
Dynamic Optimization

Chapter 3. Extensions and Generalizations

In this Chapter, we will learn several extentions and generalizations to the two-variable,

one-constraint Lagrange’s Theorem we learned in Chapter 2, namely,

(i) Allowing for more variables and constraints;

(ii) Including non-negative variables;

(iii) Adding inequality constraints (Kuhn-Tucker Theorem).

3.A. More variables and constraints

Recall Lagrange’s Theorem we learned in Chapter 2:

Theorem 2.1 (Lagrange’s Theorem). Suppose x is a two-dimensional vector, c is a

scalar, and F and G functions taking scalar values. Suppose x∗ solves the following

maximization problem:
max

x
F (x)

s.t. G(x) = c,

and the constraint qualification holds, that is, if Gj(x∗) ∕= 0 for at least one j. Define

L(x, λ) = F (x) + λ [c − G(x)] . (2.10)

Then there is a value of λ such that

Lj(x∗, λ) = 0 for j = 1, 2 Lλ(x∗, λ) = 0. (2.11)

In Theorem 2.1, x =

!

""#
x1

x2

$

%%& , and we only have one constraint: G(x) = c. In this section,

we will extend the theorem to n choice variables x = (x1, x2, ..., xn)T , and m constraints:1

Gi(x) = ci, i = 1, 2, ..., m.

1Here, the superscript on G(x) denotes the constraint number. For instance, Gi(x) = ci denotes the
ith constraint. Please remember that we used the subscript on G(x) to denote partial derivatives. For
instance, Gj(x) = ∂G(x)/∂xj .
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Assumption. m < n.

This assumption is to ensure that the maximization problem is solvable and interesting.

If m = n, there are exactly the same number of equality constraints as there are vari-

ables. The variables could be solved solely using the constraints and the maximization

problem would become trivial. If m > n, the constraints themselves could be mutually

inconsistent, leading to non-existence of solutions.

To extend the Lagrange’s method, we define λi as the Lagrange multiplier for each con-

straint, and the we could write the Lagrangian:

L(x1, ..., xn, λ1, ..., λm) = F (x1, ..., xn) +
m'

i=1
λi

(
ci − Gi(x1, ..., xn)

)
. (3.1)

First-order necessary conditions are

Lj = ∂L/∂xj = Fj(x1, ..., xn) −
m'

i=1
λiG

i
j(x1, ..., xn) = 0 for j = 1, 2, ..., n; (3.2)

Lλi
= ∂L/∂λi = ci − Gi(x) = 0 for i = 1, 2, ..., m. (3.3)

We have (n+m) equations in (3.2) and (3.3) to solve for (n+m) variables x∗
1, x∗

2, ..., x∗
n, λ1, ..., λm.

Vector-Matrix Form. There is nothing conceptually new. It is only introduced to make

the equations look neat. First, you need to be familiarized with the following notations:2

G(x) =

!

""""""#

G1(x)
...

Gm(x)

$

%%%%%%&
; c =

!

""""""#

c1

...

cm

$

%%%%%%&
; λ =

*
λ1, ..., λm

+
;

Fx(x) =
*

F1(x), ..., Fn(x)
+

; Gi
x(x) =

*
Gi

1(x), ..., Gi
n(x)

+
;

Gx(x) =

!

""""""""""#

G1
x(x)

G2
x(x)
...

Gm
x (x)

$

%%%%%%%%%%&

=

,

----------.

G1
1(x) ... G1

n(x)

G2
1(x) ... G2

n(x)
... . . . ...

Gm
1 (x) ... Gm

n (x)

/

00000000001

.

2We adopt the convention that when the argument of a function is a column vector, the vector of
partial derivatives is a row vector, and vice versa. See Fx(x) and Gi

x(x).
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With the new notations, the Lagrangian (3.1) could be written as

L(x, λ) = F (x) + λ [c − G(x)] (3.4)

First-order necessary conditions (3.2) and (3.3) could be written as

Lx(x∗, λ) = Fx(x) − λGx(x) = 0, (3.5)

Lλ(x∗, λ) = c − G(x) = 0. (3.6)

Constraint Qualification. In Chapter 2, we have learned that for two-variable, one-

constraint case, to ensure the validity of the first-order necessary conditions, we need to

check Constraint Qualification. We also learned that the condition is (G1(x∗), G2(x∗))

being a non-zero vector. For n-variable, m-constraint cases, Constraint Qualification is

also required. The condition is that the matrix Gx(x∗) should not have any singularity.

That is, Gi
x(x∗)’s should be linearly independent, or Gx(x∗) should have rank m.3

Again, in practice, failure of Constraint Qualification is rarely a problem. However, you

should be alerted and check Constraint Qualification if you find standard methods prob-

lematic. Failure of Constraint Qualification could usually be circumvented by writing the

algebriac form of the constraints differently.4

Now, we are ready to summarize the generalized Lagrange’s Theorem for n varaibles and

m constraints.

Theorem 3.1 (Lagrange’s Theorem). Suppose x is a n-dimensional vector, c an m-

dimensional vector, F a function taking scalar values, G a function taking m-dimensional

vector values, with m < n. Suppose x∗ solves the following maximization problem:

max
x

F (x)

s.t. G(x) = c,

3Formal proofs are not required and will not be discussed in this course.
4See Chapter 2 Section 2.C.
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and the constraint qualification holds, i.e., rank Gx(x∗) = m. Define

L(x, λ) = F (x) + λ [c − G(x)] , (3.4)

where λ is an m-dimensional row vector. Then there is a value of λ such that

Lx(x∗, λ) = 0, (3.5)

Lλ(x∗, λ) = 0. (3.6)

3.B. Non-negative variables

Suppose that xj must be non-negative to make economic sense. If the optimum x∗

happens to be x∗
j > 0 for all j, then what we learned in Section 3.A continues to hold.

However, if it is not true, say if x∗
1 = 0, then only one side of the arbitrage argument

would apply. More specifically, we can only consider infinitesimal changes dx for which

dx1 > 0. Therefore, when x∗
1 = 0, Condition (3.2) is modified as5

L1(x∗, λ) = F1(x∗) −
m'

i=1
λiG

i
1(x∗) ≤ 0. (3.7)

Therefore,

i. when x∗
j > 0, (3.2) Lj(x∗, λ) = 0 holds;

ii. when x∗
j = 0, (3.7) Lj(x∗, λ) ≤ 0 holds.

In other words, for every j

Lj(x∗, λ) ≤ 0 and x∗
j ≥ 0 (3.8)

with at least one holding with equality.6 The requirement that at least one inequalities

hold with equality could be equivalently written as

x∗
jLj(x∗, λ) = 0,

and is called complementary slackness: one inequality complements the slackness in the

other.7
5This could be viewed as generalization of Equation (1.4) in Chapter 1.
6This qualification rules out the case when both expressions hold with inequality.
7An inequality is called binding if it holds with equality; and slack if it holds with strict inequality.
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We use vector-matrix form for simple exposition. Note that for a vector x:

(i) x ≥ 0 means that xj ≥ 0 for all j;

(ii) x > 0 means that xj ≥ 0 for all j and at least one of xj > 0;

(iii) x ≫ 0 means that xj > 0 for all j.

Using the new notation, (3.8) becomes

Lx(x∗, λ) ≤ 0 and x∗ ≥ 0, with complementary slackness8. (3.8)

The result is formally stated in Theorem 3.2 below:

Theorem 3.2 (Lagrange’s Theorem with Non-Negative Variables). Suppose x is a n-

dimensional vector, c an m-dimensional vector, F a function taking scalar values, G a

function taking m-dimensional vector values, with m < n. Suppose x∗ solves the following

maximization problem:

max
x

F (x)

s.t. G(x) = c and x ≥ 0,

and the constraint qualification holds, i.e., rank Gx(x∗) = m. Define

L(x, λ) = F (x) + λ [c − G(x)] , (3.4)

where λ is an m-dimensional row vector. Then there is a value of λ such that

Lx(x∗, λ) ≤ 0, x∗ ≥ 0, with complementary slackness, (3.8)

Lλ(x∗, λ) = 0. (3.6)

Applying Theorem 3.2, one systematic way to search for an optimum is that we assume

a particular pattern, say x∗
1 > 0, x∗

2 = 0, ..., x∗
n > 0. Then from (3.8), we get n equations:

L1(x∗, λ) = 0, x∗
2 = 0,..., Ln(x∗, λ) = 0. Together with m equations in (3.6), we could

8Compelementary slackness holds for each component pair.
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solve for the n+m unknowns x∗ and λ. If a solution exists, and further it satisfy the other

inequality conditions required from the pattern, then it is a candidate for the optimum.

There are in total 2n such patterns to consider. Therefore, to have a complete list of

candidates for the optimum, we need to repeat the above algorithm 2n times. The simplex

method for solving linear programming problems is one application of the algorithm.

However, in general, this algorithm is exhaustive and exhausting. In practice, we should

use our economic intuition to make good guesses about the pattern, proceed on that

basis, and use second-order sufficient conditions to verify our guesses.

3.C. Inequality constraints

In this section, we introduce the inequality constraints. This is of considerable economic

importance, since it is not always optimal to use up all the resources.

Suppose that the first constraint holds with inequality, that is,

G1(x) ≤ c1.

Therefore, the problem under concern is

max
x1,...,xn

F (x1, ..., xn)

s.t. G1(x1, ..., xn) ≤ c1,

G2(x1, ..., xn) = c2, ..., Gm(x1, ..., xn) = cm.

Invoking the “unspent income” argument we introduced in Chapter 1, we could define a

new variable xn+1 as follows:

xn+1 = c1 − G1(x). (3.9)

Now the constraint becomes

G1(x) + xn+1 = c1,

with the additional requirement xn+1 ≥ 0.
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Thus, the maximization problem becomes

max
x1,...,xn,xn+1

F (x1, ..., xn)

s.t. G1(x1, ..., xn) + xn+1 = c1 and xn+1 ≥ 0;

G2(x1, ..., xn) = c2, ..., Gm(x1, ..., xn) = cm.

We have learned how to handle such problems in Section 3.B.

Instead of transforming the problem and invoking Theorem 3.2 each time we saw such a

problem, we want to find conditions for the maximization problems with the inequality

constraints. Let 2L be the Lagrangian for the new problem with G1(x1, ..., xn)+xn+1 = c1

and xn+1 ≥ 0, to distinguish from L of the old one with G1(x1, ..., xn) ≤ c1. Then

2L(x1, ..., xn, xn+1, λ1, ..., λm)

=F (x1, ..., xn, λ1, ..., λm) + λ1[c1 − G1(x1, ..., xn) − xn+1] +
m'

i=2
λi[ci − Gi(x1, ..., xn)]

=F (x1, ..., xn, λ1, ..., λm) + λ1[c1 − G1(x1, ..., xn)] +
m'

i=2
λi[ci − Gi(x1, ..., xn)] − λ1xn+1

=L(x1, ..., xn, λ1, ..., λm) − λ1xn+1.

Applying Theorem 3.2, we have

2Lj = Lj = 0 for j ∕= n + 1, (3.10)

2Ln+1 = −λ1 ≤ 0, and xn+1 ≥ 0, with complementary slackness, (3.11)

2Lλ1 = Lλ1 − xn+1 = 0, (3.12)

2Lλi
= Lλi

= 0 for i ∕= 1. (3.13)

(3.10) and (3.13) are already expressed with respect to L, so we only need to deal with

(3.11) and (3.12).

By (3.12), xn+1 = Lλ1 . Plugging into (3.11), we get

λ1 ≥ 0 and Lλ1 ≥ 0, with complementary slackness. (3.14)
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Therefore, the solution could be expressed in terms of L:

Lj = 0, for j = 1, ..., n, (3.10)

Lλ1 ≥ 0 and λ1 ≥ 0, with complementary slackness, (3.14)

Lλi
= 0 for i = 2, 3, ..., m. (3.13)

We could extend the above reasoning to allow all constraints to be inequalities.

Please take special note that to apply new result directly, the inequality constraints need

to be of the form Gi(x) ≤ ci. Besides, the Lagrangian is of the form

L(x, λ) = F (x) +
m'

i=1
λi[ci − Gi(x)].

Now the sign and position of the terms in the Lagrangian become important since the

first-order condition involves the sign of λi, see (3.14).

If all constraints to be inequalities, then there is no reason in restricting m < n, since

any number of inequality constriants can still leave a non-trivial range of variation for x.

The Constraint qualification needs to be altered. We only require the matrix formed

by the binding constraints to have full rank.

The result is formally presented in Theorem 3.3 below:

Theorem 3.3 (Kuhn-Tucker Theorem). Suppose x is a n-dimensional vector, c an m-

dimensional vector, F a function taking scalar values, G a function taking m-dimensional

vector values, with m < n. Suppose x∗ solves the following maximization problem:

max
x

F (x)

s.t. G(x) ≤ c and x ≥ 0,

and the constraint qualification holds, namely, the submatrix of Gx(x∗) formed by taking

those rows i for which Gi(x∗) = ci has the maximum possible rank. Define

L(x, λ) = F (x) + λ [c − G(x)] , (3.4)
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where λ is an m-dimensional row vector. Then there is a value of λ such that

Lx(x∗, λ) ≤ 0, x∗ ≥ 0, with complementary slackness, (3.8)

Lλ(x∗, λ) ≥ 0, λ ≥ 0, with complementary slackness. (3.15)

Once again, an exhaustive procedure for finding a solution involves searching among all

2m+n patterns from the (m + n) complementary slackness conditions. And in practice,

we should use our economic intuition to narrow down the search.

In the next section, we will illustrate how to apply the theorem.

3.D. Examples

Example 3.1: Quasi-linear Preferences. Suppose there are two goods x and y, whose

quantities must be non-negative, and whose prices are p > 0 and q > 0 respectively.

Consider a consumer with income I and the utility function9

U(x, y) = y + a ln(x).

What is the consumer’s optimal bundle (x, y)?

Solution. First, state the problem:

max
x, y

U(x, y) ≡ max
x, y

y + a ln(x)

s.t. px + qy ≤ I and x ≥ 0, y ≥ 0.

This is a maximization problem with non-negative variables and inequality constriant.

To solve this problem, we invoke Kuhn-Tucker Theorem.

i Form Lagrangian:

L(x, y, λ) = y + a ln(x) + λ [I − px − qy] .

9Such preferences are called quasi-linear, because the utility function is linear in the quantity of one
good.
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ii First-order conditions:

∂L(x, y, λ)/∂x = a/x − λp ≤ 0 and x ≥ 0, with complementary slackness; (3.16)

∂L(x, y, λ)/∂y = 1 − λq ≤ 0 and y ≥ 0, with complementary slackness; (3.17)

∂L(x, y, λ)/∂λ = I − px − qy ≥ 0 and λ ≥ 0, with complementary slackness. (3.18)

Note that given the three complementary slackness conditions, there are 23 = 8 patterns

to consider.

First, note that the budget constraint cannot be slack. We have discussed the intuition

in Chapter 1: any income left could have been spent to increase the utility.

In terms of mathematics, suppose the budget constraint is slack, then (3.18) gives λ = 0.

Plugging into (3.17) gives 1 ≤ 0, which is impossible.

We have now established that (3.18) reduces to

I − px − qy = 0 and λ > 0. (3.18’)

This reduces patterns to 4. Among them, notice that x = 0 and y = 0 cannot hold

simultaneously, since (3.18’) would be violated if x = y = 0.

Case I: x = 0 and y = I/q > 0. Then by (3.17), 1 − λq = 0 =⇒ λ = 1/q. By (3.16),

we need a/x − λp ≤ 0. However, a/x − p/q ≤ 0 =⇒ p/q ≥ ∞, which is not possible.

Therefore, this case would not arise.10

Case II: y = 0 and x = I/p > 0. Then by (3.16), a/x − λp = 0 =⇒ λ = a/I. By

(3.17), we need 1 − λq ≤ 0, which is true when I ≤ aq. This is a condition on the given

parameters of the problem, and they may or may not satisfy it. If they do, the premises

of the case are mutually consistent and we have a candidate for optimility. That is, if

I ≤ aq, we have a candidate solution x∗ = I/p and y∗ = 0.

10The economic intuition is that the first small unit of x has infinite marginal utility, so it is never
optimal not to consume x.
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Case III: x > 0 and y > 0. Then by (3.16) and (3.17)
3
4445

4446

a/x − λp = 0

1 − λq = 0
=⇒

3
4445

4446

x∗ = (aq)/p

λ = 1/q

Plugging into (3.18’), we have y∗ = I/q − a. y∗ > 0 requires I > aq. Once again, the

condition may or may not be satisfied; if I > aq, we have a candidate solution x∗ = (aq)/p

and y∗ = I/q − a.

To conclude, the solution is
3
4445

4446

x∗ = I/p and y∗ = 0, if I ≤ aq;

x∗ = (aq)/p and y∗ = I/q − a, if I > aq.

Remark. Take a closer look at the solution. When income is at a low level, all income

is spent on x. However, after some point, the expenditure on x is kept constant, and all

additional income is spent on y.

Example 3.2: Technological Unemployment. Suppose an economy has 300 units of

labor and 450 units of land. These can be used in the production of wheat and beef.

Each unit of wheat requires 2 of labor and 1 of land; each unit of beef requires 1 of labor

and 2 of land.

A plan to produce x units of wheat and y units of beef is feasible if

2x + y ≤ 300, (3.19)

x + 2y ≤ 450. (3.20)

Suppose the society has an objective, or social welfare function as follows:

W (x, y) = α ln(x) + β ln(y). (3.21)

where α + β = 1.

What is the optimal amount of wheat and beef production?
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Solution. As mentioned before, it is useful to vitualize the problem. In Figure 3.1 below,

we graph the constriants.

Figure 3.1: Production and unemployment

It may be tempted to think that the optimal production occurs at the intersection of the

two curves. However, it may not be true.

We now apply the standard procedure to solve the problem. First, state the problem:

max
x, y

W (x, y) ≡ max
x, y

α ln(x) + β ln(y)

s.t. 2x + y ≤ 300, x + 2y ≤ 450, and x ≥ 0, y ≥ 0.

This is a maximization problem with non-negative variables and inequality constriant.

To solve this problem, we invoke Kuhn-Tucker Theorem.

i Form Lagrangian:

L(x, y, λ, µ) = α ln(x) + β ln(y) + λ [300 − 2x − y] + µ [450 − x − 2y] .
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ii First-order conditions:

∂L/∂x = α/x − 2λ − µ ≤ 0 and x ≥ 0, with complementary slackness; (3.22)

∂L/∂y = β/y − λ − 2µ ≤ 0 and y ≥ 0, with complementary slackness; (3.23)

∂L/∂λ = 300 − 2x − y ≥ 0 and λ ≥ 0, with complementary slackness; (3.24)

∂L/∂µ = 450 − x − 2y ≥ 0 and µ ≥ 0, with complementary slackness. (3.25)

First, we could exclude x∗ = 0 in this example. The reasoning is the same as in the

previous example. Suppose x∗ = 0, then (3.22) becomes ∞ ≤ 2λ + µ. Since λ and µ are

finite numbers, this cannot hold.

Similarly, we could exclude y∗ = 0. Therefore, (3.22) and (3.23) becomes

α/x − 2λ − µ = 0 and x > 0; (3.22’)

β/y − λ − 2µ = 0 and y > 0. (3.23’)

We are left with 4 patterns. Next, note that λ = 0 and µ = 0 cannot hold simultaneously.

If λ = µ = 0, (3.22’) and (3.23’) imply α = β = 0, which cannot be true since α + β = 1.

We are now left with 3 cases.

Case I: λ = 0 and µ > 0. (3.24) and (3.25) becomes

300 − 2x − y ≥ 0 and λ = 0; (3.24’)

450 − x − 2y = 0 and µ > 0. (3.25’)

Plugging λ = 0 into (3.22’) and (3.23’), we have

x = α/µ and y = β/(2µ).

Together with (3.25’), we could solve µ and then x∗ and y∗:

µ = 1/450, and x∗ = 450α, y∗ = 225β.

It remains to check whether (3.24’) holds. (3.24’) requires

300 − 900α − 225β ≥ 0 =⇒ 300 − 900(α + β) + 675β ≥ 0 =⇒ β ≥ 8/9.
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Case II: λ > 0 and µ = 0. This case could be solved following the same procedure as

Case I.11 The result is x = 150α, y = 300β, and β ≤ 2/3.

Case III: λ > 0 and µ > 0. (3.24) and (3.25) becomes

300 − 2x − y = 0 and λ > 0; (3.24”)

450 − x − 2y = 0 and µ > 0. (3.25”)

We could solve x∗ and y∗ from (3.24”) and (3.25”):

x∗ = 50 and y∗ = 200.

Then, we need to verify (3.22’) and (3.23’):
3
4445

4446

α/50 − 2λ − µ = 0

β/200 − λ − 2µ = 0
=⇒

3
4445

4446

λ = (8 − 9β)/600

µ = (3β − 2)/300.

λ > 0 and µ > 0 require

2/3 < β < 8/9.

To conclude, the solution is
3
444444445

444444446

x∗ = 150α and y∗ = 300β, if β ≤ 2/3;

x∗ = 50 and y∗ = 200, if 2/3 < β < 8/9;

x∗ = 450α and y∗ = 225β, if β ≥ 8/9.

Remark. Note that the solution is at the intersection of the two constraint lines only

when 2/3 < β < 8/9.

11You should work out the case on your own.
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