..., T

2. From the constraints: "∞
t=0 ct + limT →∞ kT +1 = k0.

3. πt+1 = βt/ct and transversality condition =⇒ limT →∞
βT kT +1

cT
= 0. By 1, cT =

βT c0. So, we have limT →∞
kT +1

c0
= 0 =⇒ limT →∞ kT +1 = 0.

4. From 1, 2 and 3,
∞!

t=0
βtc0 = k0 =⇒ c0 = (1 − β)k0.

We further have ct = βtc0 = βt(1 − β)k0 and kt+1 = k0 − "t
s=0 cs = βt+1k0. Thus,

in each period t,
ct = (1 − β)kt and kt+1 = βkt.

The above two equations that express ct and kt+1 as functions of kt are called policy

functions.

Define the problem recursively Similar to the finite-horizon case, we show that the

Bellman Equation holds:

Vt(kt) = max
ct,kt+1

{ln(ct) + βVt+1(kt+1)} (11.5)

s.t. ct + kt+1 = kt

5

Dynamic Optimization

In period t, the value function is

Vt(kt) = max
{ct+j}∞

j=0
{kt+j+1}∞

j=0

∞!

j=0
βj ln(ct+j)

subject to budget constraints

ct+j + kt+j+1 = kt+j

for all j ≥ 0. We could drop the time subscript t in Vt since functional forms of the value

functions are the same in each period.

Solving the problem using the maximum principle, we have

ct+j = βj(1 − β)kt,

which gives the value function

V (kt) = ln(1 − β) + ln(kt)
1 − β

+ β ln(β)
(1 − β)2 . (11.6)

Now define

W (kt) = max
ct,kt+1

{ln(ct) + βV (kt+1)}

s.t. ct + kt+1 = kt

To solve the problem, we could substitute the constraint into the objective function:

W (kt) = max
kt+1

%
ln(kt − kt+1) + β

& ln(1 − β) + ln(kt+1)
1 − β

+ β ln(β)
(1 − β)2

'(

FOC gives

− 1
kt − kt+1

+ β

(1 − β)kt+1
= 0 =⇒ kt+1 = βkt.

Plugging into the value function, we have

W (kt) = ln(1 − β) + ln(kt)
1 − β

+ β ln(β)
(1 − β)2 = V (kt).

Thus, the Bellman Equation (11.5) holds.

In the following section, we will briefly show that the Bellman Equation holds in a gen-

eral setting. That is, the solution to the initial problem solves the Bellman equation.

6

Dynamic Optimization

Moreover, the solution to the Bellman Equation is also a solution to the initial problem.

Our discussions will be focused on infinite-horizon discrete-time models. In fact, dynamic

programming is especially useful for when time is discrete (and there is uncertainty).

11.B. Dynamic Programming

We reformulate the initial problem into a Sequence Problem.

Definition 11.B.1 (Sequence Problem). The sequence problem is of the form:

V (x0) = sup
{xt+1}∞

t=0

∞!

t=0
βtF (xt, xt+1) (SP)

s.t. xt+1 ∈ Γ(xt) for all t = 0, 1, 2, ...

x0 ∈ X given.

Example 11.1 (Life-cycle saving problem (infinite-horizon)). Formulating the previous

life-cycle saving problem into a sequence problem, we have:

V (k0) = sup
{kt+1}∞

t=0

∞!

t=0
βt ln(kt − kt+1)

s.t. kt+1 ∈ [0, kt] ≡ Γ(kt) for all t = 0, 1, 2, ...

k0 > 0 given.

Definition 11.B.2 (Bellman Equation).

V (xt) = sup
xt+1∈Γ(xt)

{F (xt, xt+1) + βV (xt+1)} for all xt ∈ X (BE)

As mentioned before, Bellman equation expresses the value function as a combination

of a flow payoff F (xt, xt+1) and a discounted continuation payoff βV (xt+1). We call the

time-invariant value function V (·) the solution to Bellman equation.1

We briefly show below that the value function defined by the sequence problem is also

the solution to the Bellman equation and vice versa (with an additional condition

limn→∞ βnV (xn) = 0 for any feasible x sequences).2

1We haven’t yet demonstrated that a solution V (·) exists.
2For this claim to hold, assumptions are needed to ensure that the sequence problem is well-defined.

For the assumptions needed and a detailed proof, see chapter 4 of Stokey, Lucas & Prescott (1989).

7

Dynamic Optimization

1. A solution to the sequence problem is also a solution to Bellman equation.

V (x0) = sup
{xt+1∈Γ(xt)}∞

t=0

∞!

t=0
βtF (xt, xt+1) = sup

{xt+1∈Γ(xt)}∞
t=0

#
F (x0, x1) +

∞!

t=1
βtF (xt, xt+1)

$

= sup
{xt+1∈Γ(xt)}∞

t=0

#
F (x0, x1) + β

∞!

t=1
βt−1F (xt, xt+1)

$

= sup
x1∈Γ(x0)

#
F (x0, x1) + β sup

{xt+1∈Γ(xt)}∞
t=1

∞!

t=0
βtF (xt+1, xt+2)

$

= sup
x1∈Γ(x0)

#
F (x0, x1) + βV (x1)

$

2. Under the condition limn→∞ βnV (xn) = 0 for any feasible x sequences, a solution

to Bellman equation is also a solution to the sequence problem.

V (x0) = sup
x1∈Γ(x0)

#
F (x0, x1) + βV (x1)

$

= sup
x1∈Γ(x0)

#
F (x0, x1) + β sup

x2∈Γ(x1)
[F (x1, x2) + βV (x2)]

$

= sup
{xt+1∈Γ(xt)}1

t=0

#
F (x0, x1) + β[F (x1, x2) + βV (x2)]

$

· · ·

= sup
{xt+1∈Γ(xt)}n−1

t=0

#
F (x0, x1) + βF (x1, x2) + ... + βn−1F (xn−1, xn) + βnV (xn)

$

· · ·

= sup
{xt+1∈Γ(xt)}∞

t=0

∞!

t=0
βtF (xt, xt+1) + lim

n→∞
βnV (xn)

= sup
{xt+1∈Γ(xt)}∞

t=0

∞!

t=0
βtF (xt, xt+1)

11.C. Solving Bellman equation

There are in general three methods to solve the Bellman equation:

• Guess and verify

• Iterate functional operator analytically

• Iterate functional operator numerically (We will not cover this method in this

course.)

8

Dynamic Optimization

11.C.1. Guess and verify

Let us reconsider the infinite-horizon version of the life-cycle saving problem. Bellman

equation of the problem states:

V (kt) = max
kt+1∈[0,kt]

{ln(kt − kt+1) + βV (kt+1)}.

The solution must be interior. We have the following two conditions.

1. FOC:

− 1
kt − kt+1

+ βV ′(kt+1) = 0.

2. Envelope theorem:

V ′(kt) = 1
kt − kt+1

.

Guess the value function Guess that the value function takes the form:

V (k) = a + b ln(k),

where a and b are constants to be determined. We try this form because the utility

function is of the log form. Then, Bellman equation becomes:

a + b ln(kt) = max
kt+1∈[0,kt]

%
ln(kt − kt+1) + β

#
a + b ln(kt+1)

$(
(11.7)

FOC and envelope theorem become:

− 1
kt − kt+1

+ βb

kt+1
= 0 =⇒ kt+1 = βb

βb + 1kt (11.8)

b

kt

= 1
kt − kt+1

=⇒ kt+1 = b − 1
b

kt (11.9)

(11.8) and (11.9) implies b = 1
1−β

and kt+1 = βkt. Plugging this back into (11.7), we have

a + 1
1 − β

ln(kt) = ln((1 − β)kt) + β
#
a + 1

1 − β
ln(βkt)

$
⇐⇒ a = ln(1 − β)

1 − β
+ β ln(β)

(1 − β)2 .

Therefore,
V (k) = ln(1 − β)

1 − β
+ β ln(β)

(1 − β)2 + 1
1 − β

ln(k)

is a solution to Bellman equation. Note that this solution is the same as the value function

(11.6) we calculated previously.

9

Dynamic Optimization

Guess the policy function Alternatively, we could also guess the form of the policy

function. Guess kt+1 = θkt, where θ is a constant to be determined. Then envelope

theorem implies

V ′(kt) = 1
(1 − θ)kt

Substitute V ′(kt+1) = 1
(1−θ)kt+1

and then kt+1 = θkt into FOC

− 1
kt − kt+1

+ β
1

(1 − θ)kt+1
= 0 =⇒ − 1

(1 − θ)kt

+ β
1

(1 − θ)θkt

= 0 =⇒ θ = β.

We get the policy function kt+1 = βkt, which implies kt = βtk0. So, the value function is

V (k0) =
∞!

t=0
βt ln(kt − kt+1) =

∞!

t=0
βt ln(βtk0 − βt+1k0)

=
∞!

t=0
βt[t ln(β) + ln(1 − β) + ln(k0)]

= β ln(β)
(1 − β)2 + ln(1 − β)

1 − β
+ 1

1 − β
ln(k0)

11.C.2. Iterate functional operator analytically

How to do it Still consider the infinite-horizon version of the life-cycle saving problem.

Start with any initial guess, for example, V0(k) = 0. Then the first iteration gives

V1(kt) = max
kt+1∈[0,kt]

{ln(kt − kt+1) + βV0(kt+1)} = max
kt+1∈[0,kt]

{ln(kt − kt+1)}.

The objective function is decreasing in kt+1, so the optimal choice is kt+1 = 0. Then

V1(kt) = ln(kt).

The second iteration is

V2(kt) = max
kt+1∈[0,kt]

{ln(kt − kt+1) + βV1(kt+1)} = max
kt+1∈[0,kt]

{ln(kt − kt+1) + β ln(kt+1)}.

FOC gives

− 1
kt − kt+1

+ β
1

kt+1
= 0 =⇒ kt+1 = β

1 + β
kt.

Then

V2(kt) = ln(kt − β

1 + β
kt) + β ln(β

1 + β
kt) = some constant + (1 + β) ln(kt)

10

Dynamic Optimization

The third iteration is

V3(kt) = max
kt+1∈[0,kt]

{ln(kt − kt+1) + βV2(kt+1)}

= max
kt+1∈[0,kt]

%
ln(kt − kt+1) + β

&
some constant + (1 + β) ln(kt+1)

'(

FOC gives

− 1
kt − kt+1

+ β
1 + β

kt+1
= 0 =⇒ kt+1 = β(1 + β)

1 + β(1 + β)kt.

Then

V3(kt) = some constant + (1 + β + β2) ln(kt)

Continuing iteration, eventually, we will obtain

V (kt) = some constant + 1
1 − β

ln(kt)

and

V (kt) = max
kt+1∈[0,kt]

%
ln(kt − kt+1) + βV (kt+1)

(

= max
kt+1∈[0,kt]

%
ln(kt − kt+1) + β

&
some constant + 1

1 − β
ln(kt+1)

'(

FOC gives

− 1
kt − kt+1

+ β

(1 − β)kt+1
= 0 =⇒ kt+1 = βkt.

After obtaining the policy function, we could get the value function (See last section:

Guess the policy function).

Remark 1. In this example, we have shown that limn→∞ Vn → V when V0(k) = 0. In

fact, we will always get convergence independent of the choice of V0. The theory will be

briefly discussed later.

The above iteration method could be described in a more convenient way. For any

function w : R+ → R, we can define a new function Bw : R+ → R by

(Bw)(kt) = max
kt+1∈[0,kt]

%
ln(kt − kt+1) + βw(kt+1)

(
.

When we use this notation, the previous method is equivalent to choosing a function V0

11

Dynamic Optimization

and studying the sequence {Vn} defined by Vn+1 = BVn for n = 0, 1, 2, The goal is to

show that this sequence of functions converge to the limit function V that satisfies

V (kt) = max
kt+1∈[0,kt]

%
ln(kt − kt+1) + βV (kt+1)

(
. (11.10)

Or equivalently, we could view B as a mapping from some set of functions into itself.

Then, what we are looking for is a fixed point of the mapping B, that is, a function V

that satisfies V = BV . The operator B is called Bellman operator.

In a general setting, Bellman operator is defined as follows:

(Bw)(xt) = sup
xt+1∈Γ(xt)

{F (xt, xt+1) + βw(xt+1)} for all xt ∈ X (BE)

What we do is to pick some w and iterate Bnw until convergence:

(Bw)(xt) = sup
xt+1∈Γ(xt)

{F (xt, xt+1) + βw(xt+1)}

(B(Bw))(xt) = sup
xt+1∈Γ(xt)

{F (xt, xt+1) + β(Bw)(xt+1)}

(B(B2w))(xt) = sup
xt+1∈Γ(xt)

{F (xt, xt+1) + β(B2w)(xt+1)}

· · ·

(B(Bnw))(xt) = sup
xt+1∈Γ(xt)

{F (xt, xt+1) + β(Bnw)(xt+1)}

· · ·

(Uniform) convergence of a sequence of functions is defined by convergence in sup-norm.

Why it works We will briefly discuss why the sequence always converges. The short

answer is: B is a contraction mapping.

Definition 11.C.1 (Contraction mapping). Let (S, ρ) be a metric space and T : S → S

be a function mapping S into itself. T is a contraction mapping (with modulus β) if

for some β ∈ (0, 1), ρ(Tx, Ty) ≤ βρ(x, y), for all x, y ∈ S.

In plain words, T is a contraction mapping if operating T on any two elements in S moves

them strictly closer to each other.

12

Dynamic Optimization

For our result, we need the following two results:

1. Contraction Mapping Theorem (Theorem 11.1): a fixed point theorem

2. Blackwell’s sufficient conditions (Theorem 11.2): sufficient conditions for an opera-

tor to be a contraction mapping

Theorem 11.1 (Contraction Mapping Theorem (Stokey, Lucas & Prescott Theorem

3.2)). If (S, ρ) is a complete metric space and T : S → S is a contraction mapping with

modulus β, then

a. T has exactly one fixed point v in S, and

b. for any v0 ∈ S, ρ(T nv0, v) ≤ βnρ(v0, v), n = 0, 1, 2,

Sketch of proof: To prove (a), we

1. find a candidate for v;

2. show that Tv = v;

3. show that for any other element v̂ ∈ S, T v̂ ∕= v̂.

For 1, define the iterate of T , the mapping {T n} by T 0x = x and T nx = T (T n−1x),

n = 1, 2, Choose v0 ∈ S and define the sequence {vn}∞
n=0 by vn+1 = Tvn so that vn =

T nv0. Show that vn is a Cauchy sequence. (This is done using 1) T being a contraction

mapping, and 2) triangle inequality.) Then S is complete, we have vn → v ∈ S.

For 2, for all n and all v0 ∈ S,

ρ(Tv, v) ≤ ρ(Tv, T nv0) + ρ(T nv0, v) ≤ βρ(v, T n−1v0) + ρ(T nv0, v)

Both ρ(v, T n−1v0) and ρ(T nv0, v) converge to 0 as n → ∞. Hence ρ(Tv, v) = 0, i.e.,

Tv = v.

For 3, suppose to the contrary, v̂ ∕= v is another solution. Then

ρ(v̂, v) = ρ(T v̂, Tv) ≤ βρ(v̂, v) (11.11)

Since β ∈ (0, 1), (11.11) never holds.

To prove (b), observe that for any n ≥ 1,

ρ(T nv0, v) = ρ(T (T n−1v0), T v) ≤ βρ(T n−1v0, v).

So (b) follows by induction.

13

Dynamic Optimization

Theorem 11.2 (Blackwell’s sufficient conditions for a contraction (Stokey, Lucas &

Prescott Theorem 3.3)). Let X ⊆ Rl, and let B(X) be a space of bounded functions

f : X → R, with the sup norm. Let T : B(X) → B(X) be an operator satisfying

a. (monotonicity) f, g ∈ B(X) and f(x) ≤ g(x), for all x ∈ X, implies (Tf)(x) ≤

(Tg)(x), for all x ∈ X;

b. (discounting) there exists some β ∈ (0, 1) such that

[T (f + a)](x) ≤ (Tf)(x) + βa, all f ∈ B(X), a ≥ 0, x ∈ X.

[Here (f + a)(x) is the function defined by (f + a)(x) = f(x) + a.]

Then T is a contraction with modulus β.

Proof. If f(x) ≤ g(x) for all x ∈ X, we write f ≤ g. For any f, g ∈ B(X), f ≤ g+||f−g||.

Then properties (a) and (b) imply that

Tf ≤ T (g + ||f − g||) ≤ Tg + β||f − g|| =⇒ Tf − Tg ≤ β||f − g||.

Similarly,

Tg ≤ T (f + ||f − g||) ≤ Tf + β||f − g|| =⇒ Tg − Tf ≤ β||f − g||.

Combining the two inequalities,

||Tf − Tg|| ≤ β||f − g||.

Remark 2. Blackwell’s sufficient conditions are only sufficient but not necessary: some

contraction mappings do not satisfy these sufficient conditions.

Example 11.2. Check Blackwell sufficient conditions for the life-cycle saving problem:

(Bw)(kt) = max
kt+1∈[0,kt]

%
ln(kt − kt+1) + βw(kt+1)

(

Suppose v ≤ w. Let k∗
t+1 be the optimal choice when continuation value function is v.

14

Dynamic Optimization

1. For (a)

(Bv)(kt) = max
kt+1∈[0,kt]

%
ln(kt − kt+1) + βv(kt+1)

(
= ln(kt − k∗

t+1) + βv(k∗
t+1)

≤ ln(kt − k∗
t+1) + βw(k∗

t+1) ≤ max
kt+1∈[0,kt]

%
ln(kt − kt+1) + βw(kt+1)

(

= (Bw)(kt)

2. For (b)

[B(w + a)](kt) = max
kt+1∈[0,kt]

%
ln(kt − kt+1) + β(w + a)(kt+1)

(

= max
kt+1∈[0,kt]

%
ln(kt − kt+1) + β[w(kt+1) + a]

(

= max
kt+1∈[0,kt]

%
ln(kt − kt+1) + β[w(kt+1)]

(
+ βa

= (Bw)(kt) + βa.

Therefore, by Blackwell’s sufficient conditions (Theorem 11.2), B is a contraction map-

ping. And by Contraction Mapping Theorem (Theorem 11.1), B has a unique fixed point,

which could be reached from any initial point.

Remark 3. This result implies that the Bellman equation has a unique solution.

11.D. Examples

11.D.1. Example 1: Optimal growth model

Finite-horizon, backward induction Consider the following social planner’s problem:

max
{ct}T

t=0
{kt}T

t=1

T!

t=0
βt ln(ct)

s.t. ct + kt+1 = kα
t for all t = 0, ..., T

k0 > 0 is given and the terminal capital kT +1 = 0. In the model, f(kt) = kα
t is the

production function, and capital is fully depreciated, i.e., δ = 1.

We will apply dynamic programming to solve the model when T = 2. The method of

solving the problem extends to all finite T .

15

Dynamic Optimization

T = 2 problem is:

max
c0,c1,c2
k1,k2

ln(c0) + β ln(c1) + β2 ln(c2) (11.12)

s.t. ct + kt+1 = kα
t for all t = 0, 1, 2.

k0 > 0 given and k3 = 0.

We solve the problem by Backward Induction.

1. At t = 2, since k3 = 0, we have c2 = kα
2 . So the value function is

V2(k2) = α ln(k2).

2. At t = 1, we have c1 = kα
1 − k2. The Bellman equation is

V1(k1) = max
k2∈[0,kα

1]
{ln(kα

1 − k2) + βV2(k2)} = max
k2∈[0,kα

1]
{ln(kα

1 − k2) + αβ ln(k2)}

FOC gives

− 1
kα

1 − k2
+ αβ

k2
= 0 =⇒ k2 = αβ

1 + αβ
kα

1 (11.13)

So the value function is

V1(k1) = ln(kα
1 − αβ

1 + αβ
kα

1)+αβ ln(αβ

1 + αβ
kα

1) = some constant+α(1+αβ) ln(k1).

3. At t = 0, we have c0 = kα
0 − k1. The Bellman equation is

V0(k0) = max
k1∈[0,kα

0]
{ln(kα

0 − k1) + βV1(k1)}

= max
k1∈[0,kα

0]
{ln(kα

0 − k1) + β[some constant + α(1 + αβ) ln(k1)]}

FOC gives

− 1
kα

0 − k1
+ αβ(1 + αβ)

k1
= 0 =⇒ k1 = αβ(1 + αβ)

1 + αβ(1 + αβ)kα
0 (11.14)

The problem is fully solved: equation (11.14) defines k1, and substituting it into equa-

tion (11.13) gives k2 as a function of k0. We could also recover c0, c1 and c2 from the

constraints.

16

Dynamic Optimization

Infinite-horizon Consider infinite-horizon version of the above social planner’s problem:

max
{ct}∞

t=0
{kt}∞

t=1

∞!

t=0
βt ln(ct) (11.15)

s.t. ct + kt+1 = kα
t for all t = 0, 1, 2, ...

k0 > 0 is given.

We apply the guess and verify method to solve the problem.

The Bellman equation is

V (kt) = max
kt+1∈[0,kα

t]
{ln(kα

t − kt+1)) + βV (kt+1)}.

The solution must be interior. We have the following two conditions.

1. FOC:

− 1
kα

t − kt+1
+ βV ′(kt+1) = 0.

2. Envelope theorem:

V ′(kt) = αkα−1
t

kα
t − kt+1

.

Guess the value function Guess that the value function takes the form:

V (k) = a + b ln(k),

where a and b are constants to be determined. We try this form because the utility

function is of the log form. Then, Bellman equation becomes:

a + b ln(kt) = max
kt+1∈[0,kt]

%
ln(kα

t − kt+1) + β
#
a + b ln(kt+1)

$(
(11.16)

FOC and envelope theorem become:

− 1
kα

t − kt+1
+ βb

kt+1
= 0 =⇒ kt+1 = βb

βb + 1kα
t (11.17)

b

kt

= αkα−1
t

kα
t − kt+1

=⇒ kt+1 = b − α

b
kα

t (11.18)

(11.17) and (11.18) implies b = α
1−αβ

and kt+1 = αβkα
t . Plugging this back into (11.16),

we could recover a and accordingly the value function V (k).

17

Dynamic Optimization

Guess the policy function Alternatively, we could also guess the form of the policy

function. Guess kt+1 = θf(kt) = θkα
t , where θ is a constant to be determined. Then

envelope theorem implies

V ′(kt) = α

(1 − θ)kt

Substitute V ′(kt+1) = α
(1−θ)kt+1

and then kt+1 = θkα
t into FOC

− 1
kα

t − kt+1
+ β

α

(1 − θ)kt+1
= 0 =⇒ − 1

(1 − θ)kα
t

+ β
α

(1 − θ)θkα
t

= 0 =⇒ θ = αβ.

We get the policy function kt+1 = αβkα
t , which implies kt = (αβ)

1−αt

1−α kαt

0 . So, the value

function is

V (k0) =
∞!

t=0
βt ln((1 − αβ)kα

t) =
∞!

t=0

&
βt ln(1 − αβ) + αβt ln(kt)

'

= ln(1 − αβ)
1 − β

+ α
∞!

t=0

&
βt

#1 − αt

1 − α
ln(αβ) + αt ln(k0)

$'

= ln(1 − αβ)
1 − β

+ α
∞!

t=0

&
βt

#1 − αt

1 − α
ln(αβ) + αt ln(k0)

$'

= ln(1 − αβ)
1 − β

+ αβ ln(αβ)
(1 − β)(1 − αβ) + α ln(k0)

1 − αβ

Iterate functional operator analytically We could obtain the same result by iterating

functional operator analytically. For example, try the initial guess V0(kt) = 0.

Stochastic growth Dynamic programming is also applicable to stochastic problems.

The social planner’s problem is modified to be the following:

max
{ct(zt)}∞

t=0
{kt(zt)}∞

t=1

E0

∞!

t=0
βt ln(ct) (11.19)

s.t. ct + kt+1 = ztk
α
t for all t = 0, 1, 2, ...

k0 > 0 is given. {zt} is a sequence of independently and identically distributed random

variables with E0(ln(zt)) = µ. At the beginning of period t, the exogenous shock zt is

realized. Thus when making period t decision, the social planner knows the pair (kt, zt)

and accordingly the current output ztk
α
t . The pair (kt, zt) is called the state of the

economy. Note that now the solution is expressed in terms of contingency plans, that is,

18

Dynamic Optimization

ct and kt+1 are functions of zt.

The problem could still be equivalently expressed using recursive formulation. The Bell-

man equation is:

V (kt, zt) = max
kt+1∈[0,ztkα

t]
{ln(ztk

α
t − kt+1)) + βEtV (kt+1, zt+1)}.

Then FOC and envelope theorem give

1. FOC:

− 1
ztkα

t − kt+1
+ βEt

∂V (kt+1, zt+1)
∂kt+1

= 0.

2. Envelope theorem:
∂V (kt, zt)

∂kt

= αztk
α−1
t

ztkα
t − kt+1

.

To solve the problem, similar to the deterministic model, we guess and verify.

Guess the value function Guess that the value function takes the form:

V (k) = a + b ln(k) + c ln(z),

where a, b and c are constants to be determined. Then, Bellman equation becomes:

a+b ln(kt)+c ln(zt) = max
kt+1∈[0,kt]

%
ln(ztk

α
t −kt+1)+βEt

#
a+b ln(kt+1)+c ln(zt+1)

$(
(11.20)

FOC and envelope theorem become:

− 1
ztkα

t − kt+1
+ βb

kt+1
= 0 =⇒ kt+1 = βb

βb + 1ztk
α
t (11.21)

b

kt

= αztk
α−1
t

ztkα
t − kt+1

=⇒ kt+1 = b − α

b
ztk

α
t (11.22)

(11.21) and (11.22) implies b = α
1−αβ

and kt+1 = αβztk
α
t . Plugging this back into (11.20),

we could recover a and c:

a = ln(1 − αβ)
1 − β

+ αβ ln(αβ)
(1 − β)(1 − αβ) + βµ

(1 − β)(1 − αβ)

c = 1
1 − αβ

and accordingly the value function V (k).

19

Dynamic Optimization

Guess the policy function Alternatively, we could also guess the form of the policy

function:

kt+1 = θf(kt) = θztk
α
t ,

where θ is a constant to be determined. Then envelope theorem gives

∂V (kt, zt)
∂kt

= αztk
α−1
t

ztkα
t − θztkα

t

= α

(1 − θ)kt

.

Substituting into FOC

1
ztkα

t − kt+1
= βEt

α

(1 − θ)kt+1
=⇒ 1

ztkα
t − θztkα

t

= βEt
α

(1 − θ)θztkα
t

=⇒ θ = αβ.

We get the policy function kt+1 = αβztk
α
t . The value function could be recovered using

the policy function. To do this, we express the value function as

V (k0) =
∞!

t=0
βt ln((1 − αβ)ztk

α
t).

[The calculation is quite involved here.]

11.D.2. Example 2: Job market search (Dixit Example 1 + unemployment

compensation)

There is a whole spectrum of jobs paying different wages in the economy. Denote the

wage offer by w. The cumulative distribution function, the probability that a randomly

selected job pays w or less, is Φ(w). The corresponding density function is φ(w) = Φ′(w).

A worker must engage in search to find out how much a particular job pays. Each period,

an unemployed worker draws a wage offer w. He could either accept or reject the offer.

If the offer is rejected, then the worker stays unemployed and waits until the next period

to draw another wage offer. The worker receives unemployment compensation c for each

of the unemployed period. The discount factor is β.

Analysis. The Bellman equation for the worker’s problem is

V (w) = max{c + β
) ∞

0
V (w′)dΦ(w′), w

1 − β
}.

20

Dynamic Optimization

We define w∗ = min{w| w
1−β

≥ c+β
* ∞

0 V (w′)dΦ(w′)}. That is, w∗

1−β
= c+β

* ∞
0 V (w′)dΦ(w′).

Then w∗ is the unique threshold value such that the worker decides to take the offer when-

ever w ≥ w∗ for the first time. To see this, consider another the wage offer ŵ ≥ w∗. The

worker must accept ŵ:

c + β
) ∞

0
V (w′)dΦ(w′) = w∗

1 − β
≤ ŵ

1 − β
.

Since the worker obtains a higher payoff accepting ŵ compared to staying unemployed,

the worker will accept ŵ. Therefore, the value function satisfies

V (w) =

+
,,,-

,,,.

w
1−β

if w ≥ w∗

w∗

1−β
= c + β

* ∞
0 V (w′)dΦ(w′) if w < w∗

Evaluating w∗, we have

w∗

1 − β
= c + β

&) ∞

w∗

w

1 − β
dΦ(w) +

) w∗

0

w∗

1 − β
dΦ(w)

'

=⇒ w∗ = c(1 − β) + β
&) ∞

w∗
wdΦ(w) +

) w∗

0
w∗dΦ(w)

'
= c(1 − β) + β

&
w∗ +

) ∞

w∗
(w − w∗)dΦ(w)

'

=⇒ w∗ = c + β

1 − β

) ∞

w∗
(w − w∗)dΦ(w)

Implications:

1. w∗ > c for non-degenerate distributions.

2. An increase in c leads to an increase in w∗.

11.D.3. Example 3: Saving under uncertainty (Dixit Example 2)

Consider a consumer with wealth W that earns a random total return (principal plus

interest) of r per period, and no other income. That is, starting period t with wealth Wt,

if the consumer consumes Ct and saves Wt − Ct, his random wealth at the start of the

next period will be Wt+1 = rt+1(Wt − Ct). Note that rt+1 is not realized when making

the consumption decision. Consumption of Ct in any period gives him utility

U(C) = C1−ε

(1 − ε) , with ε > 0.

The discount factor is β.

21

Dynamic Optimization

Analysis. Unlike the previous models, here we could not choose Wt+1 since rt+1 is ran-

dom and unknown when making the consumption decision. We could still apply the

dynamic programming approach. The Bellman equation is

V (Wt) = max
Ct∈[0,Wt]

% C1−ε
t

1 − ε
+ βEt(V (rt+1(Wt − Ct)))

(
.

Guess the value function

V (Wt) = AW 1−ε
t

1 − ε
,

where A is a constant to be determined. The guess is also based on the utility form.

Then the Bellman equation becomes:

AW 1−ε
t

1 − ε
= max

Ct∈[0,Wt]

% C1−ε
t

1 − ε
+ βEt

#A(rt+1(Wt − Ct))1−ε

1 − ε

$(

=⇒ AW 1−ε
t

1 − ε
= max

Ct∈[0,Wt]

% C1−ε
t

1 − ε
+ Aβ(Wt − Ct)1−ε

1 − ε
Et[(rt+1)1−ε]

(

FOC implies

C−ε
t − (Wt − Ct)−εAβEt[(rt+1)1−ε] = 0 =⇒ Ct

Wt

= 1
1 + (AβEt[(rt+1)1−ε)]1/ε

(11.23)

Envelope theorem gives

AW −ε
t = (Wt − Ct)−εAβEt[(rt+1)1−ε] =⇒ Ct

Wt

= 1 − (βEt[(rt+1)1−ε)]1/ε (11.24)

The constant A could be found by (11.23) and (11.24):

A1/ε[1 − (βEt[(rt+1)1−ε)]1/ε] = 1.

The condition for the existence of A is βEt[(rt+1)1−ε) < 1.

22

