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Introduction

• Economics: making the best use of scarce resources.

• That is, we look for the optimal decision subject to a

set of constraints.

• This course aims to outline the mathematical struc-

tures of the maximization problems and develop the

economic intuition.
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Introduction

As an overview for the first half of the course, an example

of the maximization problem is provided in the following

section.
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1.A. The consumer choice model

Consider the consumer choice model illustrated below:
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Budget Constraint/Budget Line

• Let p1 and p2 be the prices of good 1 and good 2,

x1 and x2 be the quantities of good 1 and good 2,

and I be the conumer’s income.

• The possible quantities are given by the affordability

constraint, called Budget Constraint:

p1x1 + p2x2 ≤ I. (1.1)
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Budget Constraint/Budget Line

Figure below shows the budget constraint.

Budget Line: p1x1 + p2x2 = I =⇒ x2 = −p1
p2

x1 + I
p2 6



Indifference Curves

• Consumer’s preference can be represented by a utility

function U(x1, x2).

• The indifference curves denote the bundles with the

same utility level.

• That is, for two points (x′
1, x′

2) and (x′′
1, x′′

2) on the same

indifference curve,

U(x′
1, x′

2) = U(x′′
1, x′′

2) = constant.
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Consumer’s Objective Function

Figure below singles out the indifference curves.
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Maximization Problem

• Consumer’s objective is to reach the highest indiffer-

ence curve, given the budget contraint.

• Mathematically, Consumer’s maximization problem is

max
x1≥0, x2≥0

U(x1, x2)

s.t. p1x1 + p2x2 ≤ I.
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Maximization Problem

• In this particular example, the optimal bundle must

lie on the budget line, since otherwise, any income left

could have been spent to increase the utility.

• More specifically, suppose p1x
∗
1 + p2x

∗
2 < I.

• One way to increase utility is to keep x∗
2 unchanged

and increase x∗
1.

• Therefore, p1x
∗
1 + p2x

∗
2 = I.
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Maximization Problem

Based on the above observation, the constrained maximiza-

tion problem could be restated as follows:

max
x1≥0, x2≥0

U(x1, x2)

s.t. p1x1 + p2x2 = I.
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Maximization Problem

Graphically, the optimal should be attained where the indif-

ference curve is tangential to the budget line.
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Maximization Problem

• In the rest of the section, we will use verbal and geo-

metric arguments to mathematically analyze the prob-

lem and develop the optimality condition.

• Two approaches are outlined here: the first one is the

arbitrage argument and the second one is the tan-

gency condition using calculus.

• The first approach is more intuitive whereas the second

one is more commonly used.
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1.B. The arbitrage argument

The idea of the arbitrage argument is as follows:

(i) Start at any point, or trial allocation, on budget line.

(ii) Consider a change of the bundle along the budget line.

If the new bundle constitutes a higher utility, use the

new bundle as the new trial allocation, and repeat Step

(i) and (ii).

(iii) Stop once a better new bundle could not be found. The

last bundle is the optimal bundle. 14



The arbitrage argument

The above process is illustrated in Figure below.
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The arbitrage argument

The impossibility of finding an improvement is served as the

test of optimality.
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The arbitrage argument

Now, we will investigate why this argument works, and math-

ematically develop the condition for the optimum.
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The arbitrage argument

• The changes we consider in the above algorithm does

not entail additional expenditure, since all the points

we consider are on the budget line.

• The changes only entail reallocation of the money from

one good to the other.

• If the initial bundle is not optimal, a change may in-

crease consumer’s utility.
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“arbitrage”

• The term “arbitrage” comes from the financial markets.

• When the financial market is not in the equilibrium

state, participants can make “arbitrage” profit at zero

cost, taking advantage of the price discrepancies in dif-

ferent markets.

• In equilibrium, there would be no such arbitrage profit.
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“arbitrage”

• Put it differently, it is the process of people taking

arbitrage profits that brings about the equilibrium.

• This process resembles our algorithm looking for the

optimal solution.

• Therefore, we label the reasoning the “arbitrage argu-

ment” and the resulting optimality condition the “no-

arbitrage condition”.
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The “arbitrage argument” and “no-arbitrage condition”.

• Next, we will use the “arbitrage argument” to develop

the “no-arbitrage condition”.

• In this course, we always assume that goods are per-

fectly divisible.

• Given the asssumption of perfect divisibility, the changes

can occur in infinitesimal amounts, or what is called

marginal adjustments. The standard symbol for a marginal

change in x is dx.
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The “arbitrage argument” and “no-arbitrage condition”.

Mathematically, the “arbitrage argument” is as follows:

• First, suppose that the initial allocation is x0
1 > 0 and

x0
2 > 0.

• Then, consider a marginal reallocation of dI > 0 from

good 2 to good 1.

• In physical terms, it means dx0
1 = dI/p1 more units of

good 1 and dx0
2 = dI/p2 less units of good 2.
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The “arbitrage argument” and “no-arbitrage condition”.

• Let MU1 and MU2 denote the marginal utilities of

good 1 and good 2.

• The change of utility induced by the change in good 1

(good 2) is MU1dx0
1 (MU2dx0

2).1

• Then the total change in utility is

MU1dx0
1 + MU2dx0

2 =MU1dI/p1 + MU2(−dI/p2)

= (MU1/p1 − MU2/p2) dI. (1.2)
1first-order approximation 23



The “arbitrage argument” and “no-arbitrage condition”.

• If (1.2) is positive, that is, MU1/p1 − MU2/p2 > 0,

the consumer will carry out this reallocation.

• On the other hand, if initial bundle is optimal, (1.2)

cannot be positive.

• This is a part of the “no-arbitrage” criterion,

MU1/p1 − MU2/p2 ≤ 0. (no-arb 1)
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The “arbitrage argument” and “no-arbitrage condition”.

• Next, consider a reallocation in the opposite direction,

i.e., from good 1 to good 2.

• Following similar argument, we would arrive at the sec-

ond part of the “no-arbitrage” criterion,

MU1/p1 − MU2/p2 ≥ 0. (no-arb 2)
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The “arbitrage argument” and “no-arbitrage condition”.

We could combine the two “no-arbitrage” criteria, (no-arb 1)

and (no-arb 2), to get the following “no-arbitrage” condition:

MU1/p1 = MU2/p2. (no-arb)
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The “arbitrage argument” and “no-arbitrage condition”.

The economic intuition behind the “no-arbitrage” condition

is that at the optimum, the consumer should be indifferent

between a marginal reallocation of any one good to the other.
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1.C. The tangency condition using calculus
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The tangency condition using calculus

The budget line is

p1x1 + p2x2 = I =⇒ x2 = −(p1/p2)x1 + (I/p2).

And the slope is −p1/p2.
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The tangency condition using calculus

The slope of the indifference curve is the marginal rate of sub-

stitution (MRS12 = dx2/dx1), and equals (−MU1/MU2).

• Consider a marginal change of x along indifference curve.

• Since change is along indifference curve, the marginal

loss (gain) of dx1 units of good 1 is just compensated

by the marginal gain (loss) of dx2 units of good 2, i.e.,

MU1dx1 = MU2(−dx2) =⇒ MRS = dx2

dx1
= −MU1

MU2
.
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The tangency condition using calculus

At the optimum, the two slopes are equal, that is

p1/p2 = MU1/MU2.

It is easy to check that the condition above is equivalent to

(no-arb) derived using the “arbitrage” argument.
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1.D. Corner Solutions

• When we apply the “arbitrage” argument and the tan-

gency conditions in the previous two sections, we im-

plicitly assume that there is an interior solution, that

is, the optimum is attained when x1 > 0 and x2 > 0.

• The following section discusses corner solutions, that

is, one of the good is not consumed at the optimum.
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Corner Solutions

• Consider optimum attained at x∗
2 = 0 & x∗

1 = I/p1 > 0.

• We apply the “arbitrage” argument.

• Now, the only possible direction of change is to de-

crease x1, corresponding to (no-arb 2).

• Therefore, the condition for such a corner solution is

MU1/MU2 ≥ p1/p2. (1.3)
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Interior Solution
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Corner Solution
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1.E. Marginal utility of income

In this section, we consider the marginal utility of income,

that is, the marginal utility given an extra amount of dI.
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Marginal utility of income

• Now suppose that we have an interior solution.

• The consumer could spend the additional income dI

on good 1, buying (dI/p1) unit of good 1, giving rise

to MU1dI/p1 units of additional utility.

• Or, she could spend the addition income on good 2,

which would bring MU2dI/p2 units of additional util-

ity.
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Marginal utility of income

• From the “no-arbitrage” condition (no-arb), we know

that the two increments are equal.

• Therefore, at the margin, the allocation of dI to x1, or

x2, or even any mixture of the two, does not make any

difference to the consumer.
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Marginal utility of income

• We call the utility increment per unit of maringal ad-

dition to income the marginal utility of income, and

denote it by λ.

• Then dI extra units of income raise utility by λdI

units.

• Therefore, we have

λ = MU1/p1 = MU2/p2.
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Marginal utility of income

• Now suppose that we have a corner solution.

• Suppose x∗
2 = 0 and x∗

1 = I/p1 > 0.

• Since MU1/p1 ≥ MU2/p2, the marginal income would

be spent solely on good 1 if the inequality is strict, and

the consumer would be indifferent if the weak inequlity

holds with equality.

• Therefore, λ = MU1/p1 ≥ MU2/p2.
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1.F. Many goods and constraints

It is possible to generalize our previous consumer choice

model of two goods to n goods. Let the prices be (p1, p2, ..., pn)

and quantities be (x1, x2, ..., xn).
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Many goods

Recall no “arbitrage” argument:

• For interior solutions:

MU1/p1 = MU2/p2 = λ. (no-arb)

• For corner solutions: if x∗
2 = 0, then

λ = MU1/p1 ≥ MU2/p2.
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Many goods

Extending the “arbitrage” argument, we must have

(i) For x∗
i > 0, the equality MUi/pi = λ holds.

(ii) For x∗
i = 0, the weak inequality MUi/pi ≤ λ holds.

Or,

MUi − λpi

!
"""#

"""$

= 0 if x∗
i > 0;

≤ 0 if x∗
i = 0.

(1.4)
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Many constraints

• The condition

MUi − λpi

!
"""#

"""$

= 0 if x∗
i > 0;

≤ 0 if x∗
i = 0.

(1.4)

could be extended to allow several constraints.

• We need a separate λ for each constraint, and it can

be interpreted as the marginal utility of relaxing that

constraint.
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1.G. Non-binding Constraints

• In our previous consumer choice model, the consumer

benefits by spending all her income, and the budget

constraint always hold with equality.

• In some other applications, the constraint may not hold

with equality.
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Non-binding Constraints

• To illustrate the idea of the inequality constraint, we

consider an extension of the consumer choice model

(even though it is not realistic here).

• Consider the imaginery case where the income is so

large and the consumer may fail to spend it all.

• The budget constraint restores to

p1x1 + p2x2 ≤ I.
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Non-binding Constraints

• To solve the problem, we introduce a new good x3, “un-

spent income”, with p3 = 1 and x3 yielding no utility.

• The maximization problem becomes

max
x1≥0, x2≥0, x3≥0

U(x1, x2)

s.t. p1x1 + p2x2 + x3 = I.
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Non-binding Constraints

• Note that we have MU3 = 0.

• That is, if x∗
3 > 0, we must have λ = MU3 = 0.

• The intuition of λ = 0 is as follows: if x3 > 0, that is,

the consumer does not spend all her income, it must

be that the marginal utility of income is 0.

• λ = 0 also implies MU1 = MU2 = 0. That is, good 1

and good 2 are consumed to the point of satiation.
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1.H. Conclusion

• This chapter serves as an introduction to the theory of

optimization subject to constraints.

• We will discuss the general theory in great detail in the

chapters that follow.

• You will find that the conditions layed out in Section

1.F show up as Kuhn-Tucker Theorem, and the exten-

sion to the satiated consumer in Section 1.G appears

as the principal of Complementary Slackness.
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