Chapter 6. Convex Sets and Their Separations

Xiaoxiao Hu

March 8, 2022

Introduction

- In the previous chapters, we have learned first-order necessary conditions for constrained maximization problems.
- We also mentioned that those conditions may not be sufficient.
- In this and the following two chapters, we will discuss sufficient conditions.

6.A. The Separation Property

• Consider the following maximization problem:

 $\max_{x} F(x)$
s.t. $G(x) \le c$,

where $G(x) \leq c$ is a scalar constraint.

- x^* : the optimal choice; v^* : the maximum value.
- We are now interested to know the properties of the functions F and G that ensure the maximum.

The Separation Property

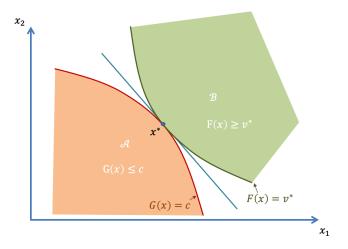


Figure 6.1: Separation by the common tangent

The Separation Property

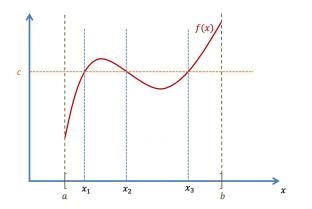
- To get some idea about the general property, we will interpret the solution in terms of curvatures of F and G.
- New concepts are needed for our discussion.

Contour Sets

Definition 6.A.1 (Lower Contour Set). For a function f: $S \subset \mathbb{R}^N \to \mathbb{R}$, the lower contour set of f for the value $c \in \mathbb{R}$ is $\{x | f(x) \leq c\}$.

Definition 6.A.2 (Upper Contour Set). For a function f: $\mathcal{S} \subset \mathbb{R}^N \to \mathbb{R}$, the upper contour set of f for the value $c \in \mathbb{R}$ is $\{x | f(x) \ge c\}$.

Contour Sets



- Lower contour set of f for the value c: $[a, x_1] \cup [x_2, x_3]$;
- Upper contour set of f for the value c: $[x_1, x_2] \cup [x_3, b]$.

The Separation Property

In Figure 6.1,

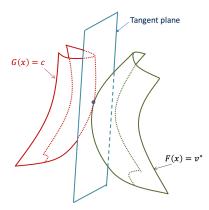
- The lower contour set of G for c is Set \mathcal{A} .
- The upper contour set of F for v^* is Set \mathcal{B} .
- Such curvatures ensure a maximum.

Question: What is the general property of such curvatures?

- The sets \mathcal{B} and \mathcal{A} lie one to each side of their common tangent, with only their common point x^* on that line.
- In other words, the common tangent separates the *x*-plane into two halves, each containing one of the two sets.

The Separation Property

• For three-variables, the common tangent is a plane.



• In higher dimensions, it will be a hyperplane.

The Separation Property

- This separation property is the crucial property that allows us to find the maxima, and obtain sufficient conditions for the maximization problem.
- We will next examine the explicit conditions on the functions F and G that ensure the right curvature.

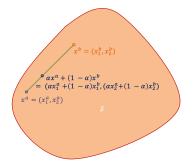
6.B. Convex Sets and Functions

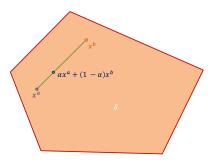
Definition 6.B.1 (Convex Set). A set S of points in *n*dimensional space is called **convex** if, given any two points $x^{a} = (x_{1}^{a}, x_{2}^{a}, ..., x_{n}^{a})$ and $x^{b} = (x_{1}^{b}, x_{2}^{b}, ..., x_{n}^{b})$ in S and any

real number $\alpha \in [0, 1]$, the point $\alpha x^a + (1 - \alpha)x^b = (\alpha x_1^a + \alpha x_1^a)$

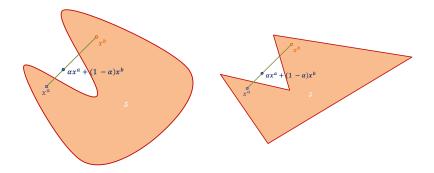
 $(1-\alpha)x_1^b, ..., \alpha x_n^a + (1-\alpha)x_n^b)$ is also in \mathcal{S} .

Convex Sets





Non-Convex Sets



• Apply the concept of convex sets to the lower contour set of G, we could reinterpret the bulging outward curvature as follows: the lower contour set of G is convex, or

the set
$$\{x|G(x) \le c\}$$
 is convex. (6.1)

• Algebraically, for all $\alpha \in [0, 1]$,

 $G(x^a) \le c \text{ and } G(x^b) \le c \implies G(\alpha x^a + (1 - \alpha)x^b) \le c.$

• We need to invoke the condition for all c.

• The condition (6.1) with a general c is equivalent to

$$G(\alpha x^{a} + (1 - \alpha)x^{b}) \le \max\{G(x^{a}), G(x^{b})\}, \qquad (6.2)$$

for all x^a , x^b and for all $\alpha \in [0, 1]$.

• A function G satisfying this condition is called quasiconvex.

Definition 6.B.2 (Quasi-convex Function). A function f:

 $\mathcal{S} \to \mathbb{R}$, defined on a convex set $\mathcal{S} \subset \mathbb{R}^N$, is quasi-convex

- if the set $\{x | f(x) \le c\}$ is convex for all $c \in \mathbb{R}$,
- or equivalently, if

$$f(\alpha x^{a} + (1 - \alpha)x^{b}) \le \max\{f(x^{a}), f(x^{b})\},$$
 (6.3)

for all x^a , x^b and for all $\alpha \in [0, 1]$.

Next, we show the equivalence of

(a) The set $\{x | f(x) \le c\}$ is convex for all $c \in \mathbb{R}$;

(b)
$$f(\alpha x^a + (1 - \alpha)x^b) \leq \max\{f(x^a), f(x^b)\}$$
, for all x^a, x^b
and for all $\alpha \in [0, 1]$.

Quasi-Concavity

• The parallel condition on F is that the upper contour set of F is convex, or F is quasi-concave.

Definition 6.B.3 (Quasi-concave Function). A function f:

 $\mathcal{S} \to \mathbb{R}$, defined on a convex set $\mathcal{S} \subset \mathbb{R}^N$, is quasi-concave

- if the set $\{x | f(x) \ge c\}$ is convex for all $c \in \mathbb{R}$,
- or equivalently, if $f(\alpha x^a + (1-\alpha)x^b) \ge \min\{f(x^a), f(x^b)\}$, for all x^a , x^b and for all $\alpha \in [0, 1]$.

A digression: quasi-convexity and convexity

The quasi in Definition 6.B.2 and 6.B.3 serves to distringuish them from stronger properties of convexity and concavity.

Definition 6.B.4 (Convex Function). A function $f : S \to \mathbb{R}$, defined on a convex set $S \subset \mathbb{R}^N$, is convex if

$$f(\alpha x^a + (1-\alpha)x^b) \le \alpha f(x^a) + (1-\alpha)f(x^b), \qquad (6.4)$$

for all x^a , x^b and for all $\alpha \in [0, 1]$.

A digression: quasi-convexity and convexity

• (6.4) convexity implies (6.3) quasi-convexity since

$$f(\alpha x^a + (1-\alpha)x^b) \underbrace{\leq}_{(6.4)} \alpha f(x^a) + (1-\alpha)f(x^b)$$

$$\leq \alpha \max\{f(x^{a}), f(x^{b})\} + (1 - \alpha) \max\{f(x^{a}), f(x^{b})\}$$

= max{ $f(x^{a}), f(x^{b})$ }.

• In other words, a convex function must be quasi-convex.

A digression: quasi-concavity and textconcavity

• Similarly, we could define concavity and compare it with quasi-concavity.

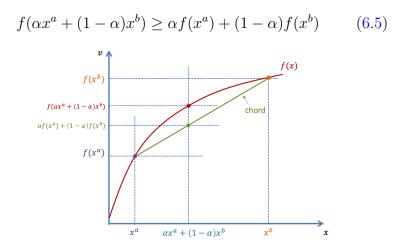
Definition 6.B.5 (Concave Function). A function $f : S \to \mathbb{R}$, defined on a convex set $S \subset \mathbb{R}^N$, is concave if

$$f(\alpha x^a + (1-\alpha)x^b) \ge \alpha f(x^a) + (1-\alpha)f(x^b), \qquad (6.5)$$

for all x^a , x^b and for all $\alpha \in [0, 1]$.

• Following the same logic, we could show that a concave function must be quasi-concave.

Concave Functions



The graph of the function lies on or above the chord joining any two points of it. 23

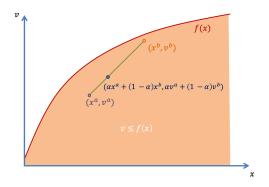
Concave Functions

- An alternative interpretation of a concave function is sometimes useful.
- Consider the (n+1)-dimensional space consisting of points like (x, v).
- Define the set $\mathcal{F} = \{(x, v) | v \leq f(x)\}.$

Claim. f is a concave function if and only if \mathcal{F} is a convex set.

Concave Functions

Claim. f is a concave function iff \mathcal{F} is a convex set.



The claim means that the concave function f traps a convex

set \mathcal{F} underneath its graph.

Two More Concepts: Interior Point

Definition 6.B.6 (Interior Point). A point $x^o \in S$ is called an interior point if there exists a real number r > 0 such that for all x such that $||x - x^o|| < r$, we have $x \in S$.

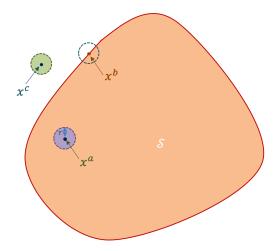
- That is, a point $x^o \in S$ is an interior point if all points within the distance of r from the point x^o are in S.
- In the plane, such points will form a disc of radius r centered at x^o.

Two More Concepts: Boundary Point

Definition 6.B.7 (Boundary Point). A point $x^o \in S$ is called an boundary point if for any real number r > 0, there exist x, y such that $||x - x^o|| < r$, $||y - x^o|| < r$ and $x \in S$, $y \notin S$.

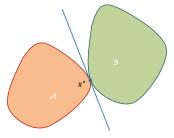
 That is, a boundary point of S is interior neither to S nor to the rest of the space.

Interior and Boundary Points

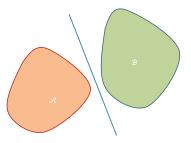


Separation

• Separation is possible.



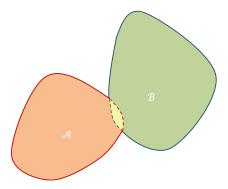
(a) common tangent



(b) no points in common

Separation

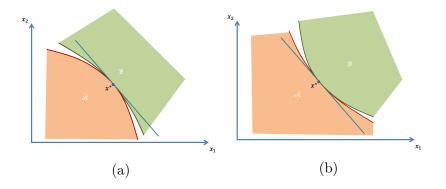
• Separation is impossible.



(c) interior points in common

Separation

• Convexity of the sets is important.



Separation Theorem

Theorem 6.1 (Separation Theorem). If \mathcal{B} and \mathcal{A} are two convex sets, that have no interior points in common, and at least one of the sets has a non-empty interior, then we can find a non-zero vector p and a number b such that the hyperplane px = b separates the two sets, or

$$px = \sum_{i=1}^{n} p_i x_i \begin{cases} \leq b & \text{ for all } x \in \mathcal{A} \\ \geq b & \text{ for all } x \in \mathcal{B}. \end{cases}$$
(6.6)

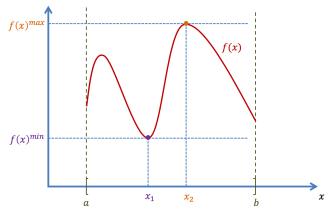
6.C. Optimization by Separation

Existence of Solution

In most economic applications, the functions F and G are well-behaved, and the existence of solution is ensured by the Extreme Value Theorem.

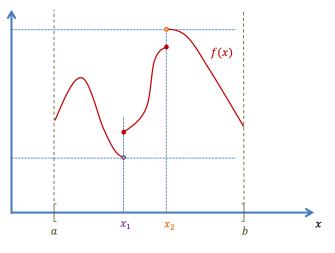
Theorem (Extreme Value Theorem). If f is a continuous function defined on a closed and bounded set $\mathcal{A} \subset \mathbb{R}^N$, then f attains an absolute maximum and absolute minimum value on \mathcal{A} .

Extreme Value Theorem



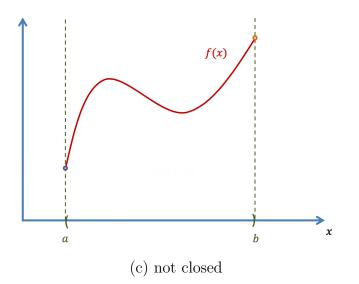
all conditions met

Extreme Value Theorem

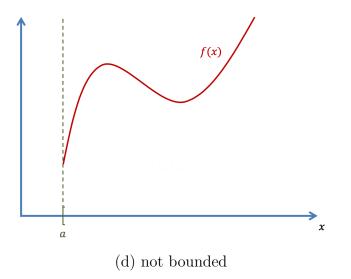


(b) not continuous

Extreme Value Theorem



Extreme Value Theorem



Existence of Solution

- For our discussion in this chapter, we impose F and G being continuous, and the constraint set being bounded.
- Once we impose these conditions, we could apply Extreme Value Theorem and existence of maximum is ensured.
- Again, for our applications, these conditions are almost always satisfied and the existence of an optimum is usually not a problem.

Besides the above conditions, we also impose

- F quasi-concave and
- G quasi-convex,

so that all conditions assumed in Figure 6.1 are met and the Seperation Theorem (Theorem 6.1) applies.

- The equation of separating common tangent: px = b.
- The equation is unaffected if we multiply it through by

-1, but will reverse directions of inequalities in

$$px = \sum_{i=1}^{n} p_i x_i = \begin{cases} \leq b & \text{ for all } x \in \mathcal{A} \\ \geq b & \text{ for all } x \in \mathcal{B}. \end{cases}$$
(6.6)

• To ensure that the inequalities are consistent for the set \mathcal{B} and \mathcal{A} in Figure 6.1 and in Theorem 6.1, we choose $p_1, p_2 > 0.$

- Since x^* lies on the separating tangent, so $px^* = b$.
- Therefore,

$$px = \sum_{i=1}^{n} p_i x_i = \begin{cases} \leq b & \text{for all } x \in \mathcal{A} \\ \geq b & \text{for all } x \in \mathcal{B}. \end{cases}$$
(6.6)

tells us that x^* gives the largest value of px among all points in \mathcal{A} , that is, among all points satisfying $G(x) \leq c$.

• Similarly, x^* gives the smallest value of px among all points in \mathcal{B} , that is, among all points satisfying $F(x) \ge v^*$.

Theorem 6.2 (Optimization by Separation). Given a quasiconcave function F and a quasi-convex function G, the point x^* maximizes F(x) subject to $G(x) \leq c$ if, and only if, there is a non-zero vector p such that

- (i) x^* maximizes px subject to $G(x) \leq c$, and
- (ii) x^* minimizes px subject to $F(x) \ge v^*$.

- Generalization to several constraints is straightforward.
- Set \mathcal{A}_i of points for which $G^i(x) \leq c_i$ is convex if G^i is quasi-convex.
- If this is so for all i, then set A of points satisfying all constraints, being intersection of the convex sets A_i, is also convex.
- Then Theorem 6.2 applies.

- Note that Theorem 6.2 provides an "if and only if" result.
- That is, the conditions are both necessary and sufficient for optimality.
- But the problem with this theorem is that the conditions are not easy to verify in practical applications.
- In the next two chapters, we shall see sufficient conditions that are more useful in this regard.

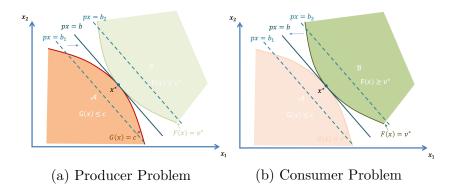
Decentralization

- The real benefit from splitting the maximization problem into two separate problems comes from its economic interpretation.
- It raises the possibility of decentralizing optimal resource allocations using prices.

Decentralization

- Consider x as the production-cum-consumption vector, the constraints reflect limited resource availability, and the objective is the utility function.
- Now interpret *p* as the row vector of prices of outputs.
- The original problem of social optimization (Figure 6.1) can be decentralized.

Decentralization



Remark: Advantages of Separation

This separation of decision has two advantages:

- i. Informational: producer does not need to know consumer's taste; and consumer does not need to know production technology.
- ii. Incentives: the process relies on self-interest of each side to ensure effective implementation of optimum.

Remark: Relative Prices

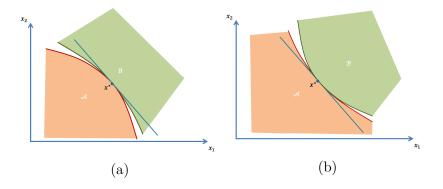
- Another remark is that only the relative prices matter for economic decisions.
- In our formulation here, nothing will change if we multiply vector *p* and related number *b* by same positive number.
- This result is consistent with our discussions in previous chapters.

Remark: Problems with Current Model

- Real life decentralization problem is more complicated.
- One problem is how correct price vector is found, since people may not have incentive to reveal their private information that is needed to calculate right prices.
- Besides, issues of externality and distribution arise when there are many producers and consumers.
- Interested students may refer to microeonomic textbooks.

Remark: Partial Failure of Decentralization

There exist cases where full decentralization is impossible.



Remark: Partial Failure of Decentralization

- i. In (a), \mathcal{B} is not convex and x^* does not minimize the expenditure in the consumer problem. Here the consumer prefers extremes to a diversified bundle of goods.
- ii. In (b), \mathcal{A} is not convex and x^* does not maximize the producer's value of output. Here, the production technology has economies of scale or of specialization.

But in both cases, x^* maximizes F(x) subject to $G(x) \leq c$.

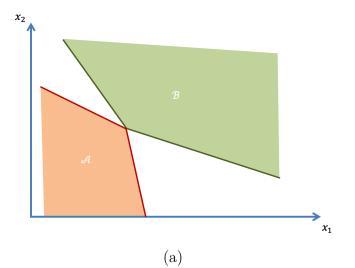
Remark: Partial Failure of Decentralization

- For x^* to be a maximizer of the original problem, what really matters is relative curvature of F and G.
- We will discuss this idea and develop the conditions for maximization in Chapter 8.

6.D. Uniqueness

- In Figure 6.1, the boundaries of the sets \mathcal{B} and \mathcal{A} are shown as smooth curves.
- But in general, a convex set can have straight-line segments along its boundary.
- Such possibilities have implications for separation and optimization.

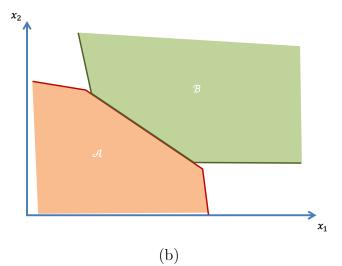
Kinks



Kinks

- Two corners happen to meet at x^* .
- We can find many lines through x^* that separate the two sets: the decentralizing price vector p is not unique.
- It is not a serious problem for decentralization.
- In fact, separation is a more general notion than that of a common tangent.
- Decentralization depends on separation property.

Flat Portion



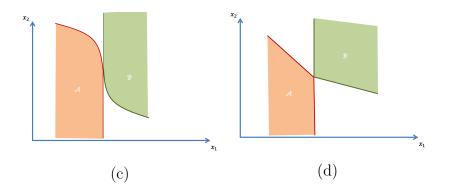
Flat Portion

- Two sets have a flat portion in common.
- Any points along this region serves as the optimum x^* .
- It causes problems about decentralization.
- Given p, all points on the flat portion of A will yield same value of output to producer; and all those on the flat portion of B will yield same utility to consumer.

Flat Portion

- Thus, there is no reason to believe that choices made separately by producer and consumer would coincide.
- In such a situation, we could only make a weaker claim: if producer and consumer happen to make coincident choices, neither will have strict incentive to depart from such choices.

Free Good



Free Good

- In (c), the two boundaries have vertical parts in common.
- We will have a vertical separating line, indicating p₂ = 0.
 In such cases, good 2 is a free good.
- Similarly, horizontal separating lines imply $p_1 = 0$, i.e., good 1 is a free good.
- In (d), there is a vertical separating line, whereas there are also non-vertical ones.
- Without stronger assumptions, it is not possible to guarantee strictly positive prices.

Negative Prices

- The case of a positive slope of the common tangent, or negative price of either good, is usually avoided by assuming
 - either that "free disposal" is possible so that the boundary of \mathcal{A} cannot slope upward;
 - or that both goods are desirable so that the boundary of ${\cal B}$ cannot slope upward.
- In our figures, these assumptions are implicit.

Problems with Straight-line Segments

To summarize,

- The problems of kinks are not serious.
- In fact, such cases generalize the concept of tangency and preserve the decentralization property.
- Problems of flats are more serious because optimum choices can be non-unique and decentralization becomes problematic.

Solution to problems of flats

- We will then discuss what additional assumptions are needed to avoid this problem.
- In fact, a strengthening of the concepts of quasi-convaxity and quasi-convexity will suffice.

Strongly Convex Set

Definition 6.D.1 (Strongly Convex Set). A set S of points in *n*-dimensional space is called strongly convex if, given any two points $x^a \in S$ and $x^b \in S$ and any real number $\alpha \in (0, 1)$, the point $\alpha x^a + (1 - \alpha) x^b$ is interior to S.

Strictly Quasi-concave Function

Definition 6.D.2 (Strictly Quasi-concave Function). A function $f : S \to \mathbb{R}$, defined on a convex set $S \subset \mathbb{R}^N$, is strictly quasi-concave if the set $\{x | f(x) \ge c\}$ is strongly convex for all $c \in \mathbb{R}$, or equivalently, if

$$f(\alpha x^{a} + (1 - \alpha)x^{b}) > \min\{f(x^{a}), f(x^{b})\},\$$

for all x^a , x^b and for all $\alpha \in (0, 1)$.

Strictly Quasi-convex Function

Definition 6.D.3 (Strictly Quasi-convex Function). A function $f : S \to \mathbb{R}$, defined on a convex set $S \subset \mathbb{R}^N$, is strictly quasi-convex if the set $\{x | f(x) \leq c\}$ is strongly convex for all $c \in \mathbb{R}$, or equivalently, if

$$f(\alpha x^{a} + (1 - \alpha)x^{b}) < \max\{f(x^{a}), f(x^{b})\},\$$

for all x^a , x^b and for all $\alpha \in (0, 1)$.

- Consider again the problem of maximizing F(x) subject to G(x) ≤ c, but now consider F being strictly quasiconcave, and G still being quasi-convex.
- Suppose x^* satisfies the conditions of Theorem 6.2.
- Then, x^* must be a unique solution.

- To see this, we show by contradiction.
- Suppose that \hat{x} is another solution.
- Then, x^* and \hat{x} should be optimal for the consumer's problem.

• Thus,
$$px^* = p\hat{x} = b$$
 and $F(x^*) = F(\hat{x}) = v^*$.

Consider the point $\tilde{x} = \alpha x^* + (1 - \alpha)\hat{x}$, for some $\alpha \in (0, 1)$.

(i)
$$p\tilde{x} = p(\alpha x^* + (1 - \alpha)\hat{x}) = \alpha p x^* + (1 - \alpha)p\hat{x}.$$

$$= \alpha b + (1 - \alpha b) = b$$

(ii) Since F is strictly quasi-concave,

$$F(\tilde{x}) > \min\{F(x^*), F(\hat{x})\} = v^*.$$

• By continuity of F, there exists $\beta < 1$, such that

 $F(\beta \tilde{x}) > v^*$ (i.e., $\beta \tilde{x}$ is interior to \mathcal{B}).

• Besides,
$$p(\beta \tilde{x}) .$$

- Thus, the bundle $\beta \tilde{x}$ is interior to \mathcal{B} with $p(\beta \tilde{x}) < b$, contradicting with separation property.
- Therefore, initial supposition must be wrong.
- Strict quasi-concavity of F implies uniqueness of maximizer. 71

Strictly Quasi-convex G

Remark. Strict quasi-convexity of G together with quasiconcavity of F also imply the uniqueness of the maximizer. If there are more than one constraint, we require every component constraint function G^i to be strictly quasi-convex.

6.E. Examples

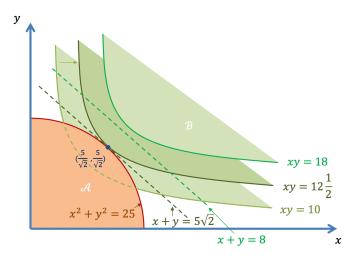
Example 6.1: Illustration of Separation

Consider the following problem:

$$\max_{\substack{x \ge 0, \, y \ge 0}} F(x, y) = xy$$

s.t. $G(x, y) = x^2 + y^2 \le 25.$

Example 6.1: Illustration of Separation



Example 6.2: Indirect Utility and Expenditure Functions

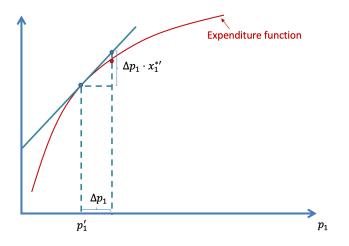
Part I: Expenditure Function

The expenditure function is

$$E(p, u) = \min_{x} \{ px | U(x) \ge u \}.$$

Show that E(p, u) is concave in p for each fixed u.

Example 6.2 (Part I): Intuition



Part II: Indirect Utility Function

The indirect utility function is

$$V(p, I) = \max_{x} \{ U(x) | px \le I \}.$$

Show that V(p, I) is quasi-convex in (p, I).

Example 6.2 (Part II): Intuition

