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Introduction

Optimization over time does not generally require new

principles.

Variables can be of different dates.

There may be uncertainties about future events or oppor-

tunities to revise current decision at some future date.

We incorporate all these into objective function and con-

straints and theory of previous chapters apply.



10.A. Discrete-Time Optimization: Example

Life-cycle saving problem
e Time is discrete and denoted by t = 0,1, 2, ..., T (T finite)
e Worker gets paid wage w; in period t.
e Decision is on how much of income to spend on consump-
tion in each period.
— Unspent income saved; overspent income on debt.

— Interest rate r;



Life-cycle saving problem
e ¢;: consumption in period ¢
e ki q: accumulated savings (or debts), beginning of ¢ + 1.

e Budget constraint in period t is

Ct + kt+1 = Wt + (1 + Tf/)kt.

ko > 0 is given.

e Terminal condition: ky,q > 0.



Life-cycle saving problem

e Objective function:
T
Ulco, 1y .oyor) = Y Blu(ey),
t=0
where 5 € (0,1) is the discount factor.

e For simplicity, we assume lim,., o u'(¢;) = oo so that

¢ > 0 for all ¢.



Example (Two-period Case (1" = 1)).
Maximization problem is:

max  u(cg) + Su(cr)
€0,C1,k1,k2

s.t. Cco + kl = wy + (1 + To)ko
1t ky=w + (1 +r)k

ke >0



Two-period Case (7' = 1)
e To solve the problem, we use Kuhn-Tucker theorem.

e Let m; and my be Lagrangian multipliers.

e Lagrangian is:

L(co, 1, k1, ko, m1, ) =u(co) + fulcr)
+ 7r1[w0 + (1 + To)ko — Cy — k?l]

+7r2[w1 + (1 +’f’1)k‘1 —C1 — k)g]



Two-period Case (7' = 1)

Kuhn-Tucker conditions:

S—Cﬁozu'(co)—m:O
g—flzﬂu'(cl)—vrgz()
g—]flz—ﬂl‘f'ﬂz(l‘f'ﬁ)zo
g_ki:_mso, ks > 0 with CS
g_ézwﬁ(um)ko—co—kl:o
oL

a—@:w1+(1+r1)k1—cl—k2:0



Two-period Case (7' = 1)

1. CS and my = fu/(¢1) = ko = 0.
2. Euler Equation:

w = B(1 4 r)u(c1).

marginal benefit  marginal cost

3. ¢1, 9, k1 could be solved from two constraints and Euler

equation .



Life-cycle saving problem (arbitrary 7))

e Similar to two-period case, we could first state maximiza-
tion problem and solve it using Kuhn-Tucker theorem.

e Maximization problem is:

T
COvrCIII?:)ch Z Btu<ct)

k1,ko,....kp 1 =0

S.t. ¢+ kt—l—l = w; + (1 + Tt>kt for all t = 0, ,T

kri1 >0
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Life-cycle saving problem

e Let m1 be Lagrangian multipliers.

e Lagrangian is:
‘C(COa - Oy kla ) kT+17 Ty eeey 7Tt+1)
T T
= Bulc) + Y mr[wy + (1+ 1)k — ¢ — kg
t=0 t=0
Remark 1. Note that for any t =0,...,T — 1, k;1 appears

in two terms: wy1 + (1 + 7r441)key1 — i1 — kyo and

Wy + (1 + Tt)kt — C — kt—i—l-
11



Life-cycle saving problem

We rearrange the expression so that k; appears in only one

term of the sum:

T T-1
L= [Bule) = mpacd + D [l +7e41) = Tk
t=0 t=0
T
+ m (L4 ro)ko — mpakri + Y mpwy
t=0

12



Life-cycle saving problem

Kuhn-Tucker conditions:
oL =B (¢;) —my1 =0forallt =0,...,T
8Ct

oL
= 7Tt+2<1 + Tt+1) — Tt41 = 0 for all t = 0, 7T‘ —1
aklt-i—l

oL = —T7r41 S O, kT_;,_l Z 0 with CS
Okt

oL

Om41

= w; + (1 +7"t)kt — C — kt+1 =0 forallt= 0,...,T
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Life-cycle saving problem

1. CS and T4 = BTU,I(CT) — ]{IT+1 =0.
2. Euler Equations:

u'(cr) = B(1 4 rip1)u'(cpyq) forall ¢ =0,..., T — 1
——
marginal benefit marginal cost

3. ¢ fort =0,...,7 and kyyq for t = 0,...,,T — 1 could be

solved from constraints and Euler equations.
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Consumption Pattern
1. Suppose (1 +ryyq) =1forallt=0,..,7 — 1.
e Euler equation implies u/(¢;) = u/(¢i41).
o If u(c) is strictly concave, then ¢; = ¢;11 (consumption
does not vary over time).
2. Suppose (1 +ryyq) > 1forallt=0,...,7 — 1.
e Euler equation implies u/(¢;) > u/(ci41).
e If u(c) is strictly concave, then ¢; < ¢y41.
e When the worker is patient (3 large), he is willing to

save more for future consumption.
15



Consumption Pattern
3. Suppose B(1+11) < 1lforallt=0,..7—1.
e Euler equation implies u/(¢;) < u/(¢i41).
o If u(c) is strictly concave, then ¢; > ¢y41.
e When the worker is impatient (8 small), he is willing

to consume more today.
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10.B. Discrete-Time Optimization: General
10.B.1. Statement of the Problem

e Most important aspect of optimization over time is stock-
flow relationships.

e A stock is measured at one specific time, and represents
a quantity existing at that point in time.

e A flow is measured over an interval of time.

e Denote y; as stock variables and z; as flow variables.

17



Statement of the Problem

e In mathematical terminology,
— stocks are called state variables and
— flows are called control variables.

e In the previous example,
— ky are state (or stock) variables and

— ¢ are control (or flow) variables.

18



Statement of the Problem

e Increment of stocks depends on both stocks and flows
during that period.

e Production possibility constraints are

Y1 — Y = Q(y“ Zt,t).

— (@ should be thought of as a production function.
— tasan argument of ): exogenous technological change.

e In previous example, we have k;1 1 — ki = wy + riky — ¢4

19



Statement of the Problem

e In addition, there may be constraints on all variables per-

taining to any one date,
G(Z/ta 2ty t) S 07

where G is a vector function.
e In previous example, we need ¢; > 0 for all ¢.
— Even though we ignore such constraints in the calcu-
lations by assuming lim,., o u'(¢;) = oo so that ¢ > 0

for all ¢.
20



Statement of the Problem

It is assumed that criterion function is additively separable:

T

ZF(%’ Zt,t).

t=0

We take initial stock yy as given.

For simplicity, we take terminal value yr,; to be fixed.

Note that in previous example, we instead have terminal

condition kpr 1 > 0.

Cases with yr,qy > 0, or more generally yry 1 > ¢ are

discussed at the end of this section.

21



10.B.2. The Maximum Principle

e Choice variables are
—y fort=1,2,...T and
— z fort=0,1,2,..T.
e Let \; denote the multipliers for G constraints and
711 denote multipliers for QQ constraints.
e In terms of economic interpretations, \; are usual shadow

prices; w1 are shadow prices of y;,1.

22



The Maximum Principle

Lagrangian of the full inter-temporal problem is
T
L= {F(s,2,t) + o1 [y + Qe 2, t) — Yera] = MG (yr, 21, 1)}

t=0

(Arguments in £ are all y;, z¢, A, Tp11)

23



The Maximum Principle

1. FOC with respect to z; for t =0,1,...,T are
0L)0z = F.(ys, 2, ) + Te1Q= (Y, 26, 1) — MG (e, 26, 1) = 0.

2. FOC with respect to y; for t = 1,...,T" (note that y, and

yr+1 are not included) are

Tep1 — T = — [Fy(Ye, 26, t) + 11 Qy (e, 26, 1) — MGy (s, 26, 1)) -

24



The Maximum Principle

3. FOC with respect to myq for t =0,...,7T are

OL)Omr11 = yr + QYs, 2t,t) — Y1 = 0.

These are QQ constraints.

4. FOC with respect to \; for t =0, ..., T are

G(yt,zt,t) S 0, )\t Z 0 with CS.

25



Hamiltonian

e Conditions could be written in a more compact and eco-
nomic illuminating way.

e Define Hamiltonian:

H(ys, ze, mig1,t) = F(ye, 2, ) + 11 Q (e, 21, t).

26



Hamiltonian
e [nitial inter-temporal maximization problem could be rewrit-

ten as T single-period maximization problems:

max H(ys, 21, Teq1, ) = max F(ys, z6,t) + m1Q (v, 21, )

s.t. G(yi, 2z, t) < 0.

e In these single-period problems, only z; are choice vari-

ables; y;, m41 are parameters.

27



Hamiltonian

e Define Lagrangian:

L(Zt; /\taytﬂ-t—{-lat) = H(Z/taztaﬁtﬂat) - /\tG(ZJt, ztat)

e FOCs 1 and 4 are the conditions for the single-period
maximization problem.

o Write H*(y;, mi41,t) resulting maximum value.

28



Hamiltonian

e Envelope Theorem applies to parameters y, and m;1:

HZ(Qt,WHlat) = Ly (25, A{s Yts 41, 1)

H:(Z/tv 41,5 t) = Lﬂ’(zrv )‘:7 Yty Tit1, t) = Q(yt7 Z:; t)

e Then FOCs 2 and 3 are more simply written as

*
41 — Ty = —Hy(yt,ﬂtﬂ,t)

Yt+1 — Yt = H:(?/t, 7Tt—+—17t)

29



Hamiltonian

Theorem 10.1 (The Maximization Principle). First-order

necessary conditions for tmaximization problem

T
max Z F(yi, 2, t)

{ye}i_ {230 120
s.t. Ytoe1 — Y = Q(yta Zt7t)

G(yta Zt, t) S 0

are

30



Theorem 9.1 (continued)

(i) for each t, z; mazimizes the Hamiltonian H(y, 2y, Ti1,1t)
subject to the single-period constraints G(y, z;,t) < 0,
and

(ii) the changes in y; and 7, over time are governed by the

difference equations

*
T — T = —H (Ys, M1, 1)

Yi+1 — Yt = H;(yta 7rt+17t)

31



Interpretations
1. For condition (i),

e Choice of z; affects y;11 via Q constraint and therefore
affects terms in objective function at ¢ + 1 onwards.

e Effect of z; on ;41 equals its effect on Q(y;, 2z, t), and
resulting change in objective function is shadow price
i1 Of yep1 times Q(ys, 24, ).

e Hamiltonian offers a simple way to take into account

future consequences of choices of controls z; at t.

32



Interpretations

2. For condition (ii),

*
M1 — Tt = _Hy(yt77rt+17t)

could be viewed as intertemporal no-arbitrage condition.
e Marginal unit of y; yields
— marginal return F,(y;, zt,t) — MGy (yt, 2¢, t) within ¢,
— extra Q,(yi, 2, t) next period evaluated at m;1.
— In addition, there is capital gain of m; 1 — 7.

e When y; is optimum, sum of these components is 0.
33



Transversality condition
e If we change the terminal condition to y7,; > 0.

— By Kuhn-Tucker condition for yr,;, we need

w41 > 0 and T yre = 0.

— That is, if any positive stocks are left, they must be

worthless.

34



Transversality condition
e More generally, if there is a constraint ;.1 > 7, then we

require

mr4 > 0 and w1 (yre — 9) = 0.

e Such conditions on terminal stocks and respective shadow

prices are called transversality conditions.
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10.C. Continuous-Time Model

e We have treated time as discrete succession of periods.

e Such a formulation allows us to develop the theory using
technics of Kuhn-Tucker theorem.

e However, in practice, it is sometimes more convenient to

treat time as a continuous variable.

36



Continuous-Time Model

e We can think of continuous-time models as limit of discrete-
time models when we take At to 0.
e Flows are now rates per time.

e In particular, Q constraint becomes

y(t+At) —y(t) = Qy(1), 2(1), t) At.

e Denote g(t) = dy(t)/dt,

37



Continuous-Time Model

Problem becomes

max)/oT F(y(t), =(t), t)dt

y(1),2(t
st g(t) = Qy(t), 2(t), 1)
G(y(t), 2(t),1) <0

Initial condition y(0) and terminal condition y(7") are given.

38



Maximum Principle
e We also have similar results as in discrete-time model.

e Define Hamiltonian:

7(t) is called the co-state variable.
e Lagrangian is:

L(z(8), A8), y(t), w(1),8) = H(y(t), z(t), 7 (), ) = AO)G(y(t), 2(1), 1),

39



Maximum Principle

Theorem 10.2. FOCs for the continuous-time problem is
(i) z(t) maximizes Hamiltonian H(y(t),z(t),n(t),t) subject
to single period constraints G(y(t), z(t),t) <0, and

(ii) y(t) and w(t) are governed by differential equations

(t) = —H,(y(t), (1), 1)

y(t) = Hi(y(t),m(t), 1)

40



10.D. Further Discussions
10.D.1. Infinite Horizon problems

e There is no last period in infinite horizon problems.

e So, unlike finite-horizon problems, now it is unreasonable
to impose non-negative stock in last period.

e For problem to be well-defined, we need to impose
transversality condition.

e Heuristically, natural extensions of previous transversal-
ity conditions for finite-horizon problems with non-negative

terminal stock. 41



Transversality Condition

e For discrete-time problems, transversality condition is:
lim TYr = 0.
T—o0

e For continuous-time problems, transversality condition is:

lim 7(T)y(T) = 0.

T—o0

42



10.D.2. Present Value v.s. Current Value Hamiltonian

e In economic applications, we usually need to discount fu-
ture values.

e In previous example, worker discount future utilities by
[ per period.

e In this section, we analyze optimization problem with dis-
count factors explicitly expressed in objective function.

e For simplicity, we assume finite T', and o, y7+1 given.

e Transversality conditions are needed if 7" is infinite or we

only impose yr,; > 0 for finite 7.
43



Discrete-Time Model
In order to explicitly taking into account discount factors f3,
we rewrite the criterion function as:

T

Zﬁtf(ytv 2t t)

t=0

44



Present value Hamiltonian

e As in previous section, we define Hamiltonian, called

present value Hamiltonian:

Hp(yta zt77rt+17t> = 5tf(yt7 Zt, t) + 7Tt+1Q(yt7 Ztat)-

7 is the present value multiplier.

e Lagrangian is

Lp(zta Aty Z/t,ﬂt+1at> = Hp(yt, Zt, 7Tt+17t) - /\tG(yta Ztﬂf)

45



Present value Hamiltonian
FOCs are:

L2(24, Ay Y, Teq1, 1) = 0
g1 — T = —Hg*(yt,le’t)
Yesr — Ye = HY (g, ma1,t)  (Q constraint)

G(yt,Zt,t) S 0, >\t 2 0 with CS.

46



Current value Hamiltonian

e [t is also possible to define Hamiltonian in terms of cur-

rent value:

H(ye, 245 pus1,t) = [y, 20, t) + Briyr QY 24, ).

e This is called current value Hamiltonian and g is current
value multiplier.

e Note that H? = B'H¢ and 7 = ' ;.

47



Current value Hamiltonian

e Lagrangian is

L (2, Ve, Yty pagrs t) = HE (Y, 20, Tegr, t) — G (Y, 24, t).

e Note that LP = S'L¢ and )\, = Slv;.

48



Current value Hamiltonian

From FOCs for present value Hamiltonian, we could deduce

FOCs for current value Hamiltonian:

L (2, Ve, Yoy ples1,t) = 0
L _ng* (Yes 1, 1)

B(Yrs1 — y) = Hﬁ* (ye, per1,t)  (Q constraint)

G(yt,Zt,t) S O, Vy Z 0 with CS.

49



Continuous-Time Model

e Discount factor changes from [ = to e Pt where p is

= 1+p

discount rate:

1 n nl—p
lim = lim (1 + B) ’ =e "
n—oo \ 1 4 % n—00 n

e Thus, we rewrite criterion function as:

/OT e P f(y(t), z(t), t)dt.

50



Present value Hamiltonian

e We define present value Hamiltonian:

HP(y(t), 2(t), w(t),t) = e f(y(), 2(t), ) +m () Q(y(2), 2(t), 1).

7 is present value multiplier.

e Lagrangian is

LP(2(t), A1),y (), m(t), ) = HP(y(t), 2(t), w(£),£) — A(£)G(y(t), 2(£), 1).

o1



Present value Hamiltonian

FOCs are:

LE(2(1), A1), y(t), m(t), 1) = O
w(t) = —Hy (y(t),7(t), )
y(t) = HY (y(t),7(t), )

G(y(t), 2(t), 1) <0, A(t) > 0 with CS.
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Current value Hamiltonian

e [t is also possible to define Hamiltonian in terms of cur-

rent value:

He(y(t), (1), m(t), 1) = f(y(t), (1), ) +p)Qy(1), (1), 1).

e This is called current value Hamiltonian and g is current
value multiplier.

e Note that H? = e ?"H® and 7(t) = e u(t).
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Current value Hamiltonian

e Lagrangian is

LE(z(8),v(8), y(t), 7 (1), 1) = H*(y(1), 2(), 7(t),t) = v(1)G(y(t), 2(1), 1).

e Note that LP? = e ?'L¢ and \(t) = e "'v(t).

o4



Current value Hamiltonian
From the FOCs for present value Hamiltonian, we could de-

duce FOCs for current value Hamiltonian:

LE(=(8), v(t), y(t), m(t),) = O

G(y(t), z(t),t) <0, A(t) > 0 with CS.
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10.E. Examples

Example 1: Life-Cycle Saving
e Consider continuous-time version of life-cycle saving model.

e Evolution of k is governed by
k=w+rk—c

e w is constant wage rate and r is constant interest rate.

e Assume no inheritances or bequests: k(0) = k(7") = 0.
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Example 1: Life-Cycle Saving

e Instantaneous utility function is In(c)
e Discount rate is p

e Objective function is:

T
/ e ' In(c)dt.
Jo

o7



Maximum Principle

e Define Hamiltonian:
H=e"n(c)+m(w+rk—c).

e Condition for c is:

-1

Ho=eflel—qg=0 = ¢"=e¢"r

e Substituting into H:

H* = e " [—pt — In(7)] + w(w + rk) — e~

o8



Maximum Principle

e Differential equations for k£ and 7 are:

T =—H; =mur

k=H=w+rk—en?
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Example 2: Optimum Growth
e Consider optimal saving problem from the view of
economy as a whole.
— Rate of return now is endogenous.
— Besides, consider T" = oo.
e [ denotes stock of capital.
e Let F'(k) be production function.
— F is increasing, strictly concave with F'(0) = 0 and
F'(0) = o0.

e Capital depreciates at a constant rate 0.
60



Optimum Growth
e ¢ is the consumption flow.

e Capital accumulation equation is
k= F(k) — 0k —c. (10.1)

e Initial capital stock k(0) is given.
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Optimum Growth

e Objective is still to maximize present discounted value of

utilities:
/‘ e U (c)dt,
0

— Flow utility U(c) is increasing and strictly concave.
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Maximum Principle

e Define Hamiltonian:
H=e¢"U(c) +m(F(k) — 5k — c).

e Condition for ¢ is:

H.=e"U'(c)—m=0 = e "U'(c) =m.

e Condition for k is:

= —H: = —n(F'(k) — 0)
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Maximum Principle

e Condition for 7 gives capital accumulation equation (10.1)
at optimal c.

e Furthermore, this is an infinite-horizon problem, so we
require transversality condition:

Jim 7(T)k(T) =0 = lim_ e PTU (e(T))k(T) = 0.

discounted shadow price
— It means that present value of capital stock in infinite

future is zero.
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Analysis
We could derive a pair of differential equations in k and c:
k= F(k)— 0k —c

and Euler equation

¢ F'(k)—(p+9)

c n(c)
where n(c) = —Cg,l;(c? is the elasticity of marginal utility of
consumption.
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Phase Diagram
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