
Chapter 11. Dynamic Programming

Xiaoxiao Hu
May 17, 2022

11.A. Life-cycle saving problem revisited

• Consider life-cycle saving problem

• Assume

1. wage wt is 0, i.e., wt = 0 for all t;

2. interest rate is 0, i.e., rt = 0 for all t;

3. utility function takes the form u(c) = ln(c);

4. no discouting, i.e., β = 1;

5. terminal stock kT +1 = 0.

2

Life-cycle saving problem (finite-horizon)

• Time is discrete: t = 0, 1, 2, ..., T

• Decision is on how much of income to spend on consump-

tion in each period.

• Unspent income is saved and overspent income is on debt.

• ct ≥ 0: consumption in period t and

• kt+1: accumulated savings or debts at the beginning of

period t + 1.

3

Life-cycle saving problem (finite-horizon)

• Budget constraint in period t is

ct + kt+1 = kt

• k0 > 0 given.

• kT +1 = 0 imposed.

4

Life-cycle saving problem (finite-horizon)

• Individual only derives utility from consumption and

• chooses consumption path to maximize total value of util-

ities in period t = 0:

U(c0, c1, ..., cT) =
T!

t=0
ln(ct).

5

The maximization principle

• Maximization problem is:

max
c0,c1,...,cT
k1,k2,...,kT

T!

t=0
ln(ct)

s.t. ct + kt+1 = kt for all t = 0, ..., T

• We could solve it using method in Chapter 10.

6

The maximization principle

• Define Hamiltonian:

H(ct, kt, πt+1, t) = ln(ct) + πt+1(−ct)

• FOCs:

∂H

∂ct

= 1
ct

− πt+1 = 0 for all t = 0, ..., T

πt+1 − πt = −∂H∗

∂kt

= 0 for all t = 1, ..., T

kt+1 − kt = ∂H∗

∂πt+1
= −ct for all t = 0, ..., T

7

The maximization principle

1. Euler Equation:

ct+1 = ct for all t = 0, ..., T =⇒ ct = c0 for all t = 0, ..., T

2. From constraints, we have "T
t=0 ct = k0.

3. From 1 and 2, solution is c∗
t = k0

T +1 for all t = 0, ..., T and

k∗
t+1 = T −t

T +1k0 for all t = 0, ..., T − 1.

8

Define the problem recursively

• Now let us look at the problem from a different angle.

• Define maximum value at t = 0 as a function of initial

stocks:

V0(k0) = max
c0,c1,...,cT
k1,k2,...,kT

{u(c0) + u(c1) + ... + u(cT)}

subject to budget constraints for all t = 0, ..., T and

terminal condition kT +1 = 0.

9

Define the problem recursively

• By previously calculated optimal consumption path

c∗
t = k0

T + 1

for all t = 0, ..., T , we have

V0(k0) = (T + 1) ln
k0

T + 1
$
.

10

Define the problem recursively

• Given k1, we could similarly define maximum value at

t = 1 as a function of k1:

V1(k1) = max
c1,...,cT
k2,...,kT

{u(c1) + u(c2) + ... + u(cT)}

subject to budget constraints for all t = 1, ..., T and

terminal condition kT +1 = 0.

• We could use maximum principle to solve this problem.

• Maximum value is V1(k1) = T ln
#

k1
T

$
.

11

Define the problem recursively

• Next, consider a two-period problem:

W (k0) = max
c0,k1

{ln(c0) + V1(k1)} s.t. c0 + k1 = k0

• Solving the problem, we have

W (k0) = (T + 1) ln
k0

T + 1
$

= V0(k0)

• It suggests:

V0(k0) = max
c0,k1

{ln(c0) + V1(k1)} s.t. c0 + k1 = k0

12

Define the problem recursively

• Similarly, we could define

V2(k2) = max
c2,...,cT
k3,...,kT

{u(c2) + u(c3) + ... + u(cT)}

subject to budget constraints for all t = 2, ..., T and

terminal condition kT +1 = 0,

• and verify

V1(k1) = max
c1,k2

{ln(c1) + V2(k2)} s.t. c1 + k2 = k1

13

Define the problem recursively

• This argument works for all t = 0, ..., T − 1:

Vt(kt) = max
ct,kt+1

{ln(ct) + Vt+1(kt+1)}

s.t. ct + kt+1 = kt

• This equation, called Bellman Equation, expresses the

value function as a combination of a flow payoff and a

(discounted) continuation payoff.

• Such a method of optimization over time as a succession

of static programming problems is called Dynamic Pro-

gramming.
14

Life-cycle saving problem (infinite-horizon)

• Bellman Equation holds for infinite-horizon problems as

well.

• As an example, we consider an infinite-horizon version of

this simplified life-cycle saving problem.

15

Life-cycle saving problem (infinite-horizon)

• For the problem to be well-defined, we need discounting.

• Let discount factor be β ∈ (0, 1).

• So objective function becomes

U(c) =
∞!

t=0
βt ln(ct).

• Budget constraint in period t is still

ct + kt+1 = kt.

• k0 > 0 given.

16

The maximization principle

• Define Hamiltonian:

H(ct, kt, πt, t) = βt ln(ct) + πt+1(−ct)

• FOCs:
∂H

∂ct

= βt 1
ct

− πt+1 = 0 for all t = 0, ..., T

πt+1 − πt = −∂H∗

∂kt

= 0 for all t = 1, ..., T

kt+1 − kt = ∂H∗

∂πt+1
= −ct for all t = 0, ..., T

• Transversality condition: limT →∞ πT +1kt+1 = 0
17

The maximization principle

1. Euler Equation:

ct+1 = βct for all t = 0, ..., T

=⇒ ct = βtc0 for all t = 0, ..., T

2. From constraints: "∞
t=0 ct + limT →∞ kT +1 = k0.

3. πt+1 = βt/ct and transversality condition

• limT →∞
βT kT +1

cT
= 0

• By 1, cT = βT c0.

• So, we have limT →∞
kT +1

c0
= 0 =⇒ limT →∞ kT +1 = 0.

18

The maximization principle

4. From 1, 2 and 3,

∞!

t=0
βtc0 = k0 =⇒ c0 = (1 − β)k0

• ct = βt(1 − β)k0 and kt+1 = βt+1k0.

• In each period t, ct = (1 − β)kt and kt+1 = βkt.

• Above equations that express ct and kt+1 as functions

of kt are called policy functions.

19

Define the problem recursively

Similar to finite-horizon case, we show that Bellman Equa-

tion holds:

Vt(kt) = max
ct,kt+1

{ln(ct) + βVt+1(kt+1)}

s.t. ct + kt+1 = kt

20

Define the problem recursively

In period t, value function is

Vt(kt) = max
{ct+j}∞

j=0
{kt+j+1}∞

j=0

∞!

j=0
βj ln(ct+j)

subject to budget constraints

ct+j + kt+j+1 = kt+j for all j ≥ 0.

• We could drop time subscript t in Vt since functional

forms of value functions are same in each period.

21

Define the problem recursively

Solving it using maximum principle, we have

ct+j = βj(1 − β)kt,

which gives value function

V (kt) = ln(1 − β) + ln(kt)
1 − β

+ β ln(β)
(1 − β)2 .

22

Define the problem recursively

• Now define

W (kt) = max
ct,kt+1

{ln(ct) + βV (kt+1)}

s.t. ct + kt+1 = kt

• Solving the problem, we have

W (kt) = ln(1 − β) + ln(kt)
1 − β

+ β ln(β)
(1 − β)2 = V (kt).

• Thus, Bellman Equation holds.

23

11.B. Dynamic Programming

• We will briefly show that Bellman Equation holds in a

general setting.

– solution to initial problem solves Bellman equation.

– solution to Bellman Equation is also a solution to ini-

tial problem.

• Our discussions will be focused on infinite-horizon discrete-

time models.

• In fact, dynamic programming is especially useful for when

time is discrete (and there is uncertainty).
24

Dynamic Programming

We reformulate initial problem into a Sequence Problem.

Definition (Sequence Problem). Sequence problem is of the

form:

V (x0) = sup
{xt+1}∞

t=0

∞!

t=0
βtF (xt, xt+1) (SP)

s.t. xt+1 ∈ Γ(xt) for all t = 0, 1, 2, ...

x0 ∈ X given.

25

Dynamic Programming

Formulating Life-cycle saving problem (infinite-horizon) into

a sequence problem, we have:

V (k0) = sup
{kt+1}∞

t=0

∞!

t=0
βt ln(kt − kt+1)

s.t. kt+1 ∈ [0, kt] ≡ Γ(kt) for all t = 0, 1, 2, ...

k0 > 0 given.

26

Dynamic Programming

Definition 11.B.1 (Bellman Equation).

V (xt) = sup
xt+1∈Γ(xt)

{F (xt, xt+1) + βV (xt+1)} for all xt ∈ X

(BE)

• Bellman equation expresses value function as a combina-

tion of a flow payoff F (xt, xt+1) and a discounted contin-

uation payoff βV (xt+1).

• We call V (·) solution to Bellman equation.1

1We haven’t yet demonstrated that a solution V (·) exists. 27

Dynamic Programming

We briefly show that

• value function defined by sequence problem is also solu-

tion to Bellman equation and

• vice versa (with an additional condition

limn→∞ βnV (xn) = 0 for any feasible x sequences).

28

11.C. Solving Bellman equation

There are in general three methods to solve Bellman equa-

tion:

• Guess and verify

• Iterate functional operator analytically

• Iterate functional operator numerically (We will not cover

this method in this course.)

29

11.C.1. Guess and verify

• Let us reconsider infinite-horizon life-cycle saving.

• Bellman equation:

V (kt) = max
kt+1∈[0,kt]

{ln(kt − kt+1) + βV (kt+1)}.

• Solution must be interior.

• Two conditions:

1. FOC: − 1
kt−kt+1

+ βV ′(kt+1) = 0.

2. Envelope theorem: V ′(kt) = 1
kt−kt+1

.

30

Guess the value function

• Guess value function takes the form:

V (k) = a + b ln(k),

where a and b are constants to be determined.

• We try this form because utility function is of log form.

31

Guess the policy function

• Alternatively, we could also guess the form of the policy

function.

• Guess kt+1 = θkt, where θ is a constant to be determined.

32

11.C.2. Iterate functional operator analytically

How to do it

• Start with any initial guess, for example, V0(k) = 0

• First iteration: V1(kt) = maxkt+1∈[0,kt]{ln(kt − kt+1)}

– Solution is V1(kt) = ln(kt)

• Second iteration: V2(kt) = maxkt+1{ln(kt−kt+1)+β ln(kt+1)}

– Solution is V2(kt) = some constant + (1 + β) ln(kt)

• Third iteration: V3(kt) = maxkt+1

%
ln(kt−kt+1)+βV2(kt)

&

– Solution is V3(kt) = some constant +(1+β+β2) ln(kt)

33

Iterate functional operator analytically

• Continuing iteration, eventually, we will obtain

V (kt) = some constant + 1
1 − β

ln(kt)

• Since

V (kt) = max
kt+1∈[0,kt]

%
ln(kt − kt+1) + βV (kt+1)

&

we get kt+1 = βkt.

• After obtaining policy function, we could get value func-

tion.
34

Iterate functional operator analytically

• In this example, we have shown that limn→∞ Vn → V

when V0(k) = 0.

• In fact, we will always get convergence independent of

choice of V0.

• Theory will be briefly discussed later.

35

Iterate functional operator analytically

• Above iteration method could be described in a more con-

venient way.

• For any function w : R+ → R, we can define a new func-

tion Bw : R+ → R by

(Bw)(kt) = max
kt+1∈[0,kt]

%
ln(kt − kt+1) + βw(kt+1)

&
.

36

Iterate functional operator analytically

• When we use this notation, previous method is equivalent

to choosing a function V0 and studying sequence {Vn}

defined by Vn+1 = BVn for n = 0, 1, 2,

• Goal is to show that this sequence of functions converge

to limit function V that satisfies

V (kt) = max
kt+1∈[0,kt]

%
ln(kt − kt+1) + βV (kt+1)

&
.

37

Iterate functional operator analytically

• Or equivalently, we could view B as a mapping from some

set of functions into itself.

• Then, what we are looking for is a fixed point of mapping

B, that is, a function V that satisfies V = BV .

• Operator B is called Bellman operator.

38

Iterate functional operator analytically

• In a general setting, Bellman operator:

(Bw)(xt) = sup
xt+1∈Γ(xt)

{F (xt, xt+1)+βw(xt+1)} for all xt ∈ X

• What we do is to pick some w and iterate Bnw until

convergence.

– (Uniform) convergence of a sequence of functions is

defined by convergence in sup-norm.

39

Why it works

Short answer is: B is a contraction mapping.

Definition 11.C.1 (Contraction mapping). Let (S, ρ) be a

metric space and T : S → S be a function mapping S into

itself. T is a contraction mapping (with modulus β) if for

some β ∈ (0, 1), ρ(Tx, Ty) ≤ βρ(x, y), for all x, y ∈ S.

In plain words, T is a contraction mapping if operating T

on any two elements in S moves them strictly closer to each

other.
40

Why it works

For our result, we need following two results:

1. Contraction Mapping Theorem (Theorem 11.C.2): a fixed

point theorem

2. Blackwell’s sufficient conditions (Theorem 11.C.2): suffi-

cient conditions for an operator to be a contraction map-

ping

41

Why it works

Theorem (Contraction Mapping Theorem (Stokey, Lucas &

Prescott Theorem 3.2)). If (S, ρ) is a complete metric space

and T : S → S is a contraction mapping with modulus β,

then

a. T has exactly one fixed point v in S, and

b. for any v0 ∈ S, ρ(T nv0, v) ≤ βnρ(v0, v), n = 0, 1, 2,

42

Why it works

Theorem (Blackwell’s sufficient conditions for a contraction

(SLP Theorem 3.3)). Let X ⊆ Rl, and let B(X) be a space

of bounded functions f : X → R, with the sup norm. Let

T : B(X) → B(X) be an operator satisfying

a. (monotonicity) f, g ∈ B(X) and f(x) ≤ g(x), for all x ∈

X, implies (Tf)(x) ≤ (Tg)(x), for all x ∈ X;

b. (discounting) there exists some β ∈ (0, 1) such that

[T (f+a)](x) ≤ (Tf)(x)+βa, all f ∈ B(X), a ≥ 0, x ∈ X.

Then T is a contraction with modulus β.
43

Why it works

Remark. Blackwell’s sufficient conditions are only sufficient

but not necessary: some contraction mappings do not satisfy

these sufficient conditions.

44

Why it works

Example. Check Blackwell sufficient conditions for life-cycle

saving problem:

(Bw)(kt) = max
kt+1∈[0,kt]

%
ln(kt − kt+1) + βw(kt+1)

&

45

Why it works

• By Blackwell’s sufficient conditions (Theorem 11.C.2), B

is a contraction mapping.

• By Contraction Mapping Theorem (Theorem 11.C.2), B

has a unique fixed point, which could be reached from

any initial point.

Remark. This result implies that the Bellman equation has

a unique solution.

46

11.D. Examples

11.D.1. Example 1: Optimal growth model

Finite-horizon, backward induction

Consider social planner’s problem:

max
{ct}T

t=0
{kt}T

t=1

T!

t=0
βt ln(ct)

s.t. ct + kt+1 = kα
t for all t = 0, ..., T

k0 > 0 is given and the terminal capital kT +1 = 0.

47

Finite-horizon, backward induction

• We will apply dynamic programming to solve T = 2.

• Method of solving the problem extends to all finite T .

• We solve the problem by Backward Induction.

48

Infinite-horizon

Consider infinite-horizon version:

max
{ct}∞

t=0
{kt}∞

t=1

∞!

t=0
βt ln(ct)

s.t. ct + kt+1 = kα
t for all t = 0, 1, 2, ...

k0 > 0 given.

49

Infinite-horizon

• Bellman equation is

V (kt) = max
kt+1∈[0,kα

t]
{ln(kα

t − kt+1)) + βV (kt+1)}.

1. FOC:

− 1
kα

t − kt+1
+ βV ′(kt+1) = 0.

2. Envelope theorem:

V ′(kt) = αkα−1
t

kα
t − kt+1

.

50

Infinite-horizon

We apply guess and verify method.

• Guess value function: V (k) = a + b ln(k)

• Guess policy function: kt+1 = θf(kt) = θkα
t

51

Infinite-horizon

• We could obtain same result by iterating functional op-

erator analytically.

• For example, try initial guess V0(kt) = 0.

52

Stochastic growth

• Dynamic programming is also applicable to stochastic

problems.

• Social planner’s problem is modified:

max
{ct(zt)}∞

t=0
{kt(zt)}∞

t=1

E0

∞!

t=0
βt ln(ct) (11.1)

s.t. ct + kt+1 = ztk
α
t for all t = 0, 1, 2, ...

k0 > 0 given.

53

Stochastic growth

• {zt} is a sequence of i.i.d. r.v. with E0(ln(zt)) = µ.

• At the beginning of period t, exogenous shock zt is real-

ized.

• Thus when making period t decision, ocial planner knows

(kt, zt) and accordingly current output ztk
α
t .

• (kt, zt) is called state of the economy.

• Note that now olution is expressed in terms of contingency

plans, that is, ct and kt+1 are functions of zt.

54

Stochastic growth

• Problem could still be equivalently expressed using recur-

sive formulation.

• Bellman equation is:

V (kt, zt) = max
kt+1∈[0,ztkα

t]
{ln(ztk

α
t −kt+1))+βEtV (kt+1, zt+1)}.

55

Stochastic growth

1. FOC:

− 1
ztkα

t − kt+1
+ βEt

∂V (kt+1, zt+1)
∂kt+1

= 0.

2. Envelope theorem:

∂V (kt, zt)
∂kt

= αztk
α−1
t

ztkα
t − kt+1

.

56

Stochastic growth

Similar to deterministic model,

• Guess value function: V (k) = a + b ln(k) + c ln(z)

• Guess policy function: kt+1 = θf(kt) = θztk
α
t

57

11.D.2. Example 2: Job market search

(Dixit Example 1 + unemployment compensation)

• There is a whole spectrum of jobs paying different wages.

• CDF is Φ(w).

• Corresponding PDF is φ(w) = Φ′(w).

58

Job market search

• A worker must engage in search to find out how much a

particular job pays.

• Each period, an unemployed worker draws w.

• He could either accept or reject.

• If reject, then worker stays unemployed and waits until

next period to draw another wage offer.

• Worker receives unemployment compensation c for each

of unemployed period.

• Discount factor is β.
59

11.D.3. Example 3: Saving under uncertainty

(Dixit Example 2)

• Consider a consumer with wealth W that earns a random

total return (principal plus interest) of r per period, and

no other income.

– Starting period t with wealth Wt, if consumer con-

sumes Ct and saves Wt − Ct, his random wealth at

start of next period will be Wt+1 = rt+1(Wt − Ct).

• Note that rt+1 is not realized when making consumption

decision.
60

Saving under uncertainty

• Consumption of Ct in any period gives him utility

U(C) = C1−ε

(1 − ε) , with ε > 0.

• Discount factor is β.

61

