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Introduction

• In Chapter 4, we learned that

dv = λ dc.

• Apart from the parameter c, there are other parameters

in the objective funtion F (x) as well as the constraint

functions G(x).

• In this chapter, we will learn how these parameters would

affect the maximum attainable value in general.
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5.A. Parameters in the Objective Function

• We will begin with equality constraints.

• And consider first the case where the parameters affect

the maximand alone.

• We have already seen such an example in Exercise 2.3

Production and Cost Minimization.

3



Parameters in the Objective Function

Exercise 2.3: Consider a producer who rents machines

K at r per year and hires labor L at wage w per year

to produce output Q, where Q =
√

K +
√

L.

Suppose he wishes to produce a fixed quantity Q at

minimum cost.

Find his factor demand function, that is, the optimal

amount of K and L.
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Parameters in the Objective Function

The maximization problem for this example is:

max
K,L

−Kr − Lw (MP1)

s.t.
√

K +
√

L = Q.

The parameters r and w only appear in the objective func-

tion, i.e., the maximand.

5



Parameters in the Objective Function

• General representation for such maximization problem is

v = max
x

F (x, θ)

s.t. G(x) = c,

where θ is a vector of parameters.

• The Lagrangian is

L(x, λ, θ) = F (x, θ) + λ [c − G(x)] .

6



Parameters in the Objective Function

• The first-order necessary conditions are

Lx(x∗, λ, θ) = Fx(x∗, θ) − λGx(x∗) = 0,

and Lλ(x∗, λ, θ) = c − G(x∗) = 0.

• Now suppose that θ changes to θ + dθ.

• Correspondingly, the optimum x∗ changes to x∗ + dx∗,

and the maximum value v changes to v + dv.
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Parameters in the Objective Function

dv =!"#$
by definition

F (x∗ + dx∗, θ + dθ) − F (x∗, θ)

=!"#$
Taylor approximation

Fx(x∗, θ)dx∗ + Fθ(x∗, θ)dθ =!"#$
First-order condition

λGx(x∗)dx∗ + Fθ(x∗, θ)dθ

=!"#$
Taylor approximation

λ [G(x∗ + dx∗) − G(x∗)] + Fθ(x∗, θ)dθ =!"#$
G(x∗+dx∗)=G(x∗)=c

Fθ(x∗, θ)dθ.

Therefore, we get

dv = Fθ(x∗, θ)dθ. (5.1)
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Parameters in the Objective Function

• To find the first-order change in maximum value of objec-

tive function in response to changes in parameters that

do not affect the constraints, we need not worry about

the simultaneous change in the optimum choice x∗ itself.

• All we have to do is to

1. calculate partial effect of parameter change, and

2. evaluate expression at initial optimum choice.
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Parameters in the Objective Function

• We could check dv = Fθ(x∗, θ)dθ in cost minimization

example.

• Solving the problem

max
K,L

−Kr − Lw (MP1)

s.t.
√

K +
√

L = Q,

we obtain K∗ =
%

wQ
r+w

&2
and L∗ =

%
rQ

r+w

&2
.

• In the problem, F (K, L, w, r) = −Kr−Lw and G(K, L) =
√

K +
√

L.
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Parameters in the Objective Function

• Plugging the optimal K∗ and L∗ into the objective func-

tion, we obtain

v(w, r, Q) = F (K∗, L∗, w, r) = −wrQ2

r + w
.

• Here, we only check dv(w, r, Q)/dw and Fw(K∗, L∗, w, r):

dv(w, r, Q)/dw = −
'

rQ

r + w

(2
= Fw(K∗, L∗, w, r).

11



5.B. The Envelope Theorem

The algebra of the previous section is illustrated geometri-

cally:
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The Envelope Theorem

• For particular value of θ, say θ′, the optimal choice is x∗′.

• That is , x∗′ solves the below maximization problem:

max
x

F (x, θ′)

s.t. G(x) = c.
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The Envelope Theorem

• The curve F (x∗′, θ) represents the value of the objective

function with respect to θ, where x is held fixed at x∗′.

• The curve V (θ) represents the optimum value function

with respect to θ, where x is allowed to vary optimally as

θ varies.
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The Envelope Theorem

Formally, the function V (θ) is defined by

V (θ) = max
x

{F (x, θ)|G(x) = c}, (5.2)

which is read as “V (θ) is the maximum over x of F (x, θ)

subject to G(x) = c.”
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The Envelope Theorem

• Next, write the optimum choice x∗ as a function of θ:

x∗ = X(θ).

• Pratically, this could be done by solving the maximization

problem for fixed θ.

• For instance, we have x∗′ = X(θ′).

• Then, we could rewrite V (θ) as follows:

V (θ) = F (x∗, θ) = F (X(θ), θ).
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The Envelope Theorem

• Two functions V (θ) and F (x∗′, θ) coincide at θ′, because

x∗′ happens to be the optimal choice there.

• Algebraically, F (x∗′, θ′) = F (X(θ′), θ′) = V (θ′).

• For the other values of θ, unless x∗′ remains the optimal

choice, the curve V (θ), which is the optimum value, is

higher than that of F (x∗′, θ):

F (x∗′, θ) = F (X(θ′), θ) ≤!"#$
X(θ) is the optimal choice given θ

F (X(θ), θ) = V (θ) for θ ∕= θ′.
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The Envelope Theorem

• Therefore, the two curves should be mutually tangential

at θ′.

• This is what

dv = Fθ(x∗, θ)dθ. (5.1)

(5.1) expresses.
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The Envelope Theorem

• Similarly, we could draw the graph of F (x∗′′, θ), where

x∗′′ is the optimal choice at θ′′.

• The curve F (x∗′′, θ) would touch the curve of the optimal

value function V (θ) at θ′′.

• We could draw a whole family of curves of F (x, θ) for a

whole range of fixed values x, each x being the optimal

for some θ.
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The Envelope Theorem

• No member of this family of curves could ever cross above

the graph of V (θ), and each would be tangential to the

optimal value function at that value of θ where its x hap-

pens to be the optimal choice.

• In other words, the optimal value function is the upper

envelope of the family of the value functions, in each of

which the choice variables are held fixed.

• (5.1) is often referred to as the Envelope Theorem.
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The Envelope Theorem: Cost Minimization

We apply Envelope Theorem to cost minimization problem:

max
x

(−θx)

s.t. G(x) = c

where θ is a vector of input prices.
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The Envelope Theorem: Cost Minimization

Figure below shows the the minimum cost curve and the cost

lines for fixed x when the first input price θ1 varies.
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The Envelope Theorem: Cost Minimization

• The cost lines are linear since when x is held fixed, the

cost θx is a linear function of θ1.

• The minimized cost as a function of θ is the lower enve-

lope (not the upper envelope, since this is a minimization

problem) of all these straight lines.
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The Envelope Theorem: Cost Minimization (Intuition)
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The Envelope Theorem: Cost Minimization (Intuition)

• If θ′
1 increases by ∆θ1, assuming that x∗′ is held fixed, the

cost increases with θ1 by the amount ∆θ1 · x∗
1

′ (cost lines

for fixed x are linear). However, the producer can lower

the cost by adjusting x optimally.

• If θ′
1 decreases by ∆θ1, assuming that x∗′ is held fixed, the

cost decreases with θ1 by the amount ∆θ1 · x∗
1

′. However,

the producer can lower the cost by adjusting x optimally

(minimum cost curve is the lower envelope of the cost

lines). 25



The Envelope Theorem: Cost Minimization

• The figures also suggest a curvature property.

• The first figure shows each F (x∗, θ) as a concave curve

and V (θ) as a convex curve.

• The second figure shows a linear cost function for any

fixed input choice but the lower envelope is concave.

• In general, the upper envelope must be more convex than

any member of the family of which it is the envelope.

• This property will be studied in detail in Chapter 8. 26



5.C. Parameters Affecting All Functions

• Now suppose G as well as F involves θ.

• General representation for such maximization problem is

v = max
x

F (x, θ)

s.t. G(x, θ) = c,

where θ is a vector of parameters.
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Parameters Affecting All Functions

• The Lagrangian is

L(x, λ, θ) = F (x, θ) + λ [c − G(x, θ)] .

• The first-order necessary conditions are

Lx(x∗, λ, θ) = Fx(x∗, θ) − λGx(x∗, θ) = 0,

and Lλ(x∗, λ, θ) = c − G(x∗, θ) = 0.
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Parameters Affecting All Functions

The calculation for a change in θ to θ + dθ proceeds as in

Section 5.A, except that the partial derivative of G with

respect to x is no longer zero:
)
*****+

*****,

G(x∗ + dx∗, θ + dθ) − G(x∗, θ) =!"#$
Taylor approximation

Gx(x∗, θ)dx∗ + Gθ(x∗, θ)dθ

G(x∗ + dx∗, θ + dθ) = G(x∗, θ) = c

=⇒ Gx(x∗, θ)dx∗ + Gθ(x∗, θ)dθ = 0

=⇒ Gx(x∗, θ)dx∗ = −Gθ(x∗, θ)dθ. (5.3)
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Parameters Affecting All Functions

Using this, and the previous analysis, we have

dv =!"#$
by definition

(v + dv) − v =!"#$
by definition

F (x∗ + dx∗, θ + dθ) − F (x∗, θ)

=!"#$
Taylor approximation

Fx(x∗, θ)dx∗ + Fθ(x∗, θ)dθ

=!"#$
First-order condition

λGx(x∗, θ)dx∗ + Fθ(x∗, θ)dθ

=!"#$
Equation (5.3)

−λGθ(x∗, θ)dθ + Fθ(x∗, θ)dθ = Lθ(x∗, λ, θ)dθ.
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Parameters Affecting All Functions

Therefore, we get

dv = Lθ(x∗, λ, θ)dθ. (5.4)
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Parameters Affecting All Functions

The difference between (5.4) and (5.1):

dv = Lθ(x∗, λ, θ)dθ = Fθ(x∗, θ)dθ − λGθ(x∗, θ)dθ; (5.4)

dv = Fθ(x∗, θ)dθ. (5.1)
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Parameters Affecting All Functions

Intuitive explanation of the difference between (5.4) and (5.1):

• When θ affects the constraints, a change dθ has the direct

effect of increasing the value of G by Gθ(x∗, θ)dθ.

• This acts exactly like an equal reduction in c.

• The interpretation of the Lagrange multiplier tells us that

the equivalent reduction in c reduces v by λGθ(x∗, θ)dθ.

• This is just the additional term in (5.4) when compared

to (5.1).
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Parameters Affecting All Functions

• In Chapter 4, we have learned a similar comparative static

analysis with respect to changes in the parameters c.

• The more general formulation in this chapter can subsume

the earlier case.
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Parameters Affecting All Functions

• To see this explicitly, define a larger vector of parameters
-θ, which includes θ and c as subvectors, and write the

constraint as -G(x, -θ) = G(x, θ) − c = 0.

• The maximization problem is now

v = max
x

F (x, θ)

s.t. -G(x, -θ) = 0,

where -θ is a vector of parameters.
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Parameters Affecting All Functions

• The Lagrangian is

-L(x, λ, -θ) = F (x, θ) − λ -G(x, -θ).

• (5.4) becomes

dv = -L-θ(x
∗, λ, -θ)d-θ = F-θ(x

∗, θ)d-θ − λ -G-θ(x, -θ)d-θ

= Fθ(x∗, θ)dθ − λ [Gθ(x, θ)dθ − Imdc]

= Fθ(x∗, θ)dθ − λGθ(x, θ)dθ + λdc

= Lθ(x∗, λ, θ)dθ + λ dc.
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Parameters Affecting All Functions

The result

dv = Lθ(x∗, λ, θ)dθ + λ dc

includes the previous cases

dv = Lθ(x∗, λ, θ)dθ, (5.4)

and dv = λ dc. (4.3)
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5.D. Some Choice Variables Fixed

• In this section, we examine the effect of a change in pa-

rameters to the optimum value function when some com-

ponents of x are kept fixed.

• Our main focus is to compare such effect with the case

where all components of x could be freely adjusted.

• An economic application is the comparison between the

short-run and the long-run outcomes.
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Some Choice Variables Fixed

• To tackle this problem, we partition the vector x into two

subvectors y and z.

• In the long-run, both y and z are choice variables and

could be adjusted freely, while in the short-run, z is held

fixed and only y is allowed to vary.
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Some Choice Variables Fixed

• Subsuming c into θ, the long-run problem is

max
y,z

F (y, z, θ) (MP_LR)

s.t. G(y, z, θ) = 0.

• The short-run problem is1

max
y

F (y, z, θ) (MP_SR)

s.t. G(y, z, θ) = 0.

1For the short-run problem to be meaningful, the number of con-
straints must be less than the dimension of y. 40



Some Choice Variables Fixed

• Write the long-run optimal choices and the resulting value

as functions of θ:

y = Y (θ), z = Z(θ), v = V (θ). (5.5)

• In the short-run, z should be treated as just another pa-

rameter along with θ, and the optimal choice y and the

resulting value v are functions of (z, θ):

y = Y (z, θ), v = V (z, θ). (5.6)
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Some Choice Variables Fixed

• We are now ready to compare the long-run and short-run

optimum values.

• The long-run problem (MP_LR) has more choice vari-

ables compared to the short-run problem (MP_SR).

• Therefore,

V (θ) ≥ V (z, θ) for all (z, θ).
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Some Choice Variables Fixed

• And the two values V (θ) and V (z, θ) coincide when z is

just at the long-run optimal level Z(θ).

• Because when z is at the optimal level Z(θ), being able to

adjust it (the long-run case) or not (the short-run case)

will not make a difference.

• Therefore, V (θ) is the upper envelope of the family of

value functions V (z, θ), in each of which z is held fixed.
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Some Choice Variables Fixed

We could draw a graph to show the intuition.
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Some Choice Variables Fixed

If the functions are differentiable, we would have

V ′(θ) = Vθ(Z(θ), θ), (5.7)

where the right-hand side is the partial derivative of the

short-run optimum value function V (Z(θ), θ) taken hold-

ing the first argument z fixed, but evaluated at the point

z = Z(θ).
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Some Choice Variables Fixed

• Please keep in mind that V functions may not be differ-

entiable even when F and G are.

• The problem may arise when we have inequality and non-

negativity constraints on choice variables.

• At some point, there may be a regime change, one con-

straint from binding to slack or vice versa, and the graph

of maximum value function may have a kink.

• Figure 4.2 provides such an example.
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5.E. Examples

Example 5.1: Short-Run and Long-Run Costs

This example is used to illustrate Envelope Theorem. Con-

sider a producer who rents machines K at r per year and

hires labor L at wage w per year to produce output Q, where2

Q = (KL)1/α.

Suppose he wishes to produce a fixed quantity Q at minimum

cost.
2Returns to scale are constant if α = 2, increasing if α < 2, and

decreasing if α > 2. 47



Example 5.1: Short-Run and Long-Run Costs (continued)

Assume that K is fixed in the short run; whereas L could be

freely adjusted.

Question 1: Calculate the long-run and short-run cost func-

tions.

Question 2: Show that Equation (5.7) holds.
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Example 5.1: Solution

See Lecture Notes.
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Example 5.2: Consumer Demand.

Part I: Indirect Utility Function

Consider the consumer choice problem:

max
x

U(x)

s.t. px = I.

The resulting maximum utility is a function V (p, I), called

the indirect utility function,3 and the utility-maximizing quan-

tities x comprise the demand function D(p, I).

3U(x) is called the direct utility function. 50



Part I: Indirect Utility Function (continued)

Show that

D(p, I) = −Vp(p, I)/VI(p, I). (5.8)
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Example 5.2 (Part I): Solution

See Lecture Notes.
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Part II: Expenditure Function

Consider the expenditure minimization problem:

min
x

px

s.t. U(x) = u,

where u is the target utility level. The resulting minimized

expenditure is a function E(p, u), called the expenditure

function. Cost-minimizing commodity choices for a given

utility level are called Hicksian compensated demand func-

tion C(p, u).
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Part II: Expenditure Function (continued)

Show that

C(p, u) = Ep(p, u). (5.9)
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Example 5.2 (Part II): Solution

See Lecture Notes.
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