
Dynamic Optimization

Chapter 1. Introduction

Economics is about making the best use of scarce resources. That is, we look for the opti-

mal decision subject to a set of constraints. This course aims to outline the mathematical

structures of the maximization problems and develop the economic intuition.

As an overview for the first half of the course, an example of the maximization problem

is provided in the following section.

1.A. The consumer choice model

Consider the consumer choice model illustrated in Figure 1.1 below:

Figure 1.1: Consumer’s Optimal Choice

Here, the budget line defines the consumer’s economic affordability constraint. Let p1

and p2 be the prices of good 1 and good 2, and let I be the conumer’s income. The

possible quantities of good 1 (denoted by x1) and good 2 (denoted by x2), are given by

the affordability constraint:

p1x1 + p2x2 ≤ I. (1.1)

Figure 1.2 below shows the budget constraint.
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Figure 1.2: Budget Constraint

The consumer’s objective function is related to her preference over x1 and x2. As is

standard in the microeconomic theory, the consumer’s preference can be represented by

a utility function U(x1, x2), which assigns each bundle (x1, x2) to a number, or a utility

level, U(x1, x2). The indifference curves in Figure 1.1 denote the bundles with the same

utility level. That is, for two points (x′
1, x′

2) and (x′′
1, x′′

2) on the same indifference curve,

U(x′
1, x′

2) = U(x′′
1, x′′

2) = constant.

Figure 1.3 below singles out the indifference curves.

Figure 1.3: Indifference Curves
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The indifference curves to the right give higher utility compared to the curves on the left.

That is, in Figure 1.3,

c3 > c2 > c1.

Therefore, the consumer’s objective is to reach the highest indifference curve, given the

budget contraint. Mathematically, the consumer’s maximization problem is

max
x1≥0, x2≥0

U(x1, x2)

s.t. p1x1 + p2x2 ≤ I.

In this particular example, the optimal bundle must lie on the budget line, since otherwise,

any income left could have been spent to increase the utility.1 More specifically, suppose

the inequality constriant holds strict at the optimum, that is, p1x
∗
1 + p2x

∗
2 < I. It can

be seen from the indifference curves that keeping x2 unchanged, an increase of x1 would

increase the consumer’s utility.2 Therefore, one way to further increase the utility is

to redistribute the unspent income and spend it on x1. After the change, x∗
2 is kept

unchanged, whereas x∗
1 increases by I−(p1x∗

1+p2x∗
2)

p1
.

Thus, based on the above observation, the constrained maximization problem could be

restated as follows:

max
x1≥0, x2≥0

U(x1, x2)

s.t. p1x1 + p2x2 = I.

Graphically, the optimal should be attained where the indifference curve is tangential to

the budget line.3

In the rest of the section, we will use verbal and geometric arguments to mathematically

analyze the problem and develop the optimality condition. Two approaches are outlined

here: the first one is the arbitrage argument and the second one is the tangency

1In Section 1.G, we will briefly discuss the case with inequality constraint.
2Using the terminology that would come up later, this sentence means that the marginal utility of

good 1 (MU1) is positive.
3See Figure 1.1.
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condition using calculus. The first approach is more intuitive whereas the second one

is more commonly used.

1.B. The arbitrage argument

We apply the arbitrage argument. The idea of the arbitrage argument is as follows:

(i) Start at any point, or trial allocation, on the budget line.

(ii) Consider a change of the bundle along the budget line. If the new bundle constitutes

a higher utility, use the new bundle as the new trial allocation, and repeat Step (i)

and (ii).

(iii) Stop once a better new bundle could not be found. The last bundle is the optimal

bundle.

The impossibility of finding an improvement is served as the test of optimality.

The above process is illustrated in Figure 1.4 below.

Figure 1.4: Arbitrage Argument

Now, we will investigate why this argument works, and mathematically develop the con-

dition for the optimum.
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The “arbitrage argument” and the “no-arbitrage condition”. The changes we con-

sider in the above algorithm does not entail additional expanditure, since all the points

we consider are on the budget line. The changes only entail reallocation of the money

from one good to the other. If the initial bundle is not optimal, a change may increase

consumer’s utility. For instance, in Figure 1.4, when we consider a change from the initial

bundle x0 to the new bundle x1, consumer’s utility level increases. However, when the

optimum is attained, no change will ever increase the utility. In Figure 1.4, this is when

we reach x∗.

The term “arbitrage” comes from the financial markets. When the financial market is

not in the equilibrium state, participants can make “arbitrage” profit at zero cost, taking

advantage of the price discrepancies in different markets. In equilibrium, there would be

no such arbitrage profit. Put it differently, it is the process of people taking arbitrage

profits that brings about the equilibrium. This process resembles our algorithm looking

for the optimal solution. Therefore, we label the reasoning the “arbitrage argument” and

the resulting optimality condition the “no-arbitrage condition”.

Next, we will use the “arbitrage argument” to develop the “no-arbitrage condition”. In

this course, we always assume that goods are perfectly divisible.4 Given the asssumption

of perfect divisibility, the changes can occur in infinitesimal amounts, or what is called

marginal adjustments. The standard symbol for a marginal change in x is dx.

Mathematically, the “arbitrage argument” is as follows: First, suppose that the initial

allocation is x0
1 > 0 and x0

2 > 0. Then, consider a marginal reallocation of dI > 0 from

good 2 to good 1. In physical terms, it means dx0
1 = dI/p1 more units of good 1 and

dx0
2 = dI/p2 less units of good 2. Let MU1 and MU2 denote the marginal utilities of

good 1 and good 2. The change of utility induced by the change in good 1 (good 2) is

MU1dx0
1 (MU2dx0

2).

4It is a good and useful approximation. Even for seemingly indivisible goods, such as cars, there are
dimiensions such as quality, that allow continuous adjustment.
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Then the total change in utility is5

MU1dx0
1 + MU2dx0

2 =MU1dI/p1 + MU2(−dI/p2)

= (MU1/p1 − MU2/p2) dI. (1.2)

If (1.2) is positive, that is,

MU1/p1 − MU2/p2 > 0,

the consumer will carry out this reallocation and try further reallocations in the same

direction.6 On the other hand, if the initial bundle is at the optimum, (1.2) cannot be

positive. This is a part of the “no-arbitrage” criterion,

MU1/p1 − MU2/p2 ≤ 0. (no-arb 1)

Next, consider a reallocation in the opposite direction, i.e., from good 1 to good 2.

Following similar argument, we would arrive at the second part of the “no-arbitrage”

criterion,

MU1/p1 − MU2/p2 ≥ 0. (no-arb 2)

We could combine the two “no-arbitrage” criteria, (no-arb 1) and (no-arb 2), to get the

following “no-arbitrage” condition:

MU1/p1 = MU2/p2. (no-arb)

The economic intuition behind the “no-arbitrage” condition is that at the optimum, the

consumer should be indifferent between a marginal reallocation of any one good to the

other.

5More rigorously, since the changes are infinitestimal, the total change is approximated by the first-
order linear terms in Taylor series. You will see similar arguments relating to Taylor series in the later
chapters.

6You can think of the process in Figure 1.4: Starting from an arbitrary x0, each time, we consider an
infinitestimal change of x along the budget line. Here, we first consider the reallocation from x0

2 to x0
1,

that is, we consider a marginal movement to the bottom-right direction along the curve. And we check
whether the change of utility is positive, i.e., MU1dx0

1 − MU2dx0
2 > 0.
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1.C. The tangency condition using calculus

It is also possible to develop the same condition of optimality based on the tangency of

the budget line and the indifference curve.

The budget line is

p1x1 + p2x2 = I =⇒ x2 = (I/p2) − (p1/p2)x1.

And the slope is −p1/p2.

The slope of the indifference curve is the marginal rate of substitution (MRS12 =

dx2/dx1) in consumption, and equals (−MU1/MU2). This result could be understood as

follows: Consider a marginal change of x along the indifference curve. Since the change

is along the indifference curve, the marginal loss (gain) of dx1 units of good 1 is just

compensated by the marginal gain (loss) of dx2 units of good 2, i.e.,

MU1dx1 = MU2(−dx2) =⇒ MRS = dx2/dx1 = −MU1/MU2.

At the optimum, the two slopes are equal, that is

p1/p2 = MU1/MU2.

It is easy to check that the condition above is equivalent to (no-arb) derived using the

“arbitrage” argument.

When we apply the “arbitrage” argument and the tangency conditions in the previous

two sections, we implicitly assume that there is an interior solution, that is, the optimum

is attained when x1 > 0 and x2 > 0. The following section discusses corner solutions,

that is, one of the good is not consumed at the optimum.

1.D. Corner solutions

Consider the optimum being attained at x∗
2 = 0 and x∗

1 = I/p1 > 0. We apply the

“arbitrage” argument. Now, the only possible direction of change is to decrease x1,
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corresponding to (no-arb 2). Therefore, the condition for such a corner solution is

MU1/p1 − MU2/p2 ≥ 0 =⇒ MU1/MU2 ≥ p1/p2. (1.3)

Graphically, Figure 1.6 shows the relative magnitude of MRS12 and p1/p2 for such a

corner solution, corresponding to Equation (1.3) above. Figure 1.5 shows the relative

magnitude of MRS12 and p1/p2 for such an interior solution and is put here for the

purpose of comparison.

Figure 1.5: Interior solution Figure 1.6: Corner solution

1.E. Marginal utility of income

In this section, we consider the marginal utility of income, that is, the marginal utility

given an extra amount of dI.

Now suppose that we have an interior solution. The consumer could spend the additional

income dI on good 1, buying (dI/p1) unit of good 1, giving rise to MU1dI/p1 units of

additional utility. Or, she could spend the addition income on good 2, which would bring

MU2dI/p2 units of additional utility. From the “no-arbitrage” condition (no-arb), we

know that the two increments are equal. Therefore, at the margin, the allocation of dI to

x1, or x2, or even any mixture of the two, does not make any difference to the consumer.

We call the utility increment per unit of maringal addition to income the marginal utility

of income, and denote it by λ. Then dI extra units of income raise utility by λdI units.
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Therefore, we have

λ = MU1/p1 = MU2/p2.

For the case of corner solution in Section 1.D, suppose x∗
2 = 0 and x∗

1 = I/p1 > 0. Since

MU1/p1 ≥ MU2/p2, the marginal income would be spent solely on good 1 if the inequality

is strict, and the consumer would be indifferent if the weak inequlity holds with equality.

Therefore,

λ = MU1/p1 ≥ MU2/p2.

1.F. Many goods and constraints

It is possible to generalize our previous consumer choice model of two goods to n goods.

Let the prices be (p1, p2, ..., pn) and quantities be (x1, x2, ..., xn).

Extending the “arbitrage” argument, we must have

(i) For x∗
i > 0, the equality MUi/pi = λ holds.

(ii) For x∗
i = 0, the weak inequality MUi/pi ≤ λ holds.

Or,

MUi − λpi

!
"""#

"""$

= 0 if x∗
i > 0;

≤ 0 if x∗
i = 0.

(1.4)

The above alternative representation could be extended to allow several constraints. We

need a separate λ for each constraint, and it can be interpreted as the marginal utility of

relaxing that constraint. Details will be discussed in Chapter 3.

1.G. Non-binding Constraints

In our previous consumer choice model, the consumer benefits by spending all her income,

and the budget constraint always hold with equality.

In some other applications, the constraint may not hold with equality. To illustrate the

idea of the inequality constraint, we consider an extension of the consumer choice model
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(even though it is not realistic here). Consider the imaginery case where the income is so

large and the consumer may fail to spend it all. The budget constraint restores to (1.1)

with inequality.

To solve the problem, we introduce a new good x3, “unspent income”, with p3 = 1 and

x3 yielding no utility. The maximization problem becomes

max
x1≥0, x2≥0, x3≥0

U(x1, x2)

s.t. p1x1 + p2x2 + x3 = I.

Note that we have MU3 = 0. That is, if x∗
3 > 0, we must have λ = MU3 = 0. The

intuition of λ = 0 is as follows: if x3 > 0, that is, the consumer does not spend all

her income, it must be that the marginal utility of income is 0. λ = 0 also implies

MU1 = MU2 = 0. That is, good 1 and good 2 are consumed to the point of satiation.

1.H. Conclusion

This chapter serves as an introduction to the theory of optimization subject to constraints.

We will discuss the general theory in great detail in the chapters that follow. You will

find that the conditions layed out in Section 1.F show up as Kuhn-Tucker Theorem,

and the extension to the satiated consumer in Section 1.G appears as the principal of

Complementary Slackness. The terminologies would become clear later.
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