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Introduction

• In the previous chapters, we have learned first-order nec-

essary conditions for constrained maximization problems.

• We also mentioned that those conditions may not be suf-

ficient.

• In this and the following two chapters, we will discuss

sufficient conditions.
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6.A. The Separation Property

• Consider the following maximization problem:

max
x

F (x)

s.t. G(x) ≤ c,

where G(x) ≤ c is a scalar constraint.

• x∗: the optimal choice; v∗: the maximum value.

• We are now interested to know the properties of the func-

tions F and G that ensure the maximum.
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The Separation Property

Figure 6.1: Separation by the common tangent
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The Separation Property

• To get some idea about the general property, we will in-

terpret the solution in terms of curvatures of F and G.

• New concepts are needed for our discussion.
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Contour Sets

Definition 6.A.1 (Lower Contour Set). For a function f :

S ⊂ RN → R, the lower contour set of f for the value c ∈ R

is {x|f(x) ≤ c}.

Definition 6.A.2 (Upper Contour Set). For a function f :

S ⊂ RN → R, the upper contour set of f for the value c ∈ R

is {x|f(x) ≥ c}.
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Contour Sets

• Lower contour set of f for the value c: [a, x1]
![x2, x3];

• Upper contour set of f for the value c: [x1, x2]
![x3, b].
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The Separation Property

In Figure 6.1,

• The lower contour set of G for c is Set A.

• The upper contour set of F for v∗ is Set B.

• Such curvatures ensure a maximum.
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The Separation Property

Question: What is the general property of such curva-

tures?

• The sets B and A lie one to each side of their common

tangent, with only their common point x∗ on that line.

• In other words, the common tangent separates the x-plane

into two halves, each containing one of the two sets.
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The Separation Property

• For three-variables, the common tangent is a plane.

• In higher dimensions, it will be a hyperplane.
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The Separation Property

• This separation property is the crucial property that al-

lows us to find the maxima, and obtain sufficient condi-

tions for the maximization problem.

• We will next examine the explicit conditions on the func-

tions F and G that ensure the right curvature.

11



6.B. Convex Sets and Functions

Definition 6.B.1 (Convex Set). A set S of points in n-

dimensional space is called convex if, given any two points

xa = (xa
1, xa

2, ..., xa
n) and xb = (xb

1, xb
2, ..., xb

n) in S and any

real number α ∈ [0, 1], the point αxa + (1 − α)xb = (αxa
1 +

(1 − α)xb
1, ..., αxa

n + (1 − α)xb
n) is also in S.
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Convex Sets
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Non-Convex Sets
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Quasi-Convexity

• Apply the concept of convex sets to the lower contour set

of G, we could reinterpret the bulging outward curvature

as follows: the lower contour set of G is convex, or

the set {x|G(x) ≤ c} is convex. (6.1)

• Algebraically, for all α ∈ [0, 1],

G(xa) ≤ c and G(xb) ≤ c =⇒ G(αxa + (1 − α)xb) ≤ c.

• We need to invoke the condition for all c.
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Quasi-Convexity

• The condition (6.1) with a general c is equivalent to

G(αxa + (1 − α)xb) ≤ max{G(xa), G(xb)}, (6.2)

for all xa, xb and for all α ∈ [0, 1].

• A function G satisfying this condition is called quasi-

convex.
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Quasi-Convexity

Definition 6.B.2 (Quasi-convex Function). A function f :

S → R, defined on a convex set S ⊂ RN , is quasi-convex

• if the set {x|f(x) ≤ c} is convex for all c ∈ R,

• or equivalently, if

f(αxa + (1 − α)xb) ≤ max{f(xa), f(xb)}, (6.3)

for all xa, xb and for all α ∈ [0, 1].
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Quasi-Convexity

Next, we show the equivalence of

(a) The set {x|f(x) ≤ c} is convex for all c ∈ R;

(b) f(αxa + (1 − α)xb) ≤ max{f(xa), f(xb)}, for all xa, xb

and for all α ∈ [0, 1].
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Quasi-Concavity

• The parallel condition on F is that the upper contour set

of F is convex, or F is quasi-concave.

Definition 6.B.3 (Quasi-concave Function). A function f :

S → R, defined on a convex set S ⊂ RN , is quasi-concave

• if the set {x|f(x) ≥ c} is convex for all c ∈ R,

• or equivalently, if f(αxa+(1−α)xb) ≥ min{f(xa), f(xb)},

for all xa, xb and for all α ∈ [0, 1].
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A digression: quasi-convexity and convexity

The quasi in Definition 6.B.2 and 6.B.3 serves to distringuish

them from stronger properties of convexity and concavity.

Definition 6.B.4 (Convex Function). A function f : S →

R, defined on a convex set S ⊂ RN , is convex if

f(αxa + (1 − α)xb) ≤ αf(xa) + (1 − α)f(xb), (6.4)

for all xa, xb and for all α ∈ [0, 1].
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A digression: quasi-convexity and convexity

• (6.4) convexity implies (6.3) quasi-convexity since

f(αxa + (1 − α)xb) ≤"#$%
(6.4)

αf(xa) + (1 − α)f(xb)

≤ α max{f(xa), f(xb)} + (1 − α) max{f(xa), f(xb)}

= max{f(xa), f(xb)}.

• In other words, a convex function must be quasi-convex.
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A digression: quasi-concavity and textconcavity

• Similarly, we could define concavity and compare it with

quasi-concavity.

Definition 6.B.5 (Concave Function). A function f : S →

R, defined on a convex set S ⊂ RN , is concave if

f(αxa + (1 − α)xb) ≥ αf(xa) + (1 − α)f(xb), (6.5)

for all xa, xb and for all α ∈ [0, 1].

• Following the same logic, we could show that a concave

function must be quasi-concave.
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Concave Functions

f(αxa + (1 − α)xb) ≥ αf(xa) + (1 − α)f(xb) (6.5)

The graph of the function lies on or above the chord joining

any two points of it. 23



Concave Functions

• An alternative interpretation of a concave function is some-

times useful.

• Consider the (n+1)-dimensional space consisting of points

like (x, v).

• Define the set F = {(x, v)|v ≤ f(x)}.

Claim. f is a concave function if and only if

F is a convex set.
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Concave Functions

Claim. f is a concave function iff F is a convex set.

The claim means that the concave function f traps a convex

set F underneath its graph.
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Two More Concepts: Interior Point

Definition 6.B.6 (Interior Point). A point xo ∈ S is called

an interior point if there exists a real number r > 0 such

that for all x such that ‖x − xo‖ < r, we have x ∈ S.

• That is, a point xo ∈ S is an interior point if all points

within the distance of r from the point xo are in S.

• In the plane, such points will form a disc of radius r cen-

tered at xo.
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Two More Concepts: Boundary Point

Definition 6.B.7 (Boundary Point). A point xo ∈ S is

called an boundary point if for any real number r > 0, there

exist x, y such that ‖x − xo‖ < r, ‖y − xo‖ < r and x ∈ S,

y /∈ S.

• That is, a boundary point of S is interior neither to S nor

to the rest of the space.
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Interior and Boundary Points
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Separation

• Separation is possible.

(a) common tangent (b) no points in common
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Separation

• Separation is impossible.

(c) interior points in common
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Separation

• Convexity of the sets is important.

(a) (b)
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Separation Theorem

Theorem 6.1 (Separation Theorem). If B and A are two

convex sets, that have no interior points in common, and

at least one of the sets has a non-empty interior, then we

can find a non-zero vector p and a number b such that the

hyperplane px = b separates the two sets, or

px =
n&

i=1
pixi

'
((()

(((*

≤ b for all x ∈ A

≥ b for all x ∈ B.

(6.6)
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6.C. Optimization by Separation

Existence of Solution

In most economic applications, the functions F and G are

well-behaved, and the existence of solution is ensured by the

Extreme Value Theorem.

Theorem (Extreme Value Theorem). If f is a continuous

function defined on a closed and bounded set A ⊂ RN , then

f attains an absolute maximum and absolute minimum value

on A.
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Extreme Value Theorem

all conditions met
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Extreme Value Theorem

(b) not continuous
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Extreme Value Theorem

(c) not closed
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Extreme Value Theorem

(d) not bounded
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Existence of Solution

• For our discussion in this chapter, we impose F and G

being continuous, and the constraint set being bounded.

• Once we impose thses conditions, we could apply Extreme

Value Theorem and existence of maximum is ensured.

• Again, for our applications, these conditions are almost

always satisfied and the existence of an optimum is usu-

ally not a problem.
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Optimization by Separation

Besides the above conditions, we also impose

• F quasi-concave and

• G quasi-convex,

so that all conditions assumed in Figure 6.1 are met and the

Seperation Theorem (Theorem 6.1) applies.
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Optimization by Separation

• The equation of separating common tangent: px = b.

• The equation is unaffected if we multiply it through by

−1, but will reverse directions of inequalities in

px =
n&

i=1
pixi =

'
((()

(((*

≤ b for all x ∈ A

≥ b for all x ∈ B.

(6.6)

• To ensure that the inequalities are consistent for the set

B and A in Figure 6.1 and in Theorem 6.1, we choose

p1, p2 > 0.
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Optimization by Separation

• Since x∗ lies on the separating tangent, so px∗ = b.

• Therefore,

px =
n&

i=1
pixi =

'
((()

(((*

≤ b for all x ∈ A

≥ b for all x ∈ B.

(6.6)

tells us that x∗ gives the largest value of px among all

points in A, that is, among all points satisfying G(x) ≤ c.

• Similarly, x∗ gives the smallest value of px among all

points in B, that is, among all points satisfying F (x) ≥ v∗.
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Optimization by Separation

Theorem 6.2 (Optimization by Separation). Given a quasi-

concave function F and a quasi-convex function G, the point

x∗ maximizes F (x) subject to G(x) ≤ c if, and only if, there

is a non-zero vector p such that

(i) x∗ maximizes px subject to G(x) ≤ c, and

(ii) x∗ miminizes px subject to F (x) ≥ v∗.
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Optimization by Separation

• Generalization to several constraints is straightforward.

• Set Ai of points for which Gi(x) ≤ ci is convex if

Gi is quasi-convex.

• If this is so for all i, then set A of points satisfying all

constraints, being intersection of the convex sets Ai, is

also convex.

• Then Theorem 6.2 applies.
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Optimization by Separation

• Note that Theorem 6.2 provides an “if and only if” result.

• That is, the conditions are both necessary and sufficient

for optimality.

• But the problem with this theorem is that the conditions

are not easy to verify in practical applications.

• In the next two chapters, we shall see sufficient conditions

that are more useful in this regard.
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Decentralization

• The real benefit from splitting the maximization prob-

lem into two separate problems comes from its economic

interpretation.

• It raises the possibility of decentralizing optimal resource

allocations using prices.
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Decentralization

• Consider x as the production-cum-consumption vector,

the constraints reflect limited resource availability, and

the objective is the utility function.

• Now interpret p as the row vector of prices of outputs.

• The original problem of social optimization (Figure 6.1)

can be decentralized.
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Decentralization

(a) Producer Problem (b) Consumer Problem
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Remark: Advantages of Separation

This separation of decision has two advantages:

i. Informational: producer does not need to know consumer’s

taste; and consumer does not need to know production

technology.

ii. Incentives: the process relies on self-interest of each side

to ensure effective implementation of optimum.
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Remark: Relative Prices

• Another remark is that only the relative prices matter for

economic decisions.

• In our formulation here, nothing will change if we multiply

vector p and related number b by same positive number.

• This result is consistent with our discussions in previous

chapters.
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Remark: Problems with Current Model

• Real life decentralization problem is more complicated.

• One problem is how correct price vector is found, since

people may not have incentive to reveal their private in-

formation that is needed to calculate right prices.

• Besides, issues of externality and distribution arise when

there are many producers and consumers.

• Interested students may refer to microeonomic textbooks.
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Remark: Partial Failure of Decentralization

There exist cases where full decentralization is impossible.

(a) (b)
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Remark: Partial Failure of Decentralization

i. In (a), B is not convex and x∗ does not minimize the

expenditure in the consumer problem. Here the consumer

prefers extremes to a diversified bundle of goods.

ii. In (b), A is not convex and x∗ does not maximize the pro-

ducer’s value of output. Here, the production technology

has economies of scale or of specialization.

But in both cases, x∗ maximizes F (x) subject to G(x) ≤ c.
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Remark: Partial Failure of Decentralization

• For x∗ to be a maximizer of the original problem, what

really matters is relative curvature of F and G.

• We will discuss this idea and develop the conditions for

maximization in Chapter 8.
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6.D. Uniqueness

• In Figure 6.1, the boundaries of the sets B and A are

shown as smooth curves.

• But in general, a convex set can have straight-line seg-

ments along its boundary.

• Such possibilities have implications for separation and op-

timization.
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Kinks

(a)
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Kinks

• Two corners happen to meet at x∗.

• We can find many lines through x∗ that separate the two

sets: the decentralizing price vector p is not unique.

• It is not a serious problem for decentralization.

• In fact, separation is a more general notion than that of

a common tangent.

• Decentralization depends on separation property.
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Flat Portion

(b)
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Flat Portion

• Two sets have a flat portion in common.

• Any points along this region serves as the optimum x∗.

• It causes problems about decentralization.

• Given p, all points on the flat portion of A will yield

same value of output to producer; and all those on the

flat portion of B will yield same utility to consumer.
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Flat Portion

• Thus, there is no reason to believe that choices made sep-

arately by producer and consumer would coincide.

• In such a situation, we could only make a weaker claim: if

producer and consumer happen to make coincident choices,

neither will have strict incentive to depart from such choices.
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Free Good

(c) (d)
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Free Good

• In (c), the two boundaries have vertical parts in common.

• We will have a vertical separating line, indicating p2 = 0.

In such cases, good 2 is a free good.

• Similarly, horizontal separating lines imply p1 = 0, i.e.,

good 1 is a free good.

• In (d), there is a vertical separating line, whereas there

are also non-vertical ones.

• Without stronger assumptions, it is not possible to guar-

antee strictly positive prices.
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Negative Prices

• The case of a positive slope of the common tangent, or

negative price of either good, is usually avoided by as-

suming

– either that “free disposal” is possible so that the bound-

ary of A cannot slope upward;

– or that both goods are desirable so that the boundary

of B cannot slope upward.

• In our figures, these assumptions are implicit.
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Problems with Straight-line Segments

To summarize,

• The problems of kinks are not serious.

• In fact, such cases generalize the concept of tangency and

preserve the decentralization property.

• Problems of flats are more serious because optimum choices

can be non-unique and decentralization becomes problem-

atic.
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Solution to problems of flats

• We will then discuss what additional assumptions are

needed to avoid this problem.

• In fact, a strengthening of the concepts of quasi-convaxity

and quasi-convexity will suffice.
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Strongly Convex Set

Definition 6.D.1 (Strongly Convex Set). A set S of points

in n-dimensional space is called strongly convex if, given any

two points xa ∈ S and xb ∈ S and any real number

α ∈ (0, 1), the point αxa + (1 − α)xb is interior to S.
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Strictly Quasi-concave Function

Definition 6.D.2 (Strictly Quasi-concave Function). A func-

tion f : S → R, defined on a convex set S ⊂ RN , is strictly

quasi-concave if the set {x|f(x) ≥ c} is strongly convex for

all c ∈ R, or equivalently, if

f(αxa + (1 − α)xb) > min{f(xa), f(xb)},

for all xa, xb and for all α ∈ (0, 1).
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Strictly Quasi-convex Function

Definition 6.D.3 (Strictly Quasi-convex Function). A func-

tion f : S → R, defined on a convex set S ⊂ RN , is strictly

quasi-convex if the set {x|f(x) ≤ c} is strongly convex for

all c ∈ R, or equivalently, if

f(αxa + (1 − α)xb) < max{f(xa), f(xb)},

for all xa, xb and for all α ∈ (0, 1).
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Strictly Quasi-concave F

• Consider again the problem of maximizing F (x) subject

to G(x) ≤ c, but now consider F being strictly quasi-

concave, and G still being quasi-convex.

• Suppose x∗ satisfies the conditions of Theorem 6.2.

• Then, x∗ must be a unique solution.
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Strictly Quasi-concave F

• To see this, we show by contradiction.

• Suppose that x̂ is another solution.

• Then, x∗ and x̂ should be optimal for the consumer’s

problem.

• Thus, px∗ = px̂ = b and F (x∗) = F (x̂) = v∗.
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Strictly Quasi-concave F

Consider the point x̃ = αx∗ + (1 − α)x̂, for some α ∈ (0, 1).

(i) px̃ = p(αx∗ + (1 − α)x̂) = αpx∗ + (1 − α)px̂

= αb + (1 − αb) = b

.

(ii) Since F is strictly quasi-concave,

F (x̃) > min{F (x∗), F (x̂)} = v∗.
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Strictly Quasi-concave F

• By continuity of F , there exists β < 1, such that

F (βx̃) > v∗ (i.e., βx̃ is interior to B).

• Besides, p(βx̃) < px̃ = b.

• Thus, the bundle βx̃ is interior to B with p(βx̃) < b,

contradicting with separation property.

• Therefore, initial supposition must be wrong.

• Strict quasi-concavity of F implies uniqueness of maxi-

mizer. 71



Strictly Quasi-convex G

Remark. Strict quasi-convexity of G together with quasi-

concavity of F also imply the uniqueness of the maximizer.

If there are more than one constraint, we require every com-

ponent constraint function Gi to be strictly quasi-convex.
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6.E. Examples

Example 6.1: Illustration of Separation

Consider the following problem:

max
x≥0, y≥0

F (x, y) = xy

s.t. G(x, y) = x2 + y2 ≤ 25.
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Example 6.1: Illustration of Separation
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Example 6.2: Indirect Utility and Expenditure Functions

Part I: Expenditure Function

The expenditure function is

E(p, u) = min
x

{px|U(x) ≥ u}.

Show that E(p, u) is concave in p for each fixed u.
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Example 6.2 (Part I): Intuition
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Part II: Indirect Utility Function

The indirect utility function is

V (p, I) = max
x

{U(x)|px ≤ I}.

Show that V (p, I) is quasi-convex in (p, I).
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Example 6.2 (Part II): Intuition
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