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3. Extensions and Generalizations

In this Chapter, we will learn several extentions and gen-

eralizations to the two-variable, one-constraint Lagrange’s

Theorem we learned in Chapter 2, namely,

(i) Allowing for more variables and constraints;

(ii) Including non-negative variables;

(iii) Adding inequality constraints (Kuhn-Tucker Theorem).
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3.A. More variables and constraints

Recall Lagrange’s Theorem we learned in Chapter 2:

Theorem 2.1 (Lagrange’s Theorem). Suppose x is a two-

dimensional vector, c is a scalar, and F and G functions

taking scalar values. Suppose x∗ solves the following maxi-

mization problem:
max

x
F (x)

s.t. G(x) = c,

and the constraint qualification holds, that is, if Gj(x∗) ∕= 0

for at least one j. 3



More variables and constraints

Theorem 2.1 (continued).

Define

L(x, λ) = F (x) + λ [c − G(x)] . (2.10)

Then there is a value of λ such that

Lj(x∗, λ) = 0 for j = 1, 2 Lλ(x∗, λ) = 0. (2.11)
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More variables and constraints

• In Theorem 2.1, x =

!

""#
x1

x2

$

%%& , and we only have one

constraint: G(x) = c.

• In this section, we will extend the theorem to n choice

variables x = (x1, x2, ..., xn)T , and m constraints1

Gi(x) = ci, i = 1, 2, ..., m.

1Here, the superscript on G(x) denotes the constraint number. For
instance, Gi(x) = ci denotes the ith constraint. Please remember that
we used the subscript on G(x) to denote partial derivatives. For in-
stance, Gj(x) = ∂G(x)/∂xj . 5



More variables and constraints

Assumption. m < n.

This assumption is to ensure that the maximization problem

is solvable and interesting.

• If m = n, the variables could be solved solely using

constraints, and the maximization problem would be-

come trivial.

• If m > n, the constraints themselves could be mutually

inconsistent, leading to non-existence of solutions.
6



More variables and constraints

To extend the Lagrange’s method, we define λi as the La-

grange multiplier for each constraint, and the we could write

the Lagrangian:

L(x1, ..., xn, λ1, ..., λm) =F (x1, ..., xn)

+
m'

i=1
λi

(
ci − Gi(x1, ..., xn)

)
. (3.1)
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More variables and constraints

First-order necessary conditions are

Lj = ∂L/∂xj = Fj(x1, ..., xn) −
m'

i=1
λiG

i
j(x1, ..., xn) = 0

for j = 1, 2, ..., n; (3.2)

Lλi
= ∂L/∂λi = ci − Gi(x) = 0 for i = 1, 2, ..., m. (3.3)

We have (n + m) equations in (3.2) and (3.3) to solve for

(n + m) variables x∗
1, x∗

2, ..., x∗
n, λ1, ..., λm.
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Vector-Matrix Form

• There is nothing conceptually new.

• It is only introduced to make the equations look neat.
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Vector-Matrix Form

G(x) =

!

""""""#

G1(x)
...

Gm(x)

$

%%%%%%&
; c =

!

""""""#

c1

...

cm

$

%%%%%%&
; λ =

*
λ1, ..., λm

+
.

With the new notations, (3.1)

L(x1, ..., xn, λ1, ..., λm) = F (x1, ..., xn) +
m'

i=1
λi

(
ci − Gi(x1, ..., xn)

)
.

could be written as

L(x, λ) = F (x) + λ [c − G(x)] (3.4)
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Vector-Matrix Form

Fx(x) =
*

F1(x), ..., Fn(x)
+

; Gi
x(x) =

*
Gi

1(x), ..., Gi
n(x)

+
;

Gx(x) =

!

""""""""""#

G1
x(x)

G2
x(x)
...

Gm
x (x)

$

%%%%%%%%%%&

=

,

----------.

G1
1(x) ... G1

n(x)

G2
1(x) ... G2

n(x)
... . . . ...

Gm
1 (x) ... Gm

n (x)

/

00000000001

.

We adopt the convention that when the argument of a function is
a column vector, the vector of partial derivatives is a row vector, and
vice versa. 11



Vector-Matrix Form

First-order necessary conditions

Lj = ∂L/∂xj = Fj(x1, ..., xn) −
m'

i=1
λiG

i
j(x1, ..., xn) = 0

for j = 1, 2, ..., n; (3.2)

Lλi
= ∂L/∂λi = ci − Gi(x) = 0 for i = 1, 2, ..., m. (3.3)

could be written as

Lx(x∗, λ) = Fx(x) − λGx(x) = 0, (3.5)

Lλ(x∗, λ) = c − G(x) = 0. (3.6)
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Constraint Qualification

• In Chapter 2, we have learned that for two-variable,

one-constraint case, to ensure the validity of the first-

order necessary conditions, we need to check Constraint

Qualification.

• We also learned that the condition is (G1(x∗), G2(x∗))

being a non-zero vector.
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Constraint Qualification

• For n-variable, m-constraint cases, Constraint Qualifi-

cation is also required.

• The condition is that the matrix Gx(x∗) should not

have any singularity.

• That is, Gi
x(x∗)’s should be linearly independent, or

Gx(x∗) should have rank m.2

2Formal proofs are not required and will not be discussed in this
course. 14



Constraint Qualification

• Again, in practice, failure of Constraint Qualification

is rarely a problem.

• However, you should be alerted and check Constraint

Qualification if standard methods are problematic.

• Failure of Constraint Qualification could usually be cir-

cumvented by writing the algebriac form of the con-

straints differently.3

3See Chapter 2 Section 2.C. 15



Lagrange’s Theorem for n varaibles and m constraints

Theorem 3.1 (Lagrange’s Theorem). Suppose x is a n-

dimensional vector, c an m-dimensional vector, F a func-

tion taking scalar values, G a function taking m-dimensional

vector values, with m < n. Suppose x∗ solves the following

maximization problem:
max

x
F (x)

s.t. G(x) = c,

and the constraint qualification holds, i.e., rank Gx(x∗) = m.
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Lagrange’s Theorem for n varaibles and m constraints

Theorem 3.1 (continued).

Define
L(x, λ) = F (x) + λ [c − G(x)] , (3.4)

where λ is an m-dimensional row vector. Then there is a

value of λ such that

Lx(x∗, λ) = 0, (3.5)

Lλ(x∗, λ) = 0. (3.6)

17



3.B. Non-negative variables

• Suppose that xj must be non-negative to make eco-

nomic sense.

• If the optimum x∗ happens to be x∗
j > 0 for all j, then

what we learned in Section 3.A continues to hold.

• However, if it is not true, say if x∗
1 = 0, then only one

side of the arbitrage argument would apply.

• More specifically, we can only consider infinitesimal

changes dx for which dx1 > 0. 18



Non-negative variables

Therefore, when x∗
1 = 0, Condition (3.2)

L1(x∗, λ) = F1(x∗) −
m'

i=1
λiG

i
1(x∗) = 0. (3.2)

is modified as

L1(x∗, λ) = F1(x∗) −
m'

i=1
λiG

i
1(x∗) ≤ 0. (3.7)
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Non-negative variables

Therefore,

i. when x∗
j > 0, (3.2) Lj(x∗, λ) = 0 holds;

ii. when x∗
j = 0, (3.7) Lj(x∗, λ) ≤ 0 holds.

In other words, for every j

Lj(x∗, λ) ≤ 0 and x∗
j ≥ 0 (3.8)

with at least one holding with equality.4

4This qualification rules out the case when both expressions hold
with inequality. 20



Non-negative variables

The requirement that at least one inequalities hold with

equality could be equivalently written as

x∗
jLj(x∗, λ) = 0,

and is called complementary slackness: one inequality com-

plements the slackness in the other.5

5An inequality is called binding if it holds with equality; and slack
if it holds with strict inequality. 21



Vector-matrix Form

• We use vector-matrix form for simple exposition.

• Note that for a vector x:

(i) x ≥ 0 means that xj ≥ 0 for all j;

(ii) x > 0 means that xj ≥ 0 for all j and at least one

of xj > 0;

(iii) x ≫ 0 means that xj > 0 for all j.
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Vector-matrix Form

Using the new notation, we could rewrite (3.8)

For every j, Lj(x∗, λ) ≤ 0 and x∗
j ≥ 0, with at least

one holding with equality.

as follows:

Lx(x∗, λ) ≤ 0 and x∗ ≥ 0, with complementary slackness6

(3.8)

6Compelementary slackness holds for each component pair. 23



Lagrange’s Theorem with Non-Negative Variables

Theorem 3.2. Suppose x is a n-dimensional vector, c an

m-dimensional vector, F a function taking scalar values, G

a function taking m-dimensional vector values, with m < n.

Suppose x∗ solves the following maximization problem:

max
x

F (x)

s.t. G(x) = c and x ≥ 0,

and the constraint qualification holds, i.e., rank Gx(x∗) = m.
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Lagrange’s Theorem with Non-Negative Variables

Theorem 3.2 (continued).

Define
L(x, λ) = F (x) + λ [c − G(x)] , (3.4)

where λ is an m-dimensional row vector. Then there is a

value of λ such that

Lx(x∗, λ) ≤ 0, x∗ ≥ 0, with complementary slackness, (3.8)

Lλ(x∗, λ) = 0. (3.6)
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Lagrange’s Theorem with Non-Negative Variables

• Applying Theorem 3.2, one systematic way to search

for an optimum is that we assume a particular pattern,

say x∗
1 > 0, x∗

2 = 0, ..., x∗
n > 0.

• Then from (3.8),

Lx(x∗, λ) ≤ 0, x∗ ≥ 0, with complementary slackness, (3.8)

we get n equations: L1(x∗, λ) = 0, x∗
2 = 0,..., Ln(x∗, λ) = 0.
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Lagrange’s Theorem with Non-Negative Variables

• Together with m equations in (3.6),

Lλ(x∗, λ) = 0, (3.6)

we could solve for the n + m unknowns x∗ and λ.

• If a solution exists, and further it satisfy the other in-

equality conditions required from the pattern, then it

is a candidate for the optimum.
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Lagrange’s Theorem with Non-Negative Variables

• There are in total 2n such patterns to consider.

• Therefore, to have a complete list of candidates for the

optimum, we need to repeat the above algorithm 2n

times.

• The simplex method for solving linear programming

problems is one application of the algorithm.
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Lagrange’s Theorem with Non-Negative Variables

• However, in general, this algorithm is exhaustive and

exhausting.

• In practice, we should use our economic intuition to

make good guesses about the pattern, proceed on that

basis, and use second-order sufficient conditions to ver-

ify our guesses.
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3.C. Inequality constraints

• In this section, we introduce the inequality constraints.

• This is of considerable economic importance, since it

is not always optimal to use up all the resources.
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Inequality constraints

Suppose that the first constraint holds with inequality:

G1(x) ≤ c1.

Therefore, the problem is

max
x1,...,xn

F (x1, ..., xn)

s.t. G1(x1, ..., xn) ≤ c1,

G2(x1, ..., xn) = c2, ..., Gm(x1, ..., xn) = cm.

31



Inequality constraints

• Invoking the “unspent income” argument we introduced

in Chapter 1, we could define a new variable xn+1 as

follows:

xn+1 = c1 − G1(x). (3.9)

• Now the constraint becomes

G1(x) + xn+1 = c1,

with the additional requirement xn+1 ≥ 0.
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Inequality constraints

Thus, the maximization problem becomes

max
x1,...,xn,xn+1

F (x1, ..., xn)

s.t. G1(x1, ..., xn) + xn+1 = c1 and xn+1 ≥ 0;

G2(x1, ..., xn) = c2, ..., Gm(x1, ..., xn) = cm.

We have learned how to handle such problems in Section 3.B.
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Inequality constraints

Instead of transforming the problem and invoking

Theorem 3.2 each time we saw such a problem,

we want to find conditions for the maximization problems

with the inequality constraints.
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Inequality constraints

Let 2L be the Lagrangian for the new problem with

G1(x1, ..., xn) + xn+1 = c1 and xn+1 ≥ 0, to distinguish from

L of the old one with G1(x1, ..., xn) ≤ c1. Then

2L(x1, ..., xn, xn+1, λ1, ..., λm)

= L(x1, ..., xn, λ1, ..., λm) − λ1xn+1.
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Inequality constraints

Applying Theorem 3.2, we have

2Lj = Lj = 0 for j ∕= n + 1, (3.10)

2Ln+1 = −λ1 ≤ 0, and xn+1 ≥ 0, with CS, (3.11)

2Lλ1 = Lλ1 − xn+1 = 0, (3.12)

2Lλi
= Lλi

= 0 for i ∕= 1. (3.13)

(3.10) and (3.13) are already expressed with respect to L, so

we only need to deal with (3.11) and (3.12).
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Inequality constraints

• By (3.12), xn+1 = Lλ1 .

• Plugging into (3.11), we get

λ1 ≥ 0 and Lλ1 ≥ 0, with CS (3.14)
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Inequality constraints

Therefore, the solution could be expressed in terms of L:

Lj = 0, for j = 1, ..., n, (3.10)

Lλ1 ≥ 0 and λ1 ≥ 0, with CS, (3.14)

Lλi
= 0 for i = 2, 3, ..., m. (3.13)
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Inequality constraints

• We could extend the above reasoning to allow all con-

straints to be inequalities.

• Inequality constriants:

G1(x) ≤ c1, G2(x) ≤ c2, ..., Gm(x) ≤ cm.

• Lagrangian

L(x, λ) = F (x) +
m'

i=1
λi[ci − Gi(x)].
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Inequality constraints

• If all constraints are inequality constraints, then there

is no reason in restricting m < n, since any number of

inequality constriants can still leave a non-trivial range

of variation for x.
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Constraint qualification

• The Constraint qualification needs to be altered.

• We only require the matrix formed by the binding con-

straints to have full rank.
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Kuhn-Tucker Theorem

Theorem 3.3. Suppose x is a n-dimensional vector, c an

m-dimensional vector, F a function taking scalar values, G

a function taking m-dimensional vector values, with m < n.

Suppose x∗ solves the following maximization problem:

max
x

F (x)

s.t. G(x) ≤ c and x ≥ 0,

and the constraint qualification holds.
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Kuhn-Tucker Theorem

Theorem 3.3 (continued).

Define

L(x, λ) = F (x) + λ [c − G(x)] , (3.4)

where λ is an m-dimensional row vector. Then there is a

value of λ such that

Lx(x∗, λ) ≤ 0, x∗ ≥ 0, with complementary slackness, (3.8)

Lλ(x∗, λ) ≥ 0, λ ≥ 0, with complementary slackness. (3.15)
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Kuhn-Tucker Theorem

• Once again, an exhaustive procedure for finding a so-

lution involves searching among all 2m+n patterns from

the (m + n) complementary slackness conditions.

• And in practice, we should use our economic intuition

to narrow down the search.
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3.D. Examples

In this section, we will apply the Kuhn-Tucker Theorem in

examples.
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Example 3.1: Quasi-linear Preferences.

Suppose there are two goods x and y, whose quantities must

be non-negative, and whose prices are p > 0 and q > 0

respectively. Consider a consumer with income I and the

utility function.

U(x, y) = y + a ln(x).

What is the consumer’s optimal bundle (x, y)?
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Solution.

See Lecture Notes.
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Example 3.2: Technological Unemployment

Suppose an economy has 300 units of labor and 450 units

of land. These can be used in the production of wheat and

beef. Each unit of wheat requires 2 of labor and 1 of land;

each unit of beef requires 1 of labor and 2 of land.

A plan to produce x units of wheat and y units of beef is

feasible if

2x + y ≤ 300, (3.16)

x + 2y ≤ 450. (3.17)
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Example 3.2: Technological Unemployment (continued)

Suppose the society has an objective, or social welfare func-

tion as follows:

W (x, y) = α ln(x) + β ln(y). (3.18)

where α + β = 1.

What is the optimal amount of wheat and beef production?
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Solution.

See Lecture Note.
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