
Dynamic Optimization

Chapter 6. Convex Sets and Their Separations

In the previous chapters, we have learned first-order necessary conditions for constrained

maximization problems. We also mentioned that those conditions may not be sufficient.

In this and the following two chapters, we will discuss sufficient conditions.

6.A. The Separation Property

In this chapter, we will develope a geometric approach to constrained maximization prob-

lem based on the separation property. Before digging into the details, we will illustrate

the idea using an example. Consider the following maximization problem:

max
x

F (x)

s.t. G(x) ≤ c,

where G(x) ≤ c is a scalar constraint. Let x∗ denote the optimal choice, and v∗ denote

the maximum value. We are now interested to know the properties of the functions F

and G that ensure the maximum.

Figure 6.1 illustrate the problem with two variables.

Figure 6.1: Separation by the common tangent
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We know from the previous chapters that the solution is attained at the tangency point

x∗. To get some idea about the general property, we will interpret the solution in terms

of the curvatures of F and G. The following new concepts are needed for our discussion:

Definition 6.A.1 (Lower Contour Set). For a function f : S ⊂ RN → R, the lower

contour set of f for the value c ∈ R is {x|f(x) ≤ c}.

That is, the lower contour set is the set of all points x where f(x) ≤ c. Similarly, we

define the upper contour set.

Definition 6.A.2 (Upper Contour Set). For a function f : S ⊂ RN → R, the upper

contour set of f for the value c ∈ R is {x|f(x) ≥ c}.

Figure 6.2 provides an illustration for the one-variable case.

Figure 6.2: Contour Sets

• The lower contour set of f for the value c is [a, x1]
![x2, x3];

• The upper contour set of f for the value c is [x1, x2]
![x3, b].

In Figure 6.1, the green curve is F (x) = v∗, together with the green area, is the upper

contour set of F for v∗ (Set B). For the constraint, the red curve G(x) = c, together with

the orange area, is the inequality constraint G(x) ≤ c, or the lower contour set of G for

c (Set A). The curvatures in Figure 6.1 ensure a maximum.
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The question is, what is the general property of such curvatures? The sets B and A

lie one to each side of their common tangent, with only their common point x∗ on that

line. In other words, the common tangent separates the x-plane into two halves, each

containing one of the two sets. For three-variables, the common tangent is a plane. See

Figure 6.3. In higher dimensions, the common tangent will be a hyperplane.

Figure 6.3: Three-variable Case

This separation property is the crucial property that allows us to find the maxima, and

obtain sufficient conditions for the maximization problem. We will next examine the

explicit conditions on the functions F and G that ensure the right curvature.

6.B. Convex Sets and Functions

Each of the contour sets in Figure 6.1 bulges outward, so that each bends away from the

comment tangent at x∗ and cannot bend back to meet the other set once again. This

property is called convexity. Formally, Definition 6.B.1 defines convex sets.

Definition 6.B.1 (Convex Set). A set S of points in n-dimensional space is called convex

if, given any two points xa = (xa
1, xa

2, ..., xa
n) and xb = (xb

1, xb
2, ..., xb

n) in S and any real

number α ∈ [0, 1], the point αxa + (1 − α)xb = (αxa
1 + (1 − α)xb

1, ..., αxa
n + (1 − α)xb

n) is

also in S.
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A geometric test of convexity is that given any two points of the set, the whole line

segment joining them should lie in the set.

Figure 6.4 and 6.5 are examples of convex sets. Please be aware that to apply the

geometric test of convexity, we need to ensure that for any two points of the set, the

whole line segment lie in the set.

Figure 6.4: Convex Set (a) Figure 6.5: Convex Set (b)

Figure 6.6 and 6.7 are examples of non-convex sets. The sets are non-convex, since there

exist points xa and xb and a real number α, such that the point αxa + (1 − α)xb is not

inside the set.

Figure 6.6: Non-Convex Set (a) Figure 6.7: Non-Convex Set (b)
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Apply the concept of convex sets to the lower contour set of G, we could reinterpret the

bulging outward curvature as follows: the lower contour set of G is convex, or

the set {x|G(x) ≤ c} is convex. (6.1)

This means that if xa and xb satisfy the constraint, so does αxa+(1−α)xb. Algebraically,
the condition states that for all xa and xb that satisfies G(xa) ≤ c and G(xb) ≤ c, and any

real number α ∈ [0, 1], we have G(αxa + (1 − α)xb) ≤ c. In practice, we will have to solve

the maximization problem for a general value of c, so we need to invoke the condition for

all c. The condition (6.1) with a general c is equivalent to

G(αxa + (1 − α)xb) ≤ max{G(xa), G(xb)}, (6.2)

for all xa, xb and for all α ∈ [0, 1]. A function G satisfying this condition is called quasi-
convex. Since quasi-convexity is a new and important concept, we will formally state it

and then prove the equivalence.

Definition 6.B.2 (Quasi-convex Function). A function f : S → R, defined on a convex

set S ⊂ RN , is quasi-convex if the set {x|f(x) ≤ c} is convex for all c ∈ R, or equivalently,

if
f(αxa + (1 − α)xb) ≤ max{f(xa), f(xb)}, (6.3)

for all xa, xb and for all α ∈ [0, 1].

Next, we show the equivalence of

(a) The set {x|f(x) ≤ c} is convex for all c ∈ R;

(b) f(αxa + (1 − α)xb) ≤ max{f(xa), f(xb)}, for all xa, xb and for all α ∈ [0, 1].

Proof. (a) =⇒ (b): Since (a) holds for all c ∈ R, for any xa and xb, we could

set c = max{f(xa), f(xb)}. Then since f(xa) ≤ max{f(xa), f(xb)} = c, f(xb) ≤

max{f(xa), f(xb)} = c, by (a), we have f(αxa + (1 − α)xb) ≤ c = max{f(xa), f(xb)}

for any α ∈ [0, 1]. Thus, (b) holds.

(b) =⇒ (a): Equivalently, we show “not (a) =⇒ not (b)”.

If (a) fails, then there exists xa, xb, c and α ∈ [0, 1] such that f(xa) ≤ c and f(xb) ≤ c

but f(αxa + (1 − α)xb) > c. Then f(αxa + (1 − α)xb) > c ≥ max{f(xa), f(xb)}. Thus,

(b) fails for these values of xa, xb and α.
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The parallel condition on F is that the upper contour set of F is convex, or F is quasi-

concave. The formal definition of quasi-concave is given in Definition 6.B.3 below.

Definition 6.B.3 (Quasi-concave Function). A function f : S → R, defined on a convex

set S ⊂ RN , quasi-concave if the set {x|f(x) ≥ c} is convex for all c ∈ R, or equivalently,

if f(αxa + (1 − α)xb) ≥ min{f(xa), f(xb)}, for all xa, xb and for all α ∈ [0, 1].

A digression: quasi-convexity (quasi-concavity) and convexity (concavity)

The quasi in Definition 6.B.2 and 6.B.3 serves to distringuish them from stronger prop-

erties of convexity and concavity. Formally, we define convexity as follows.

Definition 6.B.4 (Convex Function). A function f : S → R, defined on a convex set

S ⊂ RN , is convex if

f(αxa + (1 − α)xb) ≤ αf(xa) + (1 − α)f(xb), (6.4)

for all xa, xb and for all α ∈ [0, 1].

(6.4) convexity implies (6.3) quasi-convexity since

f(αxa + (1 − α)xb) ≤"#$%
(6.4)

αf(xa) + (1 − α)f(xb)

≤ α max{f(xa), f(xb)} + (1 − α) max{f(xa), f(xb)}

= max{f(xa), f(xb)}.

In other words, a convex function must be quasi-convex.

Similarly, we could define concavity and compare it with quasi-concavity.

Definition 6.B.5 (Concave Function). A function f : S → R, defined on a convex set

S ⊂ RN , is concave if

f(αxa + (1 − α)xb) ≥ αf(xa) + (1 − α)f(xb), (6.5)

for all xa, xb and for all α ∈ [0, 1].

Following the same logic, we could show that a concave function must be quasi-concave.

Figure 6.8 provides a graphical illustration of a concave function for the one-variable case.

The red dot (LHS of (6.5)) is always higher than the green dot (RHS of (6.5)).
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Figure 6.8: Concave Function

In words, the graph of the function lies on or above the chord joining any two points of it.

An alternative interpretation of a concave function is sometimes useful. Consider the

(n + 1)-dimensional space consisting of points like (x, v) where x is an n-dimensional

vector and v is a scalar. Define the set F = {(x, v)|v ≤ f(x)}.

Then, we make the following claim:

Claim. f is a concave function if and only if F is a convex set.

Proof. “ =⇒ ”: To prove that F is a convex set, we need to show that for all (xa, va)

and (xb, vb) that satisfy va ≤ f(xa) and vb ≤ f(xb) and any real number α ∈ [0, 1], we

have αva + (1 − α)vb ≤ f(αxa + (1 − α)xb).

By concavity of f , we know that for all xa and xb and for all α ∈ [0, 1], (6.5) holds.

Therefore, for all (xa, va) and (xb, vb) that satisfy va ≤ f(xa) and vb ≤ f(xb) and any real

number α ∈ [0, 1],
αva + (1 − α)vb −

&
f(αxa + (1 − α)xb)

'

≤"#$%
(6.5)

αva + (1 − α)vb −
&
αf(xa) + (1 − α)f(xb)

'

≤"#$%
va≤f(xa) and vb≤f(xb)

αva + (1 − α)vb −
&
αva + (1 − α)vb

'
= 0
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Therefore, αva + (1 − α)vb ≤ f(αxa + (1 − α)xb) and convexity of set F follows.

“⇐=”: To prove that F is concave, we need to show that for all xa, xb and all α ∈ [0, 1],

(6.5) holds.

For any xa and xb, set va = f(xa) and vb = f(xb), so that va ≤ f(xa) and vb ≤ f(xb)

are satisfied, i.e., (xa, va) ∈ F and (xb, vb) ∈ F . Then by convexity of set F , for any real

number α ∈ [0, 1], we have αva + (1 − α)vb ≤ f(αxa + (1 − α)xb) =⇒" #$ %
va=f(xa), vb=f(xb)

αf(xa) + (1 −

α)f(xb)) ≤ f(αxa + (1 − α)xb), and concavity of the function f follows.

The claim could be more easily understood graphically. Figure 6.9 illustrates the case

with a scalar variable x. The function f is the red curve. The set F is the area shaded in

orange. The claim means that the concave function f traps a convex set F underneath

its graph. And it is clear from Figure 6.9.

Figure 6.9: Concave Function

Two more concepts. We need to introduce two more concept before proceeding with

our main result of separation.

Definition 6.B.6 (Interior Point). A point xo ∈ S is called an interior point if there

exists a real number r > 0 such that for all x such that ‖x − xo‖ < r, we have x ∈ S.

That is, a point xo ∈ S is an interior point if all points within the distance of r from the

point xo are in S. In the plane, such points will form a disc of radius r centered at xo.
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Definition 6.B.7 (Boundary Point). A point xo ∈ S is called a boundary point if for

any real number r > 0, ∃ x, y such that ‖x − xo‖ < r, ‖y − xo‖ < r and x ∈ S, y /∈ S.

That is, a boundary point of S is interior neither to S nor to the rest of the space.

Figure 6.10 illuestrates the interior and boundary points in a plane. In the figure,

• xa is an ineterior point of S since we could find an open ball with radius r such

that all points in the open ball are in S.

• xb is a boundary point of S since for any open ball around xb, there exists points

inside the ball that are in S, and there also exists points that are outside of S.

• xc is neither an ineterior point or a boundary point of S since we could find an open

ball with radius r such that all points in the open ball are outside of S.

Figure 6.10: Interior and Boundary Points

For two convex sets,

(a) If the two sets only have boundary point x∗ in common, the common tangent could

separate them. See Figure 6.11a.

(b) If the two sets have no points in common, then there would be a clear gap between

them, and we could draw a line to separate them. The line does not need to be

tangent to either set. See Figure 6.11b.

(c) If the two sets have interior points in common, then we could not separate them.

See Figure 6.12.
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(a) common tangent (b) no points in common

Figure 6.11: Separation is possible.

Figure 6.12: Separation is not possible.

Convexity of the sets is important. Figure 6.13 shows two cases, in each of which one set

is not convex. The conmmon tangent cuts into the non-convex set, and separation fails.

(a) (b)

Figure 6.13: Partial Failure of Decentralization

The intuition from these graphs carry over to higher dimensions. We formalize the idea

of separation in Theorem 6.1 below.
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Theorem 6.1 (Separation Theorem). If B and A are two convex sets, that have no

interior points in common, and at least one of the sets has a non-empty interior,1 then

we can find a non-zero vector p and a number b such that the hyperplane px = b separates

the two sets, or

px =
n(

i=1
pixi

)
***+

***,

≤ b for all x ∈ A

≥ b for all x ∈ B.

(6.6)

The proof of this theorem is out of the scope of this course. For interested students, a

formal proof is provided in Appendix A for your reference.

6.C. Optimization by Separation

Existence of Solution. In most economic applications, the functions F and G are well-

behaved, and the existence of solution is ensured by the Extreme Value Theorem.

Theorem (Extreme Value Theorem). If f is a continuous function defined on a closed2

and bounded3 set4 A ⊂ RN , then f attains an absolute maximum and absolute minimum

value on A.

Figure 6.14 illustrates the theorem for A ⊂ R.

(a) all conditions met (b) not continuous

Figure 6.14: Extreme Value Theorem
1The qualification that at least one of the sets should have a non-empty interior rules out some

awkward cases where the sets are of smaller dimension than the whole space. It is stated for completeness.
In economic applications, the contour set of the objective function is full-dimensional, so no difficulty
arises on this account.

2A set A ⊂ RN is closed if for every sequence xn → x with xn ∈ A for all n, we have x ∈ A. That is,
A is closed if it contains all its limit points.
3A set A ⊂ RN is bounded if there is r ∈ R such that ‖x‖ < r for every x ∈ A.
4A set A ⊂ RN that is both closed and bounded is also called compact.
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(c) not closed (d) not bounded

Figure 6.14: Extreme Value Theorem (cont.)

In Figure 6.14a, all conditions in the theorem are met, and a maximum (minimum) is

ensured. In the other three figures, one of the conditions are not met, and it is clear that

a maximum (minimum) may not exist.

For our discussion, we impose the conditions that F and G are continuous, and that

the constraint set is bounded. The continuity of G ensures the closedness of the set

{x|G(x) ≤ c}.5

Once we impose thses conditions, we could apply the Extreme Value Theorem and the

existence of a maximum is ensured. Again, for our applications, these conditions are

almost always satisfied and the existence of an optimum is not a problem. The conditions

are stated here for the completeness of our discussion.

Separation. Let us return to our initial problem illustrated in Figure 6.1. Besides the

conditions used to ensure the existence of a solution, we also impose the conditions that

F is quasi-concave and G is quasi-convex, so that all conditions assumed in Figure 6.1

are met and the Seperation Theorem (Theorem 6.1) applies.

Let px = b be the equation of the separating common tangent. The equation is unaffected

if we multiply it through by −1, but will reverse the directions of the inequalities in (6.6).

To ensure that the inequalities are consistent for the set B and A in Figure 6.1 and in

Theorem 6.1, we choose p1, p2 > 0. The idea generalizes to more-variable cases.

5Appendix B provides a proof for this claim.
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Since x∗ lies on the separating tangent, so px∗ = b. Therefore, (6.6) tells us that x∗

gives the largest value of px among all points in A, that is, among all points satisfying

G(x) ≤ c. Similarly, x∗ gives the smallest value of px among all points in B, that is,

among all points satisfying F (x) ≥ v∗. The result is summarized in Theorem 6.2 below.

Theorem 6.2 (Optimization by Separation). Given a quasi-concave function F and a

quasi-convex function G, the point x∗ maximizes F (x) subject to G(x) ≤ c if, and only

if, there is a non-zero vector p such that

(i) x∗ maximizes px subject to G(x) ≤ c, and

(ii) x∗ miminizes px subject to F (x) ≥ v∗.

The generalization to several constraints is straightforward. The set Ai of points for

which Gi(x) ≤ ci is convex if Gi is quasi-convex. If this is so for all i, then the set A of

points satisfying all the constraints, being the intersection of the convex sets Ai, is also

convex. Then Theorem 6.2 applies.

Note that Theorem 6.2 provides an “if and only if” result. That is, the conditions are

both necessary and sufficient for optimality. But the problem with this theorem is that

the conditions are not easy to verify in practical applications. In the next two chapters,

we shall see sufficient conditions that are more useful in this regard.

The real benefit from splitting the maximization problem into two separate problems

comes from its economic interpretation. It raises the possibility of decentralizing optimal

resource allocations using prices. Consider x as the production-cum-consumption vector,

the constraints reflect limited resource availability, and the objective is the utility func-

tion. Now interpret p as the row vector of prices of outputs. The original problem of

social optimization (Figure 6.1) can be decentralized. Apply Theorem 6.2,

(a) Part (i) says that the optimum x∗ would be produced by a producer who seeks to

maximize the value of output under the resource constraint. See Figure 6.15a.

(b) Part (ii) says that the optimum x∗ would be consumed by a consumer who seeks

to minimize the expenditure given the target utility level v∗. See Figure 6.15b.
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(a) Producer Problem (b) Consumer Problem

Figure 6.15: The Decentralization Problem

This separation of decision has two advantages:
i. Informational: the producer does not need to know the consumer’s taste; and the

consumer does not need to know the production technology.

ii. Incentives: the process relies on the self-interest of each side to ensure the effective

implementation of the optimum.

Another remark is that only the relative prices matter for economic decisions. Nothing

will change if we multiply the vector p and the related number b by the same positive

number. This result is consistent with our discussions in the previous chapters.

The real life decentralization problem is more complicated. One problem is how the cor-

rect price vector is found, since people may not have the incentive to reveal their private

information that is needed to calculate the right prices. Besides, issues of externality and

distribution arise when there are many producers and consumers. These issues fall out

of the scope of this course. Interested students may refer to microeonomic textbooks.

There exist situations where full decentralization is not possible. Recall Figure 6.13.

i. In case 6.13a, B is not convex and x∗ does not minimize the expenditure in the

consumer problem. The consumer prefers extremes to a diversified bundle of goods.

ii. In case 6.13b, A is not convex and x∗ does not maximize the producer’s value of

output. The production technology has economies of scale or of specialization.
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But in both cases, x∗ does maximize F (x) subject to G(x) ≤ c. For x∗ to be a maximizer

of the original problem, what really matters is the relative curvature of F and G. We

will discuss this idea and develop the conditions for maximization in Chapter 8.

6.D. Uniqueness

In Figure 6.1, the boundaries of the sets B and A are shown as smooth curves. But in

general, a convex set can have straight-line segments along its boundary. Such possibilities

have implications for separation and optimization. We consider the cases in Figure 6.16.

(a) (b)

(c)
(d)

Figure 6.16: Optima at kinks and along flats

(a) In 6.16a, two corners happen to meet at x∗. Now we can find many lines through x∗

that separate the two sets, that is, the decentralizing price vector p is not unique.

It is not a serious problem for decentralization. In fact, the separation is a more
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general notion than that of a common tangent. And the decentralization depends

on the separation property. Theorem 6.2 continues to hold.

(b) In 6.16b, the two sets have a flat portion in common. Now any points along this

region serves as the optimum x∗. It causes problems about decentralization. Given

p, all points on the flat portion of A will yield the same value of output to the

producer; and all those on the flat portion of B will yield the same utility to the

consumer. Thus, there is no reason to believe that the choices made separately by

the producer and the consumer would coincide. In such a situation, we could only

make a weaker claim: if the producer and the consumer happen to make coincident

choices, neither will have strict incentive to depart from such choices.

(c) In 6.16c, the two boundaries have vertical parts in common. Then, we will have

a vertical separating line, indicating p2 = 0. In such cases, good 2 is a free good.

Similarly, horizontal separating lines imply p1 = 0, i.e., good 1 is a free good.

In 6.16d, there is a vertical separating line, whereas there are also non-vertical ones.

Without stronger assumptions, it is not possible to guarantee strictly positive prices.

(d) The case of a positive slope of the common tangent, or negative price of either good,

is usually avoided by assuming either that “free disposal” is possible so that the

boundary of A cannot slope upward; or that both goods are desirable so that the

boundary of B cannot slope upward. In our figures, these assumptions are implicit.

To summarize, problems of kinks are not serious. In fact, such cases generalize the concept

of tangency and preserve the decentralization property. However, problems of flats are

more serious because optimal choices can be non-unique and decentralization becomes

problematic. We will discuss the additional assumptions needed to avoid this problem.

In fact, a strengthening of the concepts of quasi-concavity (-convexity) will suffice.

The problem arises since the definition of convex sets allow straight-line segments along

its boundary. To avoid the problem caused by the straight-line segments, we need to

define the following stronger concepts. The idea is to modify the concept of convex sets

to require all points of the line segment except the end-points to be interior points.
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Definition 6.D.1 (Strongly Convex Set). A set S of points in n-dimensional space is

called strongly convex if, given any two points xa ∈ S and xb ∈ S and any real number

α ∈ (0, 1), the point αxa + (1 − α)xb is interior to S.

Correspondingly, we modify the concepts of quasi-concavity and quasi-convexity.

Definition 6.D.2 (Strictly Quasi-concave Function). A function f : S → R, defined on

a convex set S ⊂ RN , is strictly quasi-concave if the set {x|f(x) ≥ c} is strongly convex

for all c ∈ R, or equivalently, if

f(αxa + (1 − α)xb) > min{f(xa), f(xb)},

for all xa, xb and for all α ∈ (0, 1).

Definition 6.D.3 (Strictly Quasi-convex Function). A function f : S → R, defined on

a convex set S ⊂ RN , is strictly quasi-convex if the set {x|f(x) ≤ c} is strongly convex

for all c ∈ R, or equivalently, if

f(αxa + (1 − α)xb) < max{f(xa), f(xb)},

for all xa, xb and for all α ∈ (0, 1).

Next, consider again the problem of maximizing F (x) subject to G(x) ≤ c, but now

consider F being strictly quasi-concave, and G still being quasi-convex. Suppose x∗

satisfies the conditions of Theorem 6.2. Then, x∗ must be a unique solution.

To see this, we show by contradiction. Suppose that x̂ is another solution. Then, x∗

and x̂ should be optimal for the consumer’s problem. Thus, px∗ = px̂ = b and F (x∗) =

F (x̂) = v∗. Now consider the point x̃ = αx∗ + (1 − α)x̂, for some α ∈ (0, 1).

(i) px̃ = p(αx∗ + (1 − α)x̂) = αpx∗ + (1 − α)px̂ = αb + (1 − αb) = b.

(ii) Since F is strictly quasi-concave, F (x̃) > min{F (x∗), F (x̂)} = v∗.

By continuity of F , there exists β < 1, such that F (βx̃) > v∗ (i.e., βx̃ is interior to

B). Besides, p(βx̃) < px̃ = b. Thus, the bundle βx̃ is interior to B with p(βx̃) < b,

contradicting with the separation property. Therefore, the initial supposition must be

wrong and strict quasi-concavity of F implies the uniqueness of the maximizer.
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Remark. Strict quasi-convexity of G together with quasi-concavity of F also imply the

uniqueness of the maximizer. If there are more than one constraint, we require every

component constraint function Gi to be strictly quasi-convex.

6.E. Examples

Example 6.1: Illustration of Separation.

Consider the following problem:

max
x≥0, y≥0

F (x, y) = xy

s.t. G(x, y) = x2 + y2 ≤ 25.

Figure 6.17 illustrates the separation.

Figure 6.17: Illustration of Separation

The feasible set A consists of the quarter-circle (red) and all points below it (orange);

boundaries of the upper contour sets of F for various values v are shown as a family of

rectangular hyperbolas (green). The optimal occurs at (x∗, y∗) = (5/
√

2, 5/
√

2) and the

maximized value of F (x, y) is v∗ = 121
2 .

i. The upper contour set B corresponding to v∗ touches the feasible set at the optimum;

they are separated by a common tangent x + y = 5
√

2.
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ii. The upper contour set of F for the larger value 18 has no points in common with

A. We can draw a separating line x + y = 8 through the clear gap between them.

iii. For a smaller value than v∗, say 10, the upper contour set of F and the feasible set

have interior points in common, and the two cannot be separated.

Example 6.2: Indirect Utility and Expenditure Functions.

Part I: Expenditure Function. The expenditure function is

E(p, u) = min
x

{px|U(x) ≥ u}.

Show that E(p, u) is concave in p for each fixed u.

Solution. To show concavity of E(p, u) in p, we need to show that for any price

vectors pa and pb and any number α ∈ [0, 1], we have

E(αpa + (1 − α)pb, u) ≥ αE(pa, u) + (1 − α)E(pb, u) (6.7)

Let xc achieve the expenditure minimization for the price vector αpa + (1 − α)pb, i.e.,

E(αpa + (1 − α)pb, u) =
-
αpa + (1 − α)pb

.
xc.

Since xc is feasible for the price vector
-
αpa + (1 − α)pb

.
, xc must satisfy the constraint,

i.e., U(xc) ≥ u. The constraint does not involve the price vectors, so xc is also feasible

when the price vector is pa or pb. Then by the definition of E(p, u),

E(pa, u) ≤ paxc and E(pb, u) ≤ pbxc.

Multiply the first inequality by α ∈ [0, 1] and the second by (1 − α), and adding the two,

we have

αE(pa, u) + (1 − α)E(pb, u) ≤ αpaxc + (1 − α)pbxc

=
-
αpa + (1 − α)pb

.
xc = E(αpa + (1 − α)pb, u).

This proves (6.7).
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The economic intuition is illustrated in Figure 6.18 below. Consider the change of p1

alone. As p1 changes, one could leave the quantity vector unchanged. Then the ex-

penditure would change linearly with the price. See the blue line. To the extent that

there is substitution along the indifference curves, the quantity choice can be adapted to

the changing prices. This will change the expenditure lower than linearly, that is, the

minimized expenditure will be a concave function of prices. See the red curve.

Figure 6.18: Expenditure Function

Part II: Indirect Utility Function. The indirect utility function is

V (p, I) = max
x

{U(x)|px ≤ I}.

Show that V (p, I) is quasi-convex in (p, I).

Solution. To show quasi-convexity of V (p, I) in (p, I), we need to show that for any

price-income vectors (pa, Ia) and (pb, Ib) and any number α ∈ [0, 1], we have

V
-
αpa + (1 − α)pb, αIa + (1 − α)Ib

.
≤ max

/
V (pa, Ia) , V

-
pb, Ib

.0
(6.8)
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Let xc be the utility-maximizing bundle for
-
αpa + (1 − α)pb, αIa + (1 − α)Ib

.
. That is,

V
-
αpa + (1 − α)pb, αIa + (1 − α)Ib

.
= U(xc)

Since xc is feasible for the price-income vector
-
αpa + (1 − α)pb, αIa + (1 − α)Ib

.
, xc

must satisfy the constraint, that is

-
αpa + (1 − α)pb

.
xc ≤ αIa + (1 − α)Ib. (6.9)

The proof goes in two steps. First, we show that xc is feasible for at least one of the

price-income vectors (pa, Ia) and (pb, Ib).

Suppose it is not, then we must have

paxc > Ia and pbxc > Ib.

Multiply the first inequality by α ∈ [0, 1] and the second by (1 − α), and adding the two,

we have

αpaxc + (1 − α)pbxc > αIa + (1 − α)Ib ⇐⇒
-
αpa + (1 − α)pb

.
xc > αIa + (1 − α)Ib,

contradicting with (6.9). Therefore, xc must be feasible for at least one of the price-income

vectors (pa, Ia) and (pb, Ib).

Then, in whichever situation that xc is feasible, by the definition of V (p, I), U(xc) cannot

exceed the maximum utility achievable in that situation. Therefore, at least one of

U(xc) ≤ V (pa, Ia) and U(xc) ≤ V (pb, Ib)

must hold. Therefore,

U(xc) ≤ max{V (pa, Ia), V (pb, Ib)},

and thus (6.8) holds.

The intuition is illustrated in Figure 6.19 below. Here we consider only two goods. The

area on or below the blue line denotes the feasible bundles under the price-income vector

(pa, Ia). The area on or below the yellow line denotes the feasible bundles under the

price-income vector (pb, Ib). The area on or below the green line denotes the feasible
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bundles under the price-income vector
-
αpa + (1 − α)pb, αIa + (1 − α)Ib

.
. It is clear

that the area on or below the green line is either covered by the area on or below the blue

line or covered by the area on or below the yellow line. Therefore, the optimal bundle

under the price-income vector
-
αpa + (1 − α)pb, αIa + (1 − α)Ib

.
(on or below the green

line) is inside the union of the area on or below the blue line and the yellow line. Thus,

such a bundle must be attainable under either the price-income vector (pa, Ia) or the

price-income vector (pb, Ib). On the other hand, since the union of the areas are larger

than the area on or below the green line, the better of the optimal bundle under the

price-income vector (pa, Ia) and that under the price-income vector (pb, Ib) may possibly

attain higher utility compared to the optimal bundle under the the price-income vector
-
αpa + (1 − α)pb, αIa + (1 − α)Ib

.
. That is,

V
-
αpa + (1 − α)pb, αIa + (1 − α)Ib

.
≤ max

/
V (pa, Ia) , V

-
pb, Ib

.0
.

Figure 6.19: Budget Sets

22



Dynamic Optimization

Appendix A

Theorem 1 (Separating Hyperplane Theorem (Part I)). Suppose that B ⊂ RN is convex

and closed, and that y ∕∈ B. Then there is a p ∈ RN with p ∕= 0, and a value c ∈ R such

that p · y > c and p · x < c for every x ∈ B.

Proof. For any z ∈ RN and z ∕= y, define p = y − z. First, p · y > p · z because

p · (y − z) = ‖y − z‖2 > 0. Let c = p ·
-

y+z
2

.
so that p · y > c > p · z.

Suppose z = arg minx∈B ‖y − x‖2 (see Figure 6.20). (Existence of z? Yes, but needs

proof.6) Consider an arbitrary x ∈ B.

‖z − y‖2 ≤ ‖(1 − λ) z + λx − y‖2 = ‖(1 − λ) (z − y) + λ (x − y)‖2

= (1 − λ)2 ‖z − y‖2 + λ2 ‖x − y‖2 + 2 (1 − λ) λ (z − y) · (x − y)

=⇒ 0 ≤ λ (λ − 2) ‖z − y‖2 + λ2 ‖x − y‖2 + 2 (1 − λ) λ (z − y) · (x − y)

=⇒ 0 ≤ (λ − 2) ‖z − y‖2 + λ ‖x − y‖2 + 2 (1 − λ) (z − y) · (x − y)

Taking limit, letting λ go to zero,

0 ≤ −2 (z − y) · (z − y) + 2 (z − y) · (x − y)

=⇒ 0 ≤ 2 (z − y) · (x − z) = −2p · (x − z) =⇒ p · z ≥ p · x.

Therefore, p · y > c > p · z ≥ p · x for all x ∈ B.

Figure 6.20: Separating Hyperplane Theorem (Part I)
6To prove the existence of z, we invoke the Extreme Value Theorem. However, we could not apply the

theorem directly since the set B may not be bounded. Define a new set B̂ = {x ∈ B : ‖q − y‖ ≥ ‖x − y‖}
for some q ∈ B Then, B̂ is closed and bounded. B̂ is bounded since ‖x‖ ≤"#$%

Triangle Inequality

‖y‖+‖y−x‖ ≤"#$%
Definition of B̂

‖y‖+‖q−y‖.

We could apply the Extreme Value Thereom on B̂ and get a minimizer z. For those x ∈ B \B̂, ‖z −y‖2 ≤
‖q − y‖2 < ‖x − y‖2. Therefore, z minimizes ‖x − y‖2 for all x ∈ B.
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Theorem 2 (Supporting Hyperplane Theorem). Suppose that B ⊂ RN is convex and

that x is not an element of the interior of set B (x /∈ Int B). Then there is p ∈ RN with

p ∕= 0 such that p · x ≥ p · y for every y ∈ B.

Proof. Consider x /∈ Int B. Then we can find a sequence xm → x such that for all m,

xm is not an element of the closure7 of the set B (xm /∈ Cl B). By Theorem 1 Separating

Hyperplane Theorem (Part I), for each m there is a pm ∕= 0 and a cm ∈ R such that

pm · xm > cm ≥ pm · y (6.10)

for every y ∈ B. Without loss of generality, suppose that ‖pm‖ = 1 for every m. Thus,

extracting a subsequence if necessary8, we can assume that there is p ∕= 0 and c ∈ R such

that pm → p and cm → c. Taking limits of 6.10, we have

p · x ≥ c ≥ p · y

for every y ∈ B.

Theorem 3 (Separating Hyperplane Theorem (Part II)). Suppose that the convex sets

A, B ⊂ RN are disjoint (i.e., A ∩ B = ∅). Then there is p ∈ RN with p ∕= 0, and a value

c ∈ R, such that p · x ≥ c for every x ∈ A and p · y ≤ c for every y ∈ B. That is, there is

a hyperplane that separates A and B, leaving A and B on different sides of it.

Proof. Consider arbitrary x ∈ A and y ∈ B and let z = x − y. Let

D =
/
z ∈ RN : z = x − y for some x ∈ A and some y ∈ B

0
.

Now we show that D is convex. Suppose z1, z2 ∈ D. Then

αz1 + (1 − α) z2 = [αx1 + (1 − α) x2] − [αy1 + (1 − α) y2] .

Since A and B are convex, αx1 + (1 − α) x2 ∈ A and αy1 + (1 − α) y2 ∈ B.

So αz1 + (1 − α) z2 ∈ D. Therefore, D is convex. Since A and B are disjoint, 0 /∈ D.

Since 0 /∈ D, we have 0 /∈ Int D. Then, we could apply Thereom 2 Supporting Hyperplane
7A closure of a set A is the union of the set A and its limit points.
8The existence of convergent subsequence is a result of the Bolzano–Weierstrass Theorem: each

bounded sequence in RN has a convergent subsequence.
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Theorem: there is p′ ∈ RN with p′ ∕= 0 such that p′ · 0 ≥ p′ · z for all z ∈ D. Let p = −p′,

we have 0 ≤ p · (x − y) or p · y ≤ p · x for all x ∈ A and y ∈ B. To complete the proof, let

c =
infx∈A p · x + supy∈B p · y

2 .

Theorem 6.1 (Separation Theorem). If B and A are two convex sets, that have no

interior points in common, and at least one of the sets has a non-empty interior,9 then

we can find a non-zero vector p and a number b such that the hyperplane px = b separates

the two sets, or

px =

)
***+

***,

≤ b for all x ∈ A

≥ b for all x ∈ B.

(6.6)

Proof. Since the two convex sets B and A have no interior points in common, we could

apply Theorem 3 Separating Hyperplane Theorem (Part II) to Int B and Int A. The

boundaries of B and A are the limit points of the interiors, and thus must lie in the same

half-space.10 Therefore, the hyperplane separates the convex sets B and A.

Appendix B

Claim. The continuity of G ensures the closedness of the set {x|G(x) ≤ c}.

Proof. For closedness, we need to show that for any sequence {xn}∞
n=1 where G(xn) ≤ c

for all n and x = lim
n→∞

xn, we must have G(x) ≤ c.

We prove by contradiction. Suppose that there exists a sequence {xn}∞
n=1 where G(x) ≤ c

for all n and x = lim
n→∞

xn, but G(x) > c. Then by continuity of G, there exists ε > 0 such

that for all y satisfying ‖y − x‖ < ε, we have G(y) > c. Therefore, ∃N > 0, s.t. ∀n ≥ N ,

G(xn) > c. This contradicts with G(xn) ≤ c for all n.

9The qualification that at least one of the sets should have a non-empty interior rules out some
awkward cases where the sets are of smaller dimension than the whole space. It is stated for completeness.
In economic applications, the contour set of the objective function is full-dimensional, so no difficulty
arises on this account.

10The idea is similar to the proof in Appendix B. Suppose that the boundary lies in the other half-space,
then there must be some interior points in the other half-space, which leads to a contradiction.
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