
Dynamic Optimization

Chapter 10. Time: The Maximization Principle

As in the case of uncertainty, the optimization over time does not generally require new

principles. The variables can be of different dates. At the time the decision is made, there

may be uncertainties about the future events. We could deal with such uncertainties using

the expected utility formulation as we learned in Chapter 9. The more subtle problem

is that there may be opportunities to revise the current decision at some future date. It

may be beneficial to allow future revisions as new information may arrive as time goes on.

It may also be beneficial to make commitment not to revise since today’s preference and

the future preferences may not be aligned. We incorporate all these considerations into

the objective function and the constraints and the theory of the previous chapters apply.

The reason why we study the optimization over time as a separate topic is that such

problems have a special structure. Multi-period problems are also common in economic

applications.

10.A. An Example of Discrete-Time Optimization

Consider the following life-cycle saving problem. Time is discrete and denoted by t =

0, 1, 2, ..., T . For the moment, consider finite T . We will also discuss infinite-period

problem where T = ∞. A worker gets paid wage wt in period t. Wage payment can

be different from period to period but there is no uncertainty. The decision is on how

much of the income to spend on consumption in each period. The unspent income is

saved and the overspent income is on debt. The worker receives interest at rate rt for

accumulated savings or pays the accumulated debts at the same rate in period t. Let

ct be the consumption in period t and kt+1 be the accumulated savings or debts at the

beginning of period t + 1. The budget constraint in period t is

ct + kt+1 = wt + (1 + rt)kt.

k0 ≥ 0 is given. Furthermore, at the end of period T , the worker is not allowed to have

debts, i.e., kT +1 ≥ 0 is imposed.
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The worker only derives utility from consumption and chooses the consumption path to

maximize the total present discounted value of utilities in period t = 0:

U(c0, c1, ..., cT ) =
T!

t=0
βtu(ct),

where β ∈ (0, 1) is the discount factor. For simplicity, we assume limct→0 u′(ct) = ∞ so

that ct > 0 for all t.

Example 10.1 (Two-period Case (T = 1)). The maximization problem for the two-

period problem is:
max

c0,c1,k1,k2
u(c0) + βu(c1)

s.t. c0 + k1 = w0 + (1 + r0)k0

c1 + k2 = w1 + (1 + r1)k1

k2 ≥ 0

To solve the problem, we use the Kuhn-Tucker theorem as before. Let π1 and π2 be the

Lagrangian multipliers. The Lagrangian is:

L(c0, c1, k1, k2, π1, π2) =u(c0) + βu(c1) + π1[w0 + (1 + r0)k0 − c0 − k1]

+ π2[w1 + (1 + r1)k1 − c1 − k2].

Kuhn-Tucker conditions:

∂L
∂c0

= u′(c0) − π1 = 0 (10.1)

∂L
∂c1

= βu′(c1) − π2 = 0 (10.2)

∂L
∂k1

= −π1 + π2(1 + r1) = 0 (10.3)

∂L
∂k2

= −π2 ≤ 0, k2 ≥ 0 with complementary slackness (10.4)

∂L
∂π1

= w0 + (1 + r0)k0 − c0 − k1 = 0 (10.5)

∂L
∂π2

= w1 + (1 + r1)k1 − c1 − k2 = 0 (10.6)

1. CS in (10.4) means π2k2 = 0: either k2 = 0, or π2 = 0 (the shadow value of k2 is

zero).

2



Dynamic Optimization

π2 could be expressed using (10.2), CS becomes:

βu′(c1)k2 = 0.

Since βu′(c1) > 0, we must have k2 = 0.

2. (10.1), (10.2) and (10.3) implies the optimal consumption path:

u′(c0)" #$ %
marginal benefit

= β(1 + r1)u′(c1)" #$ %
marginal cost

. (10.7)

This is the Euler equation: an inter-temporal version of first-order condition for a

dynamic choice problem that equates the marginal benefit and the marginal cost.

In this consumption problem, if the worker consumes 1 marginal unit today (period

0), he gets a marginal utility of u′(c0) (the marginal benefit of consumption today);

if the worker instead saves the unit, he could consume the (1 + r1) units tomorrow

and gets a marginal utility of u′(c1) for each unit (the marginal cost of consumption

today). The optimal consumption path indicates that the marginal benefit equals

the marginal cost.

3. c0, c1, k1 can be solved from two constraints (10.5), (10.6) and Euler equation (10.7).

Let us return to the case with arbitrary T . Similar to the two-period case, we could first

state the maximization problem and solve the problem using Kuhn-Tucker theorem. The

maximization problem is:

max
c0,c1,...,cT

k1,k2,...,kT +1

T!

t=0
βtu(ct)

s.t. ct + kt+1 = wt + (1 + rt)kt for all t = 0, ..., T

kT +1 ≥ 0

Let πt+1 be the Lagrangian multipliers. The Lagrangian is:

L(c0, ..., cT , k1, ..., kT +1, π1, ..., πT +1) =
T!

t=0
βtu(ct) +

T!

t=0
πt+1[wt + (1 + rt)kt − ct − kt+1]

Remark 1. Note that for any t = 0, ..., T − 1, kt+1 appears in two terms: wt+1 + (1 +

rt+1)kt+1 − ct+1 − kt+2 and wt + (1 + rt)kt − ct − kt+1.
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We rearrange the expression so that kt appears in only one term of the sum:

L =
T!

t=0
[βtu(ct) − πt+1ct] +

T!

t=0
πt+1wt +

T −1!

t=0
πt+2(1 + rt+1)kt+1 + π1(1 + r0)k0 −

T −1!

t=1
πt+1kt+1 − πT +1kT +1

=
T!

t=0
[βtu(ct) − πt+1ct] +

T −1!

t=0
[πt+2(1 + rt+1) − πt+1]kt+1 + π1(1 + r0)k0 − πT +1kT +1 +

T!

t=0
πt+1wt.

Kuhn-Tucker conditions:

∂L
∂ct

= βtu′(ct) − πt+1 = 0 for all t = 0, ..., T (10.8)

∂L
∂kt+1

= πt+2(1 + rt+1) − πt+1 = 0 for all t = 0, ..., T − 1 (10.9)

∂L
∂kT +1

= −πT +1 ≤ 0, kT +1 ≥ 0 with CS (10.10)

∂L
∂πt+1

= wt + (1 + rt)kt − ct − kt+1 = 0 for all t = 0, ..., T (10.11)

1. CS in (10.10) means πT +1kT +1 = 0. Expressing πT +1 using (10.8) gives:

βT u′(cT )kT +1 = 0.

Since βT u′(cT ) > 0, we must have kT +1 = 0.

2. (10.8) and (10.9) implies the optimal consumption path:

u′(ct)" #$ %
marginal benefit

= β(1 + rt+1)u′(ct+1)" #$ %
marginal cost

for all t = 0, ..., T − 1 (10.12)

This is again the Euler equations.

3. ct for t = 0, ..., T and kt+1 for t = 0, ..., T − 1 could be solved from the constraints

(10.11) and the Euler equations (10.12).

Consumption Pattern.

1. Suppose β(1 + rt+1) = 1 for all t = 0, ..., T − 1. Then according to (10.12), u′(ct) =

u′(ct+1). If u(c) is strictly concave, then ct = ct+1, i.e., consumption does not vary

over time.

2. Suppose β(1 + rt+1) > 1, i.e., β > 1
1+rt+1

for all t = 0, ..., T − 1. Then according to

(10.12), u′(ct) > u′(ct+1). If u(c) is strictly concave, then ct < ct+1. That is, when

the worker is patient (β large), he is willing to save more for future consumption.
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3. Suppose β(1 + rt+1) < 1, i.e., β < 1
1+rt+1

for all t = 0, ..., T − 1. Then according to

(10.12), u′(ct) < u′(ct+1). If u(c) is strictly concave, then ct > ct+1. That is, when

the worker is impatient (β small), he is willing to consume more today.

10.B. General Problem of Discrete-Time Optimization

10.B.1. Statement of the Problem

The most important aspect of the optimization over time is the stock-flow relationships.

A stock is measured at one specific time, and represents a quantity existing at that point

in time. A flow is measured over an interval of time. Denote yt as the stock variables and

zt as the flow variables. In mathematical terminology, stocks are called state variables

and flows are called control variables. In the previous example, kt are the state (or stock)

variables and ct are the control (or flow) variables.

The increment of stocks depends on both the stocks and the flows during that period.

The production possibility constraints are

yt+1 − yt = Q(yt, zt, t). (10.13)

Q should be thought of as a production function. t as an argument of Q captures

exogenous technological change. Mathematically, the control variables govern the change

in the state variables. In the previous example, we have kt+1 − kt = wt + rtkt − ct.

In addition to the above constraints that govern the changes in stocks, there may be

constraints on all variables pertaining to any one date,

G(yt, zt, t) ≤ 0, (10.14)

where G is a vector function. In the previous example, we need ct ≥ 0 for all t. (Even

though we ignore such constraints in the calculations by assuming limct→0 u′(ct) = ∞ so

that ct > 0 for all t.)

It is assumed that the criterion function is additively separable:

T!

t=0
F (yt, zt, t). (10.15)
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We take the initial stock y0 as given. For simplicity, we also take the terminal value yT +1

to be fixed. Note that in the previous example, we instead have the terminal condition

kT +1 ≥ 0. The cases with yT +1 ≥ 0, or more generally yT +1 ≥ ŷ are discussed at the end

of this section (Transversality condition).

10.B.2. The Maximum Principle

The choice variables are yt for t = 1, 2, ...T and zt for t = 0, 1, 2, ...T .

Let λt denote the multipliers for the constraints (10.14) and πt+1 denote the multipliers

for the constraints (10.13). In terms of economic interpretations, λt are the usual shadow

prices of the constraints (10.14); πt+1 are the shadow prices of yt+1. The Lagrangian

of the full inter-temporal problem is

L =
T!

t=0
{F (yt, zt, t) + πt+1 [yt + Q(yt, zt, t) − yt+1] − λtG(yt, zt, t)} (10.16)

The arguments in L are all yt, zt, λt, πt+1.

1. FOC with respect to zt for t = 0, 1, ..., T are

∂L/∂zt ≡ Fz(yt, zt, t) + πt+1Qz(yt, zt, t) − λtGz(yt, zt, t) = 0. (10.17)

2. FOC with respect to yt is more complicated since yt appears in two terms of the

sum. We first simplify the term &T
t=0 πt+1(yt − yt+1).

T!

t=0
πt+1(yt − yt+1) = π1(y0 − y1) + π2(y1 − y2) + ... + πT +1(yT − yT +1)

= y0π1 + y1(π2 − π1) + ... + yT (πT +1 − πT ) − yT +1πT +1

=
T!

t=1
yt(πt+1 − πt) + y0π1 − yT +1πT +1

Then (10.16) becomes

L =
T!

t=1
{F (yt, zt, t) + πt+1Q(yt, zt, t) + yt(πt+1 − πt) − λtG(yt, zt, t)}

+ F (y0, z0, 0) + π1Q(y0, z0, 0) + y0π1 − yT +1πT +1 − π1G(y0, z0, 0) (10.18)
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FOC with respect to yt for t = 1, ..., T (note that y0 and yT +1 are not included) are

∂L/∂yt ≡ Fy(yt, zt, t) + πt+1Qy(yt, zt, t) + πy+1 − πt − λtGy(yt, zt, t) = 0,

or πt+1 − πt = − [Fy(yt, zt, t) + πt+1Qy(yt, zt, t) − λtGy(yt, zt, t)] . (10.19)

3. FOC with respect to πt+1 for t = 0, ..., T are

∂L/∂πt+1 = yt + Q(yt, zt, t) − yt+1 = 0.

These are the constraints (10.13).

4. FOC with respect to λt for t = 0, ..., T are

G(yt, zt, t) ≤ 0, λt ≥ 0 with CS. (10.20)

Hamiltonian. The conditions could be written in a more compact and economic illumi-

nating way. Define Hamiltonian:

H(yt, zt, πt+1, t) = F (yt, zt, t) + πt+1Q(yt, zt, t). (10.21)

The initial inter-temporal maximization problem could be rewritten as T single-period

maximization problems:

max
zt

H(yt, zt, πt+1, t) ≡ max
zt

F (yt, zt, t) + πt+1Q(yt, zt, t)

s.t. G(yt, zt, t) ≤ 0.

In these single-period problems, only zt are choice variables; yt, πt+1 are parameters.

Define Lagrangian of the single-period maximization problem:

L(zt, λt, yt, πt+1, t) = H(yt, zt, πt+1, t) − λtG(yt, zt, t) (10.22)

(10.17) and (10.20) are the conditions for the single-period maximization problem.

Write H∗(yt, πt+1, t) the resulting maximum value.
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Envelope Theorem applies to the parameters yt and πt+1:

H∗
y (yt, πt+1, t) = Ly(z∗

t , λ∗
t , yt, πt+1, t)

H∗
π(yt, πt+1, t) = Lπ(z∗

t , λ∗
t , yt, πt+1, t) = Q(yt, z∗

t , t)

Then (10.19) and (10.13) are more simply written as

πt+1 − πt = −H∗
y (yt, πt+1, t) (10.23)

yt+1 − yt = H∗
π(yt, πt+1, t) (10.24)

Theorem 10.1 (The Maximization Principle). The first-order necessary conditions for

the maximization problem

max
{yt}T

t=1,{zt}T
t=0

T!

t=0
F (yt, zt, t) (10.15)

s.t. yt+1 − yt = Q(yt, zt, t) (10.13)

G(yt, zt, t) ≤ 0 (10.14)

are

(i) for each t, zt maximizes the Hamiltonian H(yt, zt, πt+1, t) subject to the single-period

constraints G(yt, zt, t) ≤ 0, and

(ii) the changes in yt and πt over time are governed by the difference equations (10.23)

and (10.24).

Interpretations.

1. For condition (i), it is clear that we would not want to choose zt to maximize

F (yt, zt, t): the choice of zt affects yt+1 via (10.13) and therefore affects the terms

in the objective function at time t + 1 onwards. The effect of zt on yt+1 equals

its effect on Q(yt, zt, t), and the resulting change in the objective function is the

shadow price πt+1 of yt+1 times Q(yt, zt, t). Thus, Hamiltonian offers a simple way

to take into account the future consequences of the choices of the controls zt at t.

2. For condition (ii), (10.23) could be viewed as an inter-temporal no-arbitrage

condition. A marginal unit of yt yields the marginal return Fy(yt, zt, t)−λtGy(yt, zt, t)

8



Dynamic Optimization

within period t, and an extra Qy(yt, zt, t) the next period evaluated at πt+1. These

can be thought of as a dividend. In addition, there is capital gain of πt+1 − πt.

When yt is optimum, the overall marginal return, or the sum of these components,

should be 0:

'
Fy(yt, zt, t) − λtGy(yt, zt, t)

(
+ πt+1Qy(yt, zt, t) +

'
πt+1 − πt

(
= 0.

Transversality condition. If we change the terminal condition to yT +1 ≥ 0. Then by

Kuhn-Tucker condition for yT +1, we need

πT +1 ≥ 0 and πT +1yT +1 = 0.

That is, if any positive stocks are left, they must be worthless.

More generally, if there is a constraint yT +1 ≥ ŷ, then we require

πT +1 ≥ 0 and πT +1(yT +1 − ŷ) = 0.

Such conditions on terminal stocks and the respective shadow prices are called transver-

sality conditions.

10.C. Continuous-Time Model

We have treated time as discrete succession of periods. Such a formulation allows us to

develop the theory using the technics of Kuhn-Tucker theorem. However, in practice, it

is sometimes more convenient to treat time as a continuous variable.

To formulate the problem into a continuous-time problem, we can think of continuous-

time models as the limit of discrete-time models when we take the discrete periods of

length ∆t to 0. Flows are now rates per time. In particular, the constraint (10.13)

becomes

y(t + ∆t) − y(t) = Q(y(t), z(t), t)∆t.

Dividing by ∆t and taking the limit ∆ → 0 gives

dy(t)/dt = Q(y(t), z(t), t).
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We use ẏ(t) to denote the derivative, i.e., ẏ(t) = dy(t)/dt. The objective function (10.15)

is modified to be an integral. The problem becomes1

max
y(t),z(t)

) T

0
F (y(t), z(t), t)dt (10.15’)

s.t. ẏ(t) = Q(y(t), z(t), t) (10.13’)

G(y(t), z(t), t) ≤ 0 (10.14’)

The initial condition y(0) and the terminal condition y(T ) are given.

Maximum Principle. We also have similar results as what we have derived in the

discrete-time model. Define Hamiltonian:

H(y(t), z(t), π(t), t) = F (y(t), z(t), t) + π(t)Q(y(t), z(t), t).

π(t) is called the co-state variable. The Lagrangian is:

L(z(t), λ(t), y(t), π(t), t) = H(y(t), z(t), π(t), t) − λ(t)G(y(t), z(t), t).

Theorem 10.2. The first-order necessary conditions for the continuous-time problem is

(i) z(t) maximizes the Hamiltonian H(y(t), z(t), π(t), t) subject to the single period con-

straints G(y(t), z(t), t) ≤ 0, and

(ii) y(t) and π(t) are governed by the differential equations

π̇(t) = −H∗
y (y(t), π(t), t) (10.23’)

ẏ(t) = H∗
π(y(t), π(t), t) (10.24’)

10.D. Further Discussions

10.D.1. Infinite Horizon problems

There is no last period in the infinite horizon problems. So, unlike the finite-horizon

problems, now it is unreasonable to impose non-negative stock in the last period. For

1We have used subscripts to denote time for the discrete-time models and we write time as a function
argument in the parentheses in the continuous-time models.
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the problem to be well-defined, we need to impose the transversality condition. Heuristi-

cally, the transversality conditions for infinite-horizon problems listed below are natural

extensions of the previous transversality conditions for finite-horizon problems with non-

negative terminal stock (which is just the complementary slackness condition).

For discrete-time problems, the transversality condition is:

lim
T →∞

πT yT = 0.

For continuous-time problems, the transversality condition is:

lim
T →∞

π(T )y(T ) = 0.

10.D.2. Present Value v.s. Current Value Hamiltonian

In economic applications, we usually need to discount future values. In the previous

example, the worker discount future utilities by β per period. In this section, we analyze

the optimization problem with the discount factors explicitly expressed in the objective

function. For simplicity, we assume that T is finite, and y0, yT +1 are given. Transversality

conditions are needed if T is infinite or we only impose yT +1 ≥ 0 for finite T .

Discrete-Time Model. In order to explicitly taking into account the discount factors

β, we rewrite the criterion function (10.15) as:

T!

t=0
βtf(yt, zt, t). (10.25)

Present value Hamiltonian. Similar to the Hamiltonian (10.21), we define the Hamil-

tonian, called the present value Hamiltonian:

Hp(yt, zt, πt+1, t) = βtf(yt, zt, t) + πt+1Q(yt, zt, t).

π is the present value multiplier. The Lagrangian is

Lp(zt, λt, yt, πt+1, t) = Hp(yt, zt, πt+1, t) − λtG(yt, zt, t)
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FOCs are:
Lp

z(zt, λt, yt, πt+1, t) = 0

πt+1 − πt = −Hp∗

y (yt, πt+1, t)

yt+1 − yt = Hp∗

π (yt, πt+1, t) (the inter-temporal constraint)

G(yt, zt, t) ≤ 0, λt ≥ 0 with CS.

Current value Hamiltonian. It is also possible to define Hamiltonian in terms of the

current value: Hc(yt, zt, µt+1, t) = f(yt, zt, t) + βµt+1Q(yt, zt, t).

This is called the current value Hamiltonian and µ is the current value multiplier. Note

that Hp = βtHc and πt = βtµt. The Lagrangian is

Lc(zt, νt, yt, µt+1, t) = Hc(yt, zt, πt+1, t) − νtG(yt, zt, t).

Note that Lp = βtLc and λt = βtνt. From the FOCs for the present value Hamiltonian,

we could deduce FOCs for the current value Hamiltonian:

Lc
z(zt, νt, yt, µt+1, t) = 0

βµt+1 − µt = −Hc∗

y (yt, µt+1, t)

β(yt+1 − yt) = Hc∗

µ (yt, µt+1, t) (the inter-temporal constraint)

G(yt, zt, t) ≤ 0, νt ≥ 0 with CS.

Continuous-Time Model. Discount factor changes from β ≡ 1
1+ρ

to e−ρt where ρ is the

discount rate:

lim
n→∞

*
1

1 + ρ
n

+n

= lim
n→∞

,-
1 + ρ

n

. n
ρ

/−ρ

= e−ρ.

Thus, we rewrite the criterion function as:

) T

0
e−ρtf(y(t), z(t), t)dt.

Present value Hamiltonian. We define the present value Hamiltonian:

Hp(y(t), z(t), π(t), t) = e−ρtf(y(t), z(t), t) + π(t)Q(y(t), z(t), t).

π is the present value multiplier.
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The Lagrangian is

Lp(z(t), λ(t), y(t), π(t), t) = Hp(y(t), z(t), π(t), t) − λ(t)G(y(t), z(t), t).

FOCs are:

Lp
z(z(t), λ(t), y(t), π(t), t) = 0

π̇(t) = −Hp∗

y (y(t), π(t), t)

ẏ(t) = Hp∗

π (y(t), π(t), t)

G(y(t), z(t), t) ≤ 0, λ(t) ≥ 0 with CS.

Current value Hamiltonian. It is also possible to define Hamiltonian in terms of the

current value:

Hc(y(t), z(t), π(t), t) = f(y(t), z(t), t) + µ(t)Q(y(t), z(t), t).

This is called the current value Hamiltonian and µ is the current value multiplier. Note

that Hp = e−ρtHc and π(t) = e−ρtµ(t). The Lagrangian is

Lc(z(t), ν(t), y(t), π(t), t) = Hc(y(t), z(t), π(t), t) − ν(t)G(y(t), z(t), t).

Note that Lp = e−ρtLc and λ(t) = e−ρtν(t).

From the FOCs for the present value Hamiltonian, we could deduce FOCs for the current

value Hamiltonian:

Lc
z(z(t), ν(t), y(t), π(t), t) = 0

µ̇(t) − ρµ(t) = −Hc∗

y (y(t), µ(t), t)

ẏ(t) = Hc∗

µ (y(t), µ(t), t)

G(y(t), z(t), t) ≤ 0, λt ≥ 0 with CS.
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10.E. Examples

Example 1: Life-Cycle Saving Consider the continuous-time version of the life-cycle

saving model. The evolution of k is governed by

k̇ = w + rk − c.

w is the constant wage rate and r is the constant interest rate. Assume that there are no

inheritances or bequests:

k(0) = k(T ) = 0.

The instantaneous utility function is ln(c), and the discount rate is ρ, so the objective

function is:
) T

0
e−ρt ln(c)dt.

Maximum Principle. We use the maximum principle to solve the problem. Define

Hamiltonian:

H = e−ρt ln(c) + π(w + rk − c).

The condition for c is:

Hc = e−ρtc−1 − π = 0 =⇒ c∗ = e−ρtπ−1 (10.26)

Substituting into H:

H∗ = e−ρt[−ρt − ln(π)] + π(w + rk) − e−ρt.

Then the differential equations for k and π are:

π̇ = −H∗
k = πr (10.27)

k̇ = H∗
π = w + rk − e−ρtπ−1 (10.28)

Analysis. The general solution of (10.27) is

π = π0e
−rt, (10.29)
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where π0 is a constant to be determined. Substituting this into (10.28), we have

k̇ = w + rk − π−1
0 e(r−ρ)t (10.30)

This is a first order differential equation. (10.30) is equivalent to

dke−rt

dt
= we−rt − π−1

0 e−ρt,

which integrate into

ke−rt − k(0) = w(1 − e−rt)
r

− π−1
0 (1 − e−ρt)

ρ
(10.31)

Plugging in k(0) = k(T ) = 0 gives π0. This completes the solution: k is given by (10.31),

and using (10.26) and (10.29), c is given by

c = e(r−ρ)tπ−1
0 . (10.32)

Some economic implications from (10.32) (without solving for π0):

• If r > ρ, the worker’s optimum consumption grows over time. Since consumption

and wages have the same discounted present values, c < w in the early years and

c > w in the later years.

• If r < ρ, then the worker’s optimum consumption decreases over time. So the

worker borrows in the early years.

Example 2: Optimum Growth Consider the optimal saving problem from the view of

the economy as a whole. The rate of return now is endogenous. Besides, consider T = ∞.

k denotes the stock of capital. Let F (k) be the production function. F is increasing,

strictly concave with F (0) = 0 and F ′(0) = ∞. Capital depreciates at a constant rate δ.

c is the consumption flow. Then the capital accumulation equation is

k̇ = F (k) − δk − c. (10.33)

The initial capital stock k(0) is given.
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Dynamic Optimization

The objective is still to maximize the present discounted value of utilities:

) ∞

0
e−ρtU(c)dt,

where the utility of the flow of consumption U(c) is increasing and strictly concave.

Maximum Principle. To apply the maximum principle, define Hamiltonian:

H = e−ρtU(c) + π(F (k) − δk − c).

The condition for c is:

Hc = e−ρtU ′(c) − π = 0 =⇒ e−ρtU ′(c) = π. (10.34)

The condition for k is:

π̇ = −H∗
k = −π(F ′(k) − δ) (10.35)

The condition for π gives the capital accumulation equation (10.33) at the optimal c.

Furthermore, this is an infinite-horizon problem, so we require the transversality condi-

tion:
lim

T →∞
π(T )
" #$ %

discounted shadow price

k(T ) = 0 =⇒ lim
T →∞

e−ρT U ′(c(T ))k(T ) = 0. (10.36)

The transversality condition means that the present value of capital stock in the infinite

future is zero.

Analysis. We would like to work with k and c. So we first eliminate π in the condition

for c. Differentiation of (10.34) gives

'
U ′′(c)ċ − ρU ′(c)

(
e−ρt = π̇ (10.37)

Plugging (10.34) and (10.37) into (10.35) and simplifying, we obtain the Euler equation:

−U ′′(c)ċ
U ′(c) =

'
F ′(k) − (ρ + δ)

(
=⇒ ċ

c
= F ′(k) − (ρ + δ)

η(c) (10.38)

where η(c) = − cU ′′(c)
U ′(c) is the elasticity of marginal utility of consumption. η(c) > 0 since

U is increasing and strictly concave.
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Dynamic Optimization

Now we have (10.33) and (10.38) as the pair of differential equations in k and c. We can

show the solutions in the phase diagram. See Figure 10.1.

Figure 10.1: Phase diagram for optimum growth

To draw the graph,

1. Identify the two curves k̇ = 0 and ċ = 0. The two curves split the space into four

regions.

2. Identify how k and c changes within each region:

• k increases if c < F (k) − δk;

• c increases if F ′(k) > ρ + δ.

3. Draw representative paths with different initial points. The paths cannot cross,

since the direction of motion is uniquely determined by the equations.

There are two paths converging to the equilibrium (k∗, c∗), one from the left and one

from the right. Given k(0), then c(0) should be chosen such that the path starting at

(k(0), c(0)) converges to (k∗, c∗). Transversality condition (10.36) is satisfied.

17


