Chapter 11. Dynamic Programming

Xiaoxiao Hu

May 17, 2022

11.A. Life-cycle saving problem revisited

e Consider life-cycle saving problem

e Assume

1.

-~ W

wage w, is 0, i.e., w, = 0 for all ¢;

interest rate is 0, i.e., r, = 0 for all ¢;
utility function takes the form u(c) = In(c);
no discouting, i.e., f = 1;

terminal stock kr 1 = 0.

Life-cycle saving problem (finite-horizon)

Time is discrete: t =0,1,2,...,T

Decision is on how much of income to spend on consump-
tion in each period.

Unspent income is saved and overspent income is on debt.
¢; > 0: consumption in period ¢ and

kiy1: accumulated savings or debts at the beginning of

period t + 1.

Life-cycle saving problem (finite-horizon)

e Budget constraint in period t is

¢t + ki1 = Ky

o ko > 0 given.

e kpy 1 =0 imposed.

Life-cycle saving problem (finite-horizon)

e Individual only derives utility from consumption and
e chooses consumption path to maximize total value of util-

ities in period t = O:

Ulco, 1y .oyor) = Y In(cy).

The maximization principle

e Maximization problem is:

T

COvlgll,E.iJ.)ch Z hl(Ct)
k1,ka,....kp t=0

st. ¢+ kg =k forallt =0,...,T

e We could solve it using method in Chapter 10.

The maximization principle

e Define Hamiltonian:

H(ct, ki, i, t) = In(ey) + mepa (—ce)

e FOCs:
oH 1
a—ct = C—t_ﬂ-H_l =0 for alltZO,,T
OH*
T4l — Tp = — ET O0forallt=1,...,T
t
oOH*
kt+1—kt: = —C for allt:O,,T

67Tt+1

The maximization principle

1. Euler Equation:
crr=c forallt=0,...T = ¢, =cpforallt=0,..,T

2. From constraints, we have Zfzo ¢ = ko.
3. From 1 and 2, solution is ¢j = T 2y forallt =0,...,T and

fo = ko forall t =0,..,T — 1.

Define the problem recursively

e Now let us look at the problem from a different angle.
e Define maximum value at ¢t = 0 as a function of initial

stocks:

Vo(ko) = COICIIIE?(CT{U(CO) +u(ey) + ... +uler)}
k1:k21---:kT

subject to budget constraints for all t = 0,...,7 and

terminal condition kp,q = 0.

Define the problem recursively
e By previously calculated optimal consumption path

ko

forall t =0,...,T, we have

%(ko):(TJrl)ln(Tkjil).

10

Define the problem recursively

e Given ki, we could similarly define maximum value at

t =1 as a function of ki:

Vi(k) = max {u(c1) +u(cz) + ... + uler)}
Koo

subject to budget constraints for all t = 1,...,T and
terminal condition k7,1 = 0.
e We could use maximum principle to solve this problem.

e Maximum value is Vi (k1) = T'In (%)

11

Define the problem recursively

e Next, consider a two-period problem:
W(ko) =max{In(co) + Vi(k1)} s.t. co + k1 = ko
Co,R1

e Solving the problem, we have

Wlko) = (T -+ 1) (527) = Valko)

e [t suggests:

Vo(ko) :rgla}cx{ln(co) + Vi(k1)} s.t. co+ ki = ko

12

Define the problem recursively

e Similarly, we could define

Vo (ko) max {u(co) +u(es) + ... + uler)}

2oy
k3,....kr

subject to budget constraints for all ¢ = 2,...,T and
terminal condition kp,q = 0,

e and verify

Vi(k’l) :HIBI;X{IH(Cl) + ‘/2<k2)} s.t. ¢ + kQ =]{31
C1,R2

13

Define the problem recursively

e This argument works for all t =0,...,T — 1:

Vi(ke) = max {In(c;) + Viga (ki) }

ct k41

s.t. c + k?t_|_1 = kt

e This equation, called Bellman Equation, expresses the
value function as a combination of a flow payoff and a
(discounted) continuation payoff.

e Such a method of optimization over time as a succession
of static programming problems is called Dynamic Pro-

gramming.
14

Life-cycle saving problem (infinite-horizon)

e Bellman Equation holds for infinite-horizon problems as
well.
e As an example, we consider an infinite-horizon version of

this simplified life-cycle saving problem.

15

Life-cycle saving problem (infinite-horizon)

e For the problem to be well-defined, we need discounting.

e Let discount factor be 5 € (0, 1).

So objective function becomes

Ule) = iﬁt In(cy).

Budget constraint in period ¢ is still

Ct + ki1 = k.

ko > 0 given.
16

The maximization principle

e Define Hamiltonian:

H(cy, by, m, t) = 5t In(cy) + mp1(—ce)

T

e FOCQs:
H
2 —B——erl—Oforallt—O ST
Ct
H*
Tl — Mg = —%k =0forallt=1,..T
t
H*
kt+1—l€t = 66’/T = —C for allt:(),...,
t+1

e Transversality condition: limy_ o 71k =0

17

The maximization principle
1. Euler Equation:
Cr1 = Peg forallt =0,...,T

— ¢, =fBl¢yforallt=0,..,T

2. From constraints: 72, ¢; + limp_,o kpy1 = ko.

3. 1 = /¢y and transversality condition

BT kria -0

o limy o, 2722

e By 1, cp = Bcy.

. k .
e So, we have limp_,, 2 =0 = limy_o k741 = 0.
: p” +

18

The maximization principle
4. From 1, 2 and 3,
iﬂtco =ko = co=(1-PB)ko
t=0
o ¢; = (1 — B)ko and ki y = [k.
e In each period t, ¢; = (1 — B)k; and ki = Sk
e Above equations that express ¢; and k;,1 as functions

of k; are called policy functions.

19

Define the problem recursively

Similar to finite-horizon case, we show that Bellman Equa-

tion holds:

Vi(ky) = max {In(c;) + BVig1(kes1)}

ct ki1

s.t. ¢+ kt+1 = k't

20

Define the problem recursively

In period ¢, value function is

o0
‘/;(k't) = ma%(o Z B] ln(Ct+j)
{Ct+j}j:0 j=0
{kerj+1}520

subject to budget constraints

Cttj + kt+j+1 = kt-i-j for all] Z 0.

e We could drop time subscript ¢ in V; since functional

forms of value functions are same in each period.

21

Define the problem recursively
Solving it using maximum principle, we have
Ct+j = ﬁj(l — Bk,

which gives value function

In(1—) +In(k) Bln(B)

V(ky) = 5 +(1_5)2.

22

Define the problem recursively

e Now define

W (k;) = max {In(c;) + BV (ke11)}

ct k41

s.t. ¢ + kt—i—l = k,'t

e Solving the problem, we have

In(1 — §) + In(k) BIn(5)

Wik) = =773 (1-)

e Thus, Bellman Equation holds.

= V(k,).

23

11.B. Dynamic Programming

e We will briefly show that Bellman Equation holds in a
general setting.
— solution to initial problem solves Bellman equation.
— solution to Bellman Equation is also a solution to ini-

tial problem.

e Our discussions will be focused on infinite-horizon discrete-
time models.

e In fact, dynamic programming is especially useful for when

time is discrete (and there is uncertainty).
24

Dynamic Programming
We reformulate initial problem into a Sequence Problem.

Definition (Sequence Problem). Sequence problem is of the

form:

V(zg) = sup iﬁtF(xt,xtH) (SP)

{ze+1}82 t=0

s.t. 1 € T(ay) forallt =0,1,2,...

xo € X given.

25

Dynamic Programming

Formulating Life-cycle saving problem (infinite-horizon) into
a sequence problem, we have:

V(ko) = sup Zﬁt In(ky — keg1)

{kt+1}§20 t=0

s.t. k1 €0,k =T(ky) for all t =0,1,2, ...

ko > 0 given.

26

Dynamic Programming

Definition 11.B.1 (Bellman Equation).

V(z,) = sup {F(x¢,241) + BV (2441)} for all 2, € X
41 €N (zt)
(BE)

e Bellman equation expresses value function as a combina-
tion of a flow payoff F'(x;, ;1) and a discounted contin-
uation payoff SV (x41).

e We call V(-) solution to Bellman equation.'

'We haven’t yet demonstrated that a solution V(-) exists. 27

Dynamic Programming

We briefly show that

e value function defined by sequence problem is also solu-
tion to Bellman equation and

e vice versa (with an additional condition

lim,, o 8"V (x,) = 0 for any feasible x sequences).

28

11.C. Solving Bellman equation

There are in general three methods to solve Bellman equa-
tion:

e Guess and verify

e [terate functional operator analytically

e Iterate functional operator numerically (We will not cover

this method in this course.)

29

11.C.1. Guess and verify

e Let us reconsider infinite-horizon life-cycle saving.

e Bellman equation:

V(k) = max {In(k; — kiy1) + BV (ki) }

ki4+1€[0,k¢]

e Solution must be interior.
e Two conditions:
1. FOC —m + ﬁV’(kJH.l) =0.
2. Envelope theorem: V'(k;) =

ki—kiy1”

30

Guess the value function

e Guess value function takes the form:
V(k) =a+ bln(k),

where a and b are constants to be determined.

e We try this form because utility function is of log form.

31

Guess the policy function

e Alternatively, we could also guess the form of the policy
function.

o Guess ky1 = Ok, where 6 is a constant to be determined.

32

11.C.2. Iterate functional operator analytically

How to do it

e Start with any initial guess, for example, V(k) = 0

e First iteration: Vj(ky) = maxy, ek {In(ke — kig1)}
— Solution is V; (k) = In(k:)

e Second iteration: Va(k;) = maxy,, {In(ki—kip1)+6In(ky1) }
— Solution is V5(k;) = some constant + (1 + 3) In(k;)

e Third iteration: V3(k;) = maxy,,, {ln(kt—kt+1)+ﬂ‘/2(kt)}

— Solution is V3(k;) = some constant +(1+/3+/32) In(k;)

33

Iterate functional operator analytically

e Continuing iteration, eventually, we will obtain

1
5 In(ky)

V' (k;) = some constant -+

e Since

V(k;) = max {ln(k:t — kyyq) + 5V(kt+1)}

kt+1€[0,kt]
we get ki1 = Pky.
e After obtaining policy function, we could get value func-

tion.
34

Iterate functional operator analytically

e In this example, we have shown that lim, ...V, — V
when Vj(k) = 0.

e In fact, we will always get convergence independent of
choice of V.

e Theory will be briefly discussed later.

35

Iterate functional operator analytically

e Above iteration method could be described in a more con-
venient way.
e For any function w : R, — R, we can define a new func-

tion Bw : Ry — R by

(Bw)(ky) = max {In(ky — k1) + Bw(ki) |-

kt+1€[0,kt]

36

Iterate functional operator analytically

e When we use this notation, previous method is equivalent
to choosing a function V; and studying sequence {V,,}
defined by V,,,1 = BV, forn=0,1,2,

e Goal is to show that this sequence of functions converge

to limit function V that satisfies

V(k) = max {In(k — keer) + BV (k1) |-

kt1+1€[0,k¢]

37

Iterate functional operator analytically

e Or equivalently, we could view B as a mapping from some
set of functions into itself.

e Then, what we are looking for is a fixed point of mapping
B, that is, a function V' that satisfies V = BV

e Operator B is called Bellman operator.

38

Iterate functional operator analytically

e In a general setting, Bellman operator:
(Bw)(z) = sup {F(xy,x441)+Pw(xsq)} for all z, € X
zep1€D ()
e What we do is to pick some w and iterate B™w until
convergence.
— (Uniform) convergence of a sequence of functions is

defined by convergence in sup-norm.

39

Why it works

Short answer is: B is a contraction mapping.

Definition 11.C.1 (Contraction mapping). Let (.S, p) be a
metric space and 7' : S — S be a function mapping S into
itself. T is a contraction mapping (with modulus () if for

some 3 € (0,1), p(Tx,Ty) < Bp(x,y), for all x,y € S.

In plain words, T" is a contraction mapping if operating T
on any two elements in S moves them strictly closer to each

other.
40

Why it works

For our result, we need following two results:

1.

Contraction Mapping Theorem (Theorem 11.C.2): a fixed

point theorem

. Blackwell’s sufficient conditions (Theorem 11.C.2): suffi-

cient conditions for an operator to be a contraction map-

ping

41

Why it works

Theorem (Contraction Mapping Theorem (Stokey, Lucas &
Prescott Theorem 3.2)). If (S, p) is a complete metric space
and T : S — S is a contraction mapping with modulus £,
then

a. T has exactly one fixed point v in S, and

b. for any vy € S, p(T™vg,v) < B"p(vo,v), n =0,1,2,....

42

Why it works

Theorem (Blackwell’s sufficient conditions for a contraction

(SLP Theorem 3.3)). Let X C R’, and let B(X) be a space

of bounded functions f : X — R, with the sup norm. Let

T : B(X) — B(X) be an operator satisfying

a. (monotonicity) f,g € B(X) and f(x) < g(z), for all z €
X, implies (T'f)(z) < (Tg)(x), for all z € X

b. (discounting) there exists some 5 € (0,1) such that
[T(f+a)](x) < (Tf)(x)+pBa, all f € B(X),a>0,z¢€ X.

Then T is a contraction with modulus /. 13

Why it works

Remark. Blackwell’s sufficient conditions are only sufficient
but not necessary: some contraction mappings do not satisfy

these sufficient conditions.

44

Why it works

Example. Check Blackwell sufficient conditions for life-cycle

saving problem:

(Bw)(kr) = max {In(ky — k1) + pw (ki) |

kt+1€[0,k¢]

45

Why it works

e By Blackwell’s sufficient conditions (Theorem 11.C.2), B
is a contraction mapping.

e By Contraction Mapping Theorem (Theorem 11.C.2), B
has a unique fixed point, which could be reached from

any initial point.

Remark. This result implies that the Bellman equation has

a unique solution.

46

11.D. Examples
11.D.1. Example 1: Optimal growth model

Finite-horizon, backward induction

Consider social planner’s problem:

T
max Y [3'In(c)
{Ct}tT:O t=0
{kt}z—‘zl

st. et + ki1 =k forallt=0,...,T

ko > 0 is given and the terminal capital k7,1 = 0.

47

Finite-horizon, backward induction

e We will apply dynamic programming to solve 1" = 2.
e Method of solving the problem extends to all finite 7.

e We solve the problem by Backward Induction.

48

Infinite-horizon

Consider infinite-horizon version:

max Y (3'In(c;)
{Ct}toio t=0
{kt}fi1

s.t. c + k't+1 = k'ta for all t = 0, 1, 2,

ko > 0 given.

49

Infinite-horizon

e Bellman equation is

V(k) = max {In(k{ — ki1)) + BV (ki) }-

ke41€[0,k2]
1. FOC:
1
V' (k
bk 0)
2. Envelope theorem
O./ka 1
V/ kf o t
") =

50

Infinite-horizon

We apply guess and verify method.

e Guess value function: V (k) = a + bIn(k)

e Guess policy function: k;y = 0f (k) = 0k

o1

Infinite-horizon

e We could obtain same result by iterating functional op-
erator analytically.

e For example, try initial guess Vj(k;) = 0.

52

Stochastic growth

e Dynamic programming is also applicable to stochastic
problems.

e Social planner’s problem is modified:

max_ Eo Y 'In(c) (11.1)
{Ct(zt)}fio t=0
{ke(ze) 324

s.t. Ct + kt—i—l = Ztk? for all t = 0,]_, 2,

ko > 0 given.

53

Stochastic growth

e {2} is a sequence of i.i.d. r.v. with Eq(In(z)) = p.

At the beginning of period t, exogenous shock z; is real-

ized.

Thus when making period ¢ decision, ocial planner knows

(k¢, z¢) and accordingly current output zk.

(ki,) is called state of the economy.

Note that now olution is expressed in terms of contingency

plans, that is, ¢; and k;,; are functions of z;.

o4

Stochastic growth

e Problem could still be equivalently expressed using recur-
sive formulation.

e Bellman equation is:

V(kt, Zt) = max {ln(ztkf—ktﬂ))+5]EtV(k:t+1, Zt+1)}.

kt+1 c [O,Ztk?]

95

Stochastic growth

1. FOC:
S 1 +ﬁEtav(kt+lazt+l)
2kt — ki 0/€t+1
2. Envelope theorem:
5V(kt, Zt> Ozztkf‘_l
ok, zkft — kt-l—l'

=0.

56

Stochastic growth

Similar to deterministic model,
e Guess value function: V (k) = a+ bIn(k) 4 cIn(z)

e Guess policy function: k; 1 = 0f (k) = 0z kY

o7

11.D.2. Example 2: Job market search

(Dixit Example 1 + unemployment compensation)

e There is a whole spectrum of jobs paying different wages.
e CDF is ®(w).

e Corresponding PDF is ¢(w) = ®'(w).

o8

Job market search

e A worker must engage in search to find out how much a
particular job pays.

e Each period, an unemployed worker draws w.

e He could either accept or reject.

e If reject, then worker stays unemployed and waits until
next period to draw another wage offer.

e Worker receives unemployment compensation ¢ for each
of unemployed period.

e Discount factor is [3.
59

11.D.3. Example 3: Saving under uncertainty

(Dixit Example 2)

e Consider a consumer with wealth W that earns a random
total return (principal plus interest) of r per period, and
no other income.

— Starting period ¢t with wealth W, if consumer con-
sumes C; and saves W; — (Y, his random wealth at
start of next period will be Wy 1 = ri (W, — CY).

e Note that r,, is not realized when making consumption

decision.
60

Saving under uncertainty

e Consumption of C; in any period gives him utility

l—¢

e Discount factor is f3.

61

