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Introduction

e In Chapter 4, we learned that

dv = Ade.

e Apart from the parameter ¢, there are other parameters
in the objective funtion F(z) as well as the constraint

functions G(x).

e In this chapter, we will learn how these parameters would

affect the maximum attainable value in general.



5.A. Parameters in the Objective Function

e We will begin with equality constraints.

e And consider first the case where the parameters affect

the maximand alone.

e We have already seen such an example in Exercise 2.3

Production and Cost Minimization.



Parameters in the Objective Function

Exercise 2.3: Consider a producer who rents machines
K at r per year and hires labor L at wage w per year
to produce output @, where Q = VK + VL.

Suppose he wishes to produce a fixed quantity @) at
minimum cost.

Find his factor demand function, that is, the optimal

amount of K and L.




Parameters in the Objective Function

The maximization problem for this example is:

max —Kr — Lw (MP1)

)

st. VK +VL=Q.

The parameters » and w only appear in the objective func-

tion, i.e., the maximand.



Parameters in the Objective Function
e General representation for such maximization problem is

v :mng(x,O)

s.t. G(x) = ¢,
where 6 is a vector of parameters.
e The Lagrangian is

L(z,\,0)=F(z,0) + X[c— G(x)].



Parameters in the Objective Function

e The first-order necessary conditions are
L.(z*,\,0) = F.(2",0) — A\G.(z") = 0,
and Ly (2", \,0) = c— G(z") = 0.
e Now suppose that 6 changes to 6 + dé.

e Correspondingly, the optimum z* changes to x* + da*,

and the maximum value v changes to v + dv.



Parameters in the Objective Function

dv = F(z"+dz*, 0 +df) — F(x*,0)
~~

by definition
\’:JFx(m*, 0)dx™ + Fy(x™, 9)d9\:/)\Gx(:U*)dx* + Fy(x*,0)do
Taylor approximation First-order condition
\:/)\[G(x + dx ) —G(l’ )] +F9(:v ,Q)dQ\Z/Fg(l’ ,9)d«9.
Taylor approximation G(z*+dz*)=G(z*)=c

Therefore, we get

dv = Fy(z*,0)d6. (5.1)



Parameters in the Objective Function

e To find the first-order change in maximum value of objec-
tive function in response to changes in parameters that
do not affect the constraints, we need not worry about

the simultaneous change in the optimum choice z* itself.

e All we have to do is to

1. calculate partial effect of parameter change, and

2. evaluate expression at initial optimum choice.



Parameters in the Objective Function

e We could check dv = Fy(z*,0)df in cost minimization
example.
e Solving the problem
max —Kr — Lw (MP1)

st. VK +VL=Q,

we obtain K* = (ﬂ)Q and L* = (ﬁ)z

4w 4w

e In the problem, F(K,L,w,r) = —Kr—Lwand G(K, L) =

VK + VL.
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Parameters in the Objective Function

e Plugging the optimal K* and L* into the objective func-

tion, we obtain

2
v(w,r,Q) = F(K*, L*,w,r) = _:'U:—Qw'

e Here, we only check dv(w,r,Q)/dw and F,,(K*, L*, w,r):

do(w, r, Q) /dw = — ( rQ )2 — Fy(K*, L, w, 1),

r+uw
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5.B. The Envelope Theorem

The algebra of the previous section is illustrated geometri-

cally:

F(x*',0)

<~

v
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The Envelope Theorem
e For particular value of 6, say #’, the optimal choice is x

e That is , *’ solves the below maximization problem:

max F'(z,0)

s.t. G(z) =c.

x/

13



The Envelope Theorem

e The curve F(z*,0) represents the value of the objective

function with respect to 6, where x is held fixed at z*'.

e The curve V(0) represents the optimum value function
with respect to 6, where z is allowed to vary optimally as

0 varies.
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The Envelope Theorem
Formally, the function V() is defined by
V(0) = mgmx{F(ac, 0)|G(x) = ¢}, (5.2)

which is read as “V(#) is the maximum over x of F(z,0)

subject to G(x) = ¢
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The Envelope Theorem

e Next, write the optimum choice z* as a function of :

e Pratically, this could be done by solving the maximization

problem for fixed 6.
e For instance, we have z*' = X (¢').

e Then, we could rewrite V' (6) as follows:
V(0) = F(z*,0) = F(X(0),0).

16



The Envelope Theorem

e Two functions V(6) and F(z*,6) coincide at #’, because

x* happens to be the optimal choice there.
e Algebraically, F(z*,0") = F(X(0'),0") =V (#).

e For the other values of #, unless z*' remains the optimal
choice, the curve V(6), which is the optimum value, is

higher than that of F(z*,0):

F(*,0) = F(X(0),8) < F(X(6),0) = V(0) for 6 6.
X (0) is the op‘;n’:l choice given 6
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The Envelope Theorem

e Therefore, the two curves should be mutually tangential

at 0.

e This is what

dv = Fyp(z*,0)dé. (5.1)

(5.1) expresses.
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The Envelope Theorem

x/!

e Similarly, we could draw the graph of F(z*”,0), where

x*" is the optimal choice at 6”.

e The curve F(x*”,60) would touch the curve of the optimal

value function V' (6) at 0”.

e We could draw a whole family of curves of F(z,6) for a
whole range of fixed values z, each x being the optimal

for some 6.
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The Envelope Theorem

e No member of this family of curves could ever cross above
the graph of V/(#), and each would be tangential to the
optimal value function at that value of § where its x hap-

pens to be the optimal choice.

e In other words, the optimal value function is the upper
envelope of the family of the value functions, in each of

which the choice variables are held fixed.

e (5.1) is often referred to as the Envelope Theorem.
20



The Envelope Theorem: Cost Minimization
We apply Envelope Theorem to cost minimization problem:

mgx(—@x)

s.t. G(x) =c¢

where 6 is a vector of input prices.
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The Envelope Theorem: Cost Minimization
Figure below shows the the minimum cost curve and the cost
lines for fixed x when the first input price 6, varies.

Cost lines for fixed x

N

v\

Minimum cost

v

6,
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The Envelope Theorem: Cost Minimization

e The cost lines are linear since when z is held fixed, the

cost Oz is a linear function of 6.

e The minimized cost as a function of 6 is the lower enve-
lope (not the upper envelope, since this is a minimization

problem) of all these straight lines.

23



The Envelope Theorem: Cost Minimization (Intuition)

Cost lines for fixed x*': 017" + X121 0;x;"

v\

Minimum cost

v

6,
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The Envelope Theorem: Cost Minimization (Intuition)

e If 0] increases by A, assuming that 2*' is held fixed, the
cost increases with 6; by the amount A6, - 3" (cost lines
for fixed x are linear). However, the producer can lower

the cost by adjusting = optimally.

e If 0] decreases by Af;, assuming that z*' is held fixed, the
cost decreases with 6; by the amount A6 - z3’. However,
the producer can lower the cost by adjusting x optimally
(minimum cost curve is the lower envelope of the cost

lines). 25



The Envelope Theorem: Cost Minimization

e The figures also suggest a curvature property.

e The first figure shows each F(z*,0) as a concave curve

and V' (0) as a convex curve.

e The second figure shows a linear cost function for any

fixed input choice but the lower envelope is concave.

e In general, the upper envelope must be more convex than

any member of the family of which it is the envelope.

e This property will be studied in detail in Chapter 8. 9



5.C. Parameters Affecting All Functions

e Now suppose G as well as F' involves 6.

e General representation for such maximization problem is

v =max F(z,0)

s.t. G(z,0) =c,

where 6 is a vector of parameters.

27



Parameters Affecting All Functions

e The Lagrangian is

L(z,\,0)=F(x,0)+ Xc—G(z,0)].

e The first-order necessary conditions are

Lo(2,\,0) = Fy(z*,0) — \Go (2", 0) = 0,

and Ly (2", \,0) =c— G(z",0) = 0.

28



Parameters Affecting All Functions

The calculation for a change in 6 to 6 4+ df proceeds as in
Section 5.A, except that the partial derivative of G with
respect to x is no longer zero:

G(a* +da*,0+ ) — G(a",0) = Gu(a*,0)dz" + Gy(a*,0)d0

Taylor approximation

G(z* +dz*, 0+ db) = G(z*,0) =
= G (2", 0)da™ + Gy(z",60)d0 =0

— Gz, 0)dz* = —Gy(a*, 0)do. (5.3)



Parameters Affecting All Functions

Using this, and the previous analysis, we have

dv = (v+dv) —v = F(a* +dz*, 0+ df) — F(z*,0)
—~ —~

by definition by definition

\:/Fm(x*, O)dx* + Fy(x*,0)do

Taylor approximation

S AGe(a,0)da” + Fy(a,0)do

First-order condition

= —AGo(a*,0)d0 + Fy(x”,6)d0 = Lo(x*, A, 6)d6.

Equation (5.3)

30



Parameters Affecting All Functions

Therefore, we get

dv = Ly(z*, A, 0)d6.

(5.4)
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Parameters Affecting All Functions
The difference between (5.4) and (5.1):

dv = Ly(z*, X, 0)d0 = Fy(z*,0)d0 — NGy(z*, 0)d0;

dv = Fy(z*,0)d6.

32



Parameters Affecting All Functions

Intuitive explanation of the difference between (5.4) and (5.1):

e When 6 affects the constraints, a change df has the direct

effect of increasing the value of G' by Gy(x*,0)dé.
e This acts exactly like an equal reduction in c.

e The interpretation of the Lagrange multiplier tells us that

the equivalent reduction in ¢ reduces v by A\Gy(x*, 0)d6.

e This is just the additional term in (5.4) when compared

to (5.1).
(5.1) 23



Parameters Affecting All Functions

e In Chapter 4, we have learned a similar comparative static

analysis with respect to changes in the parameters c.

e The more general formulation in this chapter can subsume

the earlier case.
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Parameters Affecting All Functions

e To see this explicitly, define a larger vector of parameters
GA, which includes 6 and ¢ as subvectors, and write the

constraint as G(z,0) = G(z,0) — ¢ = 0.

e The maximization problem is now
v =max F(x,0)
X
s.t. G(z,0) =0,
where 0 is a vector of parameters.

35



Parameters Affecting All Functions

e The Lagrangian is

~ -~

L(z,\,0) = F(z,0) — \G(z, ).

e (5.4) becomes

dv = Ly(z*, X, 0)d0 = F;(z*,0)d0 — \G5(x,0)d

0

= Fy(z",0)d0 — N [Go(z,0)d0 — I,,,dc]
= Fyp(z*,0)d0 — \Gg(z, 0)d0 + \dc

= Ly(z*, X, 0)d0 + Ade.
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Parameters Affecting All Functions

The result

dv = Ly(x*, \,0)d0 + A dc

includes the previous cases
dv = Ly(2*, A, 0)d0, (5.4)

and dv = Adec. (4.3)
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5.D. Some Choice Variables Fixed

e In this section, we examine the effect of a change in pa-
rameters to the optimum value function when some com-

ponents of x are kept fixed.

e Our main focus is to compare such effect with the case

where all components of x could be freely adjusted.

e An economic application is the comparison between the

short-run and the long-run outcomes.

38



Some Choice Variables Fixed

e To tackle this problem, we partition the vector z into two

subvectors y and z.

e In the long-run, both y and z are choice variables and
could be adjusted freely, while in the short-run, z is held

fixed and only y is allowed to vary.

39



Some Choice Variables Fixed

e Subsuming c into @, the long-run problem is

max F(y, z,0) (MP_LR)

Y,2

s.t. G(y, z,0) = 0.

e The short-run problem is'
max F(y,z,0) (MP_SR)

s.t. G(y,z,0) = 0.

!For the short-run problem to be meaningful, the number of con-
straints must be less than the dimension of y. 40



Some Choice Variables Fixed

e Write the long-run optimal choices and the resulting value

as functions of 6:

y=Y(0), z=270), v=V(0). (5.5)

e In the short-run, z should be treated as just another pa-
rameter along with 6, and the optimal choice y and the
resulting value v are functions of (z,0):

y=Y(z,0), v=V(z0). (5.6)

41



Some Choice Variables Fixed

e We are now ready to compare the long-run and short-run

optimum values.

e The long-run problem (MP_LR) has more choice vari-

ables compared to the short-run problem (MP_SR).

e Therefore,

V(0) > V(z,0) for all (z,0).

42



Some Choice Variables Fixed

e And the two values V(0) and V(z,0) coincide when z is

just at the long-run optimal level Z(0).

e Because when z is at the optimal level Z(#), being able to
adjust it (the long-run case) or not (the short-run case)

will not make a difference.

e Therefore, V(0) is the upper envelope of the family of

value functions V' (z,0), in each of which z is held fixed.

43



Some Choice Variables Fixed

We could draw a graph to show the intuition.

A V(G)

V(Z(©'"),6)

V(Z(6),6)

D e e -

v
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Some Choice Variables Fixed

If the functions are differentiable, we would have
VI(0) = Ve(Z(9),0), (5.7)

where the right-hand side is the partial derivative of the
short-run optimum value function V(Z(#),0) taken hold-
ing the first argument 2 fixed, but evaluated at the point

z=7(0).
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Some Choice Variables Fixed

e Please keep in mind that V functions may not be differ-
entiable even when F' and G are.

e The problem may arise when we have inequality and non-
negativity constraints on choice variables.

e At some point, there may be a regime change, one con-
straint from binding to slack or vice versa, and the graph
of maximum value function may have a kink.

e Figure 4.2 provides such an example.

46



5.E. Examples

Example 5.1: Short-Run and Long-Run Costs
This example is used to illustrate Envelope Theorem. Con-
sider a producer who rents machines K at r per year and

hires labor L at wage w per year to produce output @, where?
Q= (KL)"".

Suppose he wishes to produce a fixed quantity () at minimum

cost.

2Returns to scale are constant if o = 2, increasing if @ < 2, and
decreasing if a > 2. 47



Example 5.1: Short-Run and Long-Run Costs (continued)
Assume that K is fixed in the short run; whereas L could be

freely adjusted.
Question 1: Calculate the long-run and short-run cost func-

tions.

Question 2: Show that Equation (5.7) holds.

48



Example 5.1: Solution

See Lecture Notes.
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Example 5.2: Consumer Demand.

Part I: Indirect Utility Function
Consider the consumer choice problem:
max U (x)
s.t. pr=1.
The resulting maximum utility is a function V(p, I), called

the indirect utility function,® and the utility-maximizing quan-

tities  comprise the demand function D(p, I).

3U(x) is called the direct utility function. 50



Part I: Indirect Utility Function (continued)

Show that

D(p,I) = =V,(p, 1)/ Vi(p,I).

(5.8)

o1



Example 5.2 (Part I): Solution

See Lecture Notes.
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Part Il: Expenditure Function

Consider the expenditure minimization problem:

min px
L1 B

s.t. U(x) = u,

where u is the target utility level. The resulting minimized
expenditure is a function F(p,u), called the expenditure
function. Cost-minimizing commodity choices for a given
utility level are called Hicksian compensated demand func-

tion C(p,u).
53



Part 1l: Expenditure Function (continued)

Show that

C(p,u) = Ep(p,u).

(5.9)

o4



Example 5.2 (Part I1): Solution

See Lecture Notes.
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