
Dynamic Optimization

Chapter 4. Shadow Prices

4.A. Comparative Statics

The examination of a change in outcome in response to a change in underlying economic

parameters is known as comparative statics analysis.

Take the consumer choice model as an example:

max
x≥0

U(x)

s.t. p · x ≤ I.

Here, the underlying economic parameters are the prices p and the income I. Suppose

that the optimal choice is x∗. Then, we could perform the following comparative static

analysis.

Income effect:

• Good l is normal if x∗
l is increasing in I;

• Good l is inferior if x∗
l is decreasing in I.

Price effect:

• Good l is a regular good if x∗
l is decreasing in pl.

• Good l is a Giffen good if x∗
l is increasing in pl. (Example: potatoes at low income

level)

• Good l is a gross substitute for Good k if x∗
l is increasing in pk.

• Good l is a gross compelement for Good k if x∗
l is decreasing in pk.

In Chapter 1, we have learned the concept of Marginal Utility of Income, namely, the

marginal increase of utility induced by a marginal change of income. This is also a

comparative static result. We have also learned that the value of Marginal Utility of

Income is the Lagrange multiplier λ. Therefore, it seems that the Lagrange multiplier

λ has an important economic meaning, and provides the answer to a particular type of

comparative static questions. In this chapter, we will focus on λ in general settings.
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4.B. Equality Constraints

In this section, we will discuss the meaning of Lagrange multipliers for the equality

cosntraints. We will first discuss the special case of two-good consumer choice model,

and then move on to the general case with two variables and one constriant. At last, we

will consider more variables and more constraints.

Marginal Utility of Income. We start with a simple two-good consumer choice model.

Recall Example 2.1:

Consider a consumer choosing between two goods x and y, with prices p and q

respectively. His income is I, so the budget constraint is px + qy = I.

The utility function is U(x, y) = α ln(x) + β ln(y).

We have solved the problem in Chapter 2 and the solution is

x∗ = αI

(α + β)p, y∗ = βI

(α + β)q , λ = (α + β)
I

.

Now we are interested to know the effect of the extra amount dI of income on the

maximum utility U(x∗, y∗).

One way to solve this problem is to write the maximum utility as a function of I and

differentiate it with respect to I directly. To calculate the maximum utility, we plug the

resulting optimal consumption bundle into the objective function:

V (p, q, I) = U(x∗, y∗) = α ln(x∗) + β ln(y∗) = α ln
!

αI

(α + β)p

"

+ β ln
!

βI

(α + β)q

"

.

In microeconomic theory, the maximum utility function V (p, q, I) is called the indirect

utility function, to distinguish it from the direct utility function U(x, y) which is defined

directly over the consumption bundle.

With the explicit representation of V (p, q, I), we could calculate the marginal change of

maximum utility V (p, q, I) with respect to the marginal change of I directly, as follows:

∂V (p, q, I)
∂I

= α
(α + β)p

αI

α

(α + β)p + β
(α + β)q

βI

β

(α + β)q = (α + β)
I

.
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Comparing the value of ∂V (p,q,I)
∂I

with the value of λ, it is not hard to see that they are

the same. Therefore, we could have known the utility increment per unit of marginal

addition to income, or Marginal Utility of Income, without calculating ∂V (p,q,I)
∂I

directly.

The result should not be too surprising. In Chapter 1, we have already mentioned that

the economic meaning of the Lagrange multiplier λ in the consumer choice model is the

Marginal Utility of Income.

Below, we reiterate the argument in Chapter 1. First, we write out the problem properly

as follows:
V (p1, p2, I) = max

x1,x2≥0
U(x1, x2)

s.t. p1x1 + p2x2 = I.

Then, we want to argue that λ represents the change of (maximum) utility with respect

to a marginal change of income.

The argument proceeds as follows:

(i) Suppose that we have an interior solution, then the consumer would be indifferent

between spending the extra amount dI of income on good 1 or good 2.

To see this, spending the additional income on good 1 gives additional MU1dI/p1

units of utility and spending on good 2 gives additional MU2dI/p2 units of util-

ity. We could show the equivalence of the two utility increments, or MU1/p1 and

MU2/p2, by the first-order necessary conditions. The Lagrangian of the problem is

L(x, λ) = U(x1, x2) + λ(I − p1x1 − p2x2.)

The first-order necessary conditions on x1 and x2 suggest λ = MU1/p1 = MU2/p2.

We have established that spending the additional income on good 1 and on good 2

have the same effect, and we further know that the effect could also be represented

by λ. That is, dI will increase the utility by MU1dI/p1 = MU2dI/p2 = λ dI.

(ii) Suppose otherwise, that one of the goods attains a corner solution, say x∗
2 = 0.

Then, by the first-order necessary conditions, we know λ = MU1/p1 ≥ MU2/p2.
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Therefore, spending dI on good 1 gives weakly more utility increment, that is,

MU1dI/p1 ≥ MU2dI/p2, and the utility increment is again equal to λ dI. In

the end, the consumer would spend the additional income solely on good 1 if the

inequality holds strict; and she would be indifferent between spending on either

good when the inequality holds with equality. In any case, the utility increment

could be represented by λ dI.

Hopefully, you are now convinced that λ represents the martinal utility of income dv/dI.

We will now move to the general case with two variables and one constraint.

Two variables, one constraint. In the following discussions, we assume that the choice

variables attain interior solutions, or that we do not impose any non-negativity con-

straints. However, you should keep in mind that the result extends to the situations where

the choice variables attain corner solutions, just as our previous argument for marginal

utility of income (argument (ii)) shows. Similar arguments should go through when you

do obtain a corner solution.

The maximization problem is

v = max
x1,x2

F (x1, x2) (MP1)

s.t. G(x) = c.

We are interested to know how much the highest attainable value v would increase due

to a marginal addition to c. And we claim that the Lagrange multiplier λ presents this

value. We already kwow from our previous argument on the marginal utility of income

that the claim is right when G(x) is linear. Below, we will show that the claim is in

general correct.

First, we need to introduce as few more notations. Suppose c increases by an infinitesimal

amount dc. So, the maximization problem becomes

v + dv = max
x1,x2

F (x1, x2) (MP2)

s.t. G(x) = c + dc.
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v + dv represents the new optimum value. We follow notations in the previous chapters

and define the solution to (MP1) x∗ =

#

$$%
x∗

1

x∗
2

&

''(. We further define x∗+dx∗ =

#

$$%
x∗

1 + dx∗
1

x∗
2 + dx∗

2

&

''( to

be the solution to our new maximization problem (MP2). Note that dx∗ is not arbitrary;1

it is the optimum small change in the choice, arising in response to a small change in c.

Next, we will be able to derive the result.

dv =)*+,
by definition

(v + dv) − v =)*+,
by definition

F (x∗ + dx∗) − F (x∗) =)*+,
Taylor approximation

F1(x∗)dx∗
1 + F2(x∗)dx∗

2

=)*+,
First-order conditions

λG1(x∗)dx∗
1 + λG2(x∗)dx∗

2 = λ [G1(x∗)dx∗
1 + G2(x∗)dx∗

2]

=)*+,
Taylor approximation

λ [G(x∗ + dx∗) − G(x∗))] =)*+,
constraints

λ [(c + dc) − c] = λ dcs

The result could be written as follows:

dv/dc = λ. (4.1)

Thus, the Lagrange multiplier is the rate of change of the maximum attainable value of

the objective function with respect to a change in the parameter on the right-hand side of

the constraint.

More variables and more constraints. Now, we consider the case with more variables

and more constraints. The maximization problem is

v = max
x1,x2,...,xn

F (x1, x2, ..., xn) (MP3)

s.t. G1(x) = c1, G2(x) = c2, ..., Gm(x) = cm.

In matrix notation, it is
v = max

x
F (x) (MP3’)

s.t. G(x) = c.

We first consider a change of only one constraint. Suppose, say, c1 increases by an

infinitesimal amount dc1.2

1Previously, we used dx to denote arbitrary deviations when deriving first-order necessary conditions.
2You will see that the calculation for a change of only one constraint is no simpler than the calculation
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The maximization problem becomes

v + dv = max
x1,x2,...,xn

F (x1, x2, ..., xn) (MP4)

s.t. G1(x) = c1 + dc1, G2(x) = c2, ..., Gm(x) = cm.

Again, v + dv represents the new optimum value. And we denote the solution to (MP3)

as x∗ =

#

$$$$$$%

x∗
1
...

x∗
n

&

''''''(
. We further define x∗ + dx∗ =

#

$$$$$$%

x∗
1 + dx∗

1
...

x∗
n + dx∗

n

&

''''''(
to be the solution to our new

maximization problem (MP4). Note that even though only one constraint changes, we

need to reoptimize and all x∗
j might change.

Next, we derive the result.

dv =)*+,
by definition

(v + dv) − v =)*+,
by definition

F (x∗ + dx∗) − F (x∗) =)*+,
Taylor approximation

F1(x∗)dx∗
1 + ... + Fn(x∗)dx∗

n

=)*+,
↑

first-order conditions

m-

i=1

.
λiG

i
1(x∗)

/
dx∗

1 + ... +
m-

i=1

.
λiG

i
n(x∗)

/
dx∗

n

=
m-

i=1

.
λiG

i
1(x∗)dx∗

1

/
+ ... +

m-

i=1

.
λiG

i
n(x∗)dx∗

n

/

=
n-

j=1

m-

i=1

.
λiG

i
j(x∗)dx∗

j

/
=

m-

i=1

n-

j=1

.
λiG

i
j(x∗)dx∗

j

/

=
m-

i=1

0
1

2λi

n-

j=1

.
Gi

j(x∗)dx∗
j

/
3
4

5 =)*+,
↑

Taylor approximation

m-

i=1

6
λi

.
Gi(x∗ + dx∗) − Gi(x∗)

/7

=)*+,
↑

constraints

m-

i=1
{λi [ci + dci − ci]} =

m-

i=1
λidci (4.2)

=)*+,
change in c1 only

λ1 dc1.

Therefore, dv = λ1dc1 if we only consider a marginal change in c1 and remain unchanged

all the other constraints.

Observe Equation (4.2). It shows that we already obtained the result for simultaneous

changes of multiple constraints: dv = 8m
i=1 λi dci.

for changes in many constraints.
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If you are familiar with the vector-matrix notation, the calculation is much simpler:

dv =)*+,
by definition

(v + dv) − v =)*+,
by definition

F (x∗ + dx∗) − F (x∗) =)*+,
Taylor approximation

Fx(x∗)dx∗

=)*+,
First-order conditions

λGx(x∗)dx∗ =)*+,
Taylor

approximation

λ [G(x∗ + dx∗) − G(x∗)] =)*+,
constraints

λ [(c + dc) − c] = λ dc

The final result is dv = λ dc, where λ is a m-dimansional row vector and dc is a m-

dimensional column vector. This result coincide with Equation (4.2).

This result is important and thus summarized below:

Result (Interpretation of Lagrange Multipliers).

If
v = max

x
F (x)

s.t. G(x) = c.

and λ is the row vector of multipliers for the constraints, then change dv that results from

an infinitesimal change dc is given by

dv = λ dc. (4.3)

4.C. Shadow Prices

Marginal Product of Labor. To illustrate and explain (4.3), consider a planned econ-

omy for which a production plan x∗ is to be chosen to maximize a social welfare function

F (x). The vector of the plan’s resources requirement is G(x), and the vector of the

available amounts of these resources is c. That is,

v = max
x

F (x)
) *+ ,

social welfare function

(MP5)

s.t. G(x) = c
) *+ ,

resource constraints

.

Assume that the first constraint G1(x) = c1 is labor constraint. Suppose the problem has

been solved and the vector of Lagrange multipliers λ is known.
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Now, suppose some power outside the economy puts a small additional amount dc1 of

labor into the economy. We know from the previous analysis that without further calcu-

lation, we already know the resultant increase in social welfare, which is simply λ1 dc1.

We can then say that the Lagrange multiplier λ1 is the marginal product of labor in this

economy, measured in units of its social welfare.

Demand price. Now suppose that the additional labor can only be used at some cost.

The maximum the economy is willing to pay in terms of its social welfare units is λ1 per

marginal unit of c1. In this natural sense, the Lagrange multiplier λ1 is the demand price

the planner places on labor services.

You may find a price expressed in units of social welfare strange. The critic makes

sense, however, the more important indicator is the relative demand prices of different

resources, rather than the absolute demand prices of single resources, since the relative

demand prices govern the economy’s willingness to exchange one resource for another.

To see this, assume that the second constraint G2(x) = c2 is land constraint. Now, we

are interested to know how much land the economy is willing to give up for an additional

dc1 of labor. Assume the amount of land to give up is dc2. Then the net gain in social

welfare from this transaction is λ1 dc1 − λ2 dc2. Therefore, the most land the economy is

willing to give up is λ1/λ2 dc1.3

The relative demand prices is very relevant to the theory of international trade. We will

not go deep into this topic. But the simple intuition is that if a neighboring economy

has a different trade-off between two resources, then there is a possibility of mutually

advantageous trade.4

“Invisible Hand”. Now, we will discuss the link between market prices and Lagrange

multipliers. Consider an economy that allocates resources using market. In equilibrium,

the prices are determined by supplies and demands. And suppose that an economist

works out a planner’s problem (MP5) and gets a vector of Lagrange multipliers for the

3The ratio λ1/λ2, or the relative demand price of labor and land, is the demand price of a unit of
labor measured in units of land.

4The trade could be directly on the factors, or indirectly through goods made of these factors.
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resource constraints. The social welfare function could be viewed as the criterion to

evaluate the performance of the economy.

The question is whether the market economy could replicate the planned allocation, which

is the best allocation for a given criterion. There are in fact important cases where the

optimum can be replicated in the market, and the Lagrange multipliers are proportional

to the market prices of the resources: the relative prices equal the corresponding ratios

of multipliers. In such cases, the economist would say that the economy is guided by

an “invisible hand” to his planned optimum. Example 4.1 is such a case. The concepts

become clearer when we get there.

To evoke the connection with prices, and yet maintain a conceptual distinction from

market prices, Lagrange multipliers are often called shadow prices.

4.D. Inequality Constriants

So far, in our analysis, we assumed that the constraints are equality constraints. In

economic applications, it is reasonable to consider inequality constraints. As we discussed

in Chapter 3, full employment of resources may not be optimal. We have seen a case of

Technological Unemployment in Example 3.2. In fact, the study of inequality constraints

also turns out to be important in understanding the meaning of Lagrange multipliers λ.

The main problem with equality constraints is that because of the connection between

prices and shadow prices (the Lagrange multipliers), we do expect the Lagrange multipli-

ers to be non-negative, however, the maximization problems with equality constraints do

not impose any restrictions on the sign of λ. The reason is that for equality constraints,

an increase in the right-hand side of a constraint equation does not necessarily mean a

relaxation of the constraint. More specifically, the equality constraint Gi(x) = ci could

be written as −Gi(x) = −ci. An increase in −ci would be a decrease in the quantity ci

of resource i. Such problems could be avoided if we write the constraints as inequality

constraints.
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We will now study the inequality constraints. The problem under concern is:

v = max
x

F (x)
) *+ ,

social welfare function

(MP6)

s.t. G(x) ≤ c
) *+ ,

resource constraints

.

For inequality constraints, we invoke Kuhn-Tucker Theorem. The first-order necessary

conditions on xj’s are still valid. Therefore, we could repeat our analysis for equality

constraints, up until the point where constraints come into play:

dv =)*+,
by definition

(v + dv) − v =)*+,
by definition

F (x∗ + dx∗) − F (x∗) =)*+,
Taylor approximation

Fx(x∗)dx∗

=)*+,
First-order conditions

λGx(x∗)dx∗ =)*+,
Taylor

approximation

λ [G(x∗ + dx∗) − G(x∗)] . (4.4)

If the constraints are binding for x∗ and continue to be binding for x∗ + dx∗, we could

complete the analysis as we did for the equality constraints. That is, following (4.4),

dv = ... = λ [G(x∗ + dx∗) − G(x∗)] = λ [(c + dc) − c] = λ dc.

Whether the constraints are binding is related to the first-order neccessary conditions for

λ. We now check the conditions.

The first-order necessary conditions for λ give:

Lλ(x∗, λ) = c − G(x∗) ≥ 0, λ ≥ 0, with complementary slackness.

The above conditions ensure non-negative Lagrange multipliers λ. This is the desirable

property that we expect: shadow prices λ are non-negative.

Next, we will investigate into the first-order conditions on λ more carefully. Complemen-

tary slackness means that, for every i, at least one of the pair

Gi(x∗) ≤ ci and λi ≥ 0

holds with equality.
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That is,

(i) If resource i is not fully employed (Gi(x∗) < ci), then its shadow price is zero

(λi = 0).

(ii) If a resource is with a positive shadow price λi > 0, then it must be fully employed

(Gi(x∗) = ci).

This supports and completes the interpretation of shadow prices as the marginal value

products of the resources. If part of some resource is already idle, then any increment in

it will also be left idle. The maximum value of the objective function will not change,

and the shadow price will be zero. On the other hand, a positive shadow price means

that a marginal increment in resource availability can be put to good use. Then none of

the amount originally available can have been left idle in the original plan.

There is one tricky point. Suppose that ci is such that resource i is fully used (Gi(x∗) = ci),

but any increment will be left unused (Gi(x∗∗) = ci < ci + dci), where x∗∗ denotes the

optimal outputs after the increment of dci. Complementary slackness does not tell us

whether the multiplier will be positive or zero at this point. In fact, both cases could

happen. Which case would happen depends on whether the slope of the maximum value

v as a function of ci drops smoothly or suddenly to 0. Figure 4.1 and 4.2 below show

both possibilities.

Figure 4.1: λi = 0 Figure 4.2: λi ∈ [0, a]
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4.E. Examples

Example 4.1: The Invisible Hand - Distribution. Consider the stage of planning

where the production of the various goods is already known, and the only remaining

question is that of distributing them among the consumers. There are C consumers,

labeled c = 1, 2, ..., C, and G goods, labeled g = 1, 2, ..., G. Let Xg be the fixed total

amount of good g, and xcg the amoung allocated to consumer c. Each consumer’s utility

is a function only of his own allocation:

uc = U c(xc1, xc2, ..., xcG). (4.5)

Social welfare is a function of these utility levels:

w = W (u1, u2, ..., uC).

Assume that the utilities and social welfare function are increasing functions in their

respective arguments. Assume also that at the social optimum x∗
cg > 0 for all c and g.

The constriants are

x1g + x2g + ... + xCg ≤ Xg, for g = 1, 2, ..., G. (4.6)

Question 1: Write down the first-order conditions for the socially optimal allocation.

Question 2: Now suppose the Lagrange multipliers, or shadow prices, are made the

prices of the goods. Every consumer c is given a money income Ic and allowed to choose

his consumption bundle to maximize his utility (4.5) subject to his budget cosntraint.

Show that by adjusting money income Ic, the social optimum is attainable. This is when

the distribution of income is such that at the margin the social value of every consumer’s

income is the same. The attainment of the social optimum in the decentralized problem

is the “invisible hand” result for the distribution problem.

12



Dynamic Optimization

Solution.

Question 1: First, since the utilities and social welfare function are increasing func-

tions in their respective arguments, no goods are going to be wasted, so we can express

the constriants as equations. We formally state the problem as follows:

max
x11,x12,...,x1G
x21,x22,...,x2G···

xC1,xC2,...,xCG

W
9
U1(x11, ..., x1G), U2(x21, ..., x2G), ..., UC(xC1, ..., xCG)

:

s.t. x1g + x2g + ... + xCg = Xg, for g = 1, 2, ..., G.

This is a maximization problem with equality constraints. To solve this problem, we

invoke Lagrange’s Theorem.

i Form Lagrangian:

L(x, π) = W
9
U1(x11, ..., x1G), U2(x21, ..., x2G), ..., UC(xC1, ..., xCG)

:
+

G-

g=1
πg

;

Xg −
C-

c=1
xcg

<

.

ii First-order conditions:

∂L/∂xcg = (∂W/∂uc) (∂U c/∂xcg) − πg = 0, (4.7)

for all c = 1, ..., C and g = 1, ..., G;

∂L/∂πg = Xg −
C-

c=1
xcg = 0 for all g = 1, ..., G.

All the partial derivatives are to be evaluated at the optimum.

Question 2: Now, πg are made prices of the goods. For any consumer c, the budget

constraint is

π1xc1 + π2xc2 + ... + πGxcG ≤ Ic.

Again, because the utilities are increasing functions, the budget constraints should hold

with equality:

π1xc1 + π2xc2 + ... + πGxcG = Ic.
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We formally state the consumer’s problem:

max
xc1,xc2,...,xcG

U c(xc1, ..., xcG)

s.t. π1xc1 + π2xc2 + ... + πGxcG = Ic.

This is a maximization problem with equality constraints. To solve this problem, we

invoke Lagrange’s Theorem.

i Form Lagrangian:

L(x, λc) = U c(xc1, ..., xcG) + λc [Ic − π1xc1 − π2xc2 − ... − πGxcG] .

ii First-order conditions:

∂L/∂xcg = (∂U c/∂xcg) − λcπg = 0, for all g = 1, ..., G; (4.8)

∂L/∂λc = Ic − π1xc1 − π2xc2 − ... − πGxcG = 0.

The above conditions hold for every consumer c.

Our objective is to achieve the social optimum, that is, we want the conditions (4.7) and

(4.8) to coincide. This happens when

∂W/∂uc = 1/λc, or (∂W/∂uc) λc = 1, for all c. (4.9)

This can be done by adjusting the income Ic. The left-hand side of the second equation in

(4.9) is simply the marginal effect on social welfare of giving a unit of income to consumer

c; it is the marginal effect on c’s own utility times the effect of a unit of his utility on

social welfare. The right-hand side is a constant. Therefore, the social optimum could

be attained when the distribution of income is arranged so that at the margin the social

value of every consumer’s income is the same.

Remark 1. The argument comparing first-order conditions is not fully rigorous.

Remark 2. The crucial assumption leading to the result is the independence of every

consumer’s utility on any other consumer’s consumption.
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Example 4.2: Duty-Free Purchases. Imagine the consumption decision of a jet-setter.

He can buy various brands of liquor at his home-town store, or at the duty-free stores of

the various airports he travels through. The duty-free stores have cheaper prices, but the

total quantity he can buy there is restricted by his home country’s customs regulations.

There are n brands. Let p be the row vector of home-town prices and q that of duty-free

prices. The duty-free prices are uniformly lower: q ≪ p. Let x be the column vector

of his home-town purchases and y that of the duty-free. Assume that the quantities as

continuous variables. Suppose during the year, only total dollar amount M of duty-free

liquor is allowed, that is,

q1y1 + q2y2 + ... + qnyn ≤ K.

The jet-setter’s total consumption is c = x + y, and he derives utility U(c) from liquor

consumption.

Also assume that the income allocated to liquor consumption is fixed at I. Thus, the

budget constraint is

px + qy ≤ I.

How much liquor should be jet-setter buy, and from which source?

Solution. We formally state the problem as follows:

max
x,y

U(x + y)

s.t. y1 + y2 + ... + yn ≤ K

px + qy ≤ I

x ≥ 0, y ≥ 0.

This is a maximization problem with inequality constraints. To solve this problem, we

invoke Kuhn-Tucker Theorem.

i Form Lagrangian:

L(x, y, λ, µ) = U(x + y) + λ [I − px − qy] + µ [K − y1 − y2 − ... − yn] .
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ii First-order conditions:

∂L/∂xj = (∂U/∂cj) − λpj ≤ 0, xj ≥ 0, with complementary slackness (4.10)

for all j = 1, ..., n;

∂L/∂yj = (∂U/∂cj) − λqj − µ ≤ 0, yj ≥ 0, with complementary slackness (4.11)

for all j = 1, ..., n;

∂L/∂λ = I − px − qy ≥ 0, λ ≥ 0, with complementary slackness;

∂L/∂µ = K − y1 − y2 − ... − yn ≥ 0, µ ≥ 0, with complementary slackness.

The inequality pairs permit 22n+2 patterns of equations, and sorting them out systemati-

cally is hopeless. But a search assisted by economic intuition quickly reveals the solution.

First, the budget constraint should hold with equality: any income left could have been

spent to increase the utility. And if the quota constraint is slack, then the jet-setter could

satisfy all his liquor needs from the cheaper duty-free stores and the problem becomes

trivial. Suppose, more interestingly, we are in a situation in which the jet-setter is not

satiated within his duty-free allowance, that is, the quota constraint is binding. We are

still left with the 22n complementary slackness pairs for xj’s and yj’s.

We will further apply our economic intuition. We ask the question: can some brand j

be bought in a positive amounts at both kinds of stores? If so, since x∗
j > 0 and y∗

j > 0,

from (4.10) and (4.11),

(∂U/∂cj) − λpj = 0 = (∂U/∂cj) − λqj − µ,

or λpj = ∂U/∂cj = λqj + µ. (4.12)

(4.12) is most likely to hold for at most one j. To see this, suppose otherwise, (4.12)

holds for both j = 1 and 2,

λp1 = ∂U/∂c1 = λq1 + µ and λp2 = ∂U/∂c2 = λq2 + µ

=⇒ λ(p1 − q1) = µ = λ(p2 − q2).

Since the consumer is not satiated, that is, a relaxation of the budget constraint would

translate into an increase in utility, λ is positive.
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Then,
p1 − q1 = p2 − q2.

With given prices, this can occur only by chance.

Now suppose brand j is bought only in the duty-free store. Then, since x∗
j = 0 and

y∗
j > 0, from (4.10) and (4.11), we have

(∂U/∂cj) ≤ λpj (4.13)

and (∂U/∂cj) = λqj + µ. (4.14)

The left-hand side of both (4.13) and (4.14) are the marginal utility of brand j. The

right-hand side of (4.13) is the marginal opportunity cost of buying it at the home-town

store: to do so takes pj of income which can not then be used for other purchases, and the

utility value of this amount of income is λpj. The brand is not bought at the home-town

store since the marginal opportunity cost of purchasing at the home-town store exceeds

the marginal utility of brand j. The right-hand side of (4.14) is the marginal opportunity

cost of buying it at the duty-free store: this requires qj of income having utility value λqj

and further it uses up a unit of the duty-free allowance, which has the shadow price µ.

Note that we could deduct from (4.13) and (4.14) that the duty-free store has a lower

opportunity cost: λqj + µ ≤ λpj. From the previous analysis, the inequality holds with

equality for at most one j. The reverse is also true: if j is bought only in the home-town

store, then we could deduct from the first-order necessary conditions that the home-town

store has a lower opportunity cost.

Now the principle is clear: buy each brand at the outlet with the lower opportunity cost.

Since λqi + µ < λpi if and only if pi − qi > µ/λ, the jet-setter should rank the brands by

their absolute price differences in the two kinds of stores. The brands with the largest

price differences are bought at the duty-free stores, and those with the smallest price

differences are bought at the home-town store. The meeting point of the two is chosen

so as to use up the duty-free allowance. There may be at most one brand that is bought

at both kinds of stores.
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