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Introduction

• Optimization over time does not generally require new

principles.

• Variables can be of different dates.

• There may be uncertainties about future events or oppor-

tunities to revise current decision at some future date.

• We incorporate all these into objective function and con-

straints and theory of previous chapters apply.

2



10.A. Discrete-Time Optimization: Example

Life-cycle saving problem

• Time is discrete and denoted by t = 0, 1, 2, ..., T (T finite)

• Worker gets paid wage wt in period t.

• Decision is on how much of income to spend on consump-

tion in each period.

– Unspent income saved; overspent income on debt.

– Interest rate rt
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Life-cycle saving problem

• ct: consumption in period t

• kt+1: accumulated savings (or debts), beginning of t + 1.

• Budget constraint in period t is

ct + kt+1 = wt + (1 + rt)kt.

k0 ≥ 0 is given.

• Terminal condition: kT +1 ≥ 0.
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Life-cycle saving problem

• Objective function:

U(c0, c1, ..., cT ) =
T!

t=0
βtu(ct),

where β ∈ (0, 1) is the discount factor.

• For simplicity, we assume limct→0 u′(ct) = ∞ so that

ct > 0 for all t.
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Example (Two-period Case (T = 1)).

Maximization problem is:

max
c0,c1,k1,k2

u(c0) + βu(c1)

s.t. c0 + k1 = w0 + (1 + r0)k0

c1 + k2 = w1 + (1 + r1)k1

k2 ≥ 0
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Two-period Case (T = 1)

• To solve the problem, we use Kuhn-Tucker theorem.

• Let π1 and π2 be Lagrangian multipliers.

• Lagrangian is:

L(c0, c1, k1, k2, π1, π2) =u(c0) + βu(c1)

+ π1[w0 + (1 + r0)k0 − c0 − k1]

+ π2[w1 + (1 + r1)k1 − c1 − k2].
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Two-period Case (T = 1)

Kuhn-Tucker conditions:

∂L
∂c0

= u′(c0) − π1 = 0

∂L
∂c1

= βu′(c1) − π2 = 0

∂L
∂k1

= −π1 + π2(1 + r1) = 0

∂L
∂k2

= −π2 ≤ 0, k2 ≥ 0 with CS

∂L
∂π1

= w0 + (1 + r0)k0 − c0 − k1 = 0

∂L
∂π2

= w1 + (1 + r1)k1 − c1 − k2 = 0
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Two-period Case (T = 1)

1. CS and π2 = βu′(c1) =⇒ k2 = 0.

2. Euler Equation:

u′(c0)" #$ %
marginal benefit

= β(1 + r1)u′(c1)" #$ %
marginal cost

.

3. c1, c2, k1 could be solved from two constraints and Euler

equation .
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Life-cycle saving problem (arbitrary T )

• Similar to two-period case, we could first state maximiza-

tion problem and solve it using Kuhn-Tucker theorem.

• Maximization problem is:

max
c0,c1,...,cT

k1,k2,...,kT +1

T!

t=0
βtu(ct)

s.t. ct + kt+1 = wt + (1 + rt)kt for all t = 0, ..., T

kT +1 ≥ 0
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Life-cycle saving problem

• Let πt+1 be Lagrangian multipliers.

• Lagrangian is:

L(c0, ..., cT , k1, ..., kT +1, π1, ..., πt+1)

=
T!

t=0
βtu(ct) +

T!

t=0
πt+1[wt + (1 + rt)kt − ct − kt+1]

Remark 1. Note that for any t = 0, ..., T − 1, kt+1 appears

in two terms: wt+1 + (1 + rt+1)kt+1 − ct+1 − kt+2 and

wt + (1 + rt)kt − ct − kt+1.
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Life-cycle saving problem

We rearrange the expression so that kt appears in only one

term of the sum:

L =
T!

t=0
[βtu(ct) − πt+1ct] +

T −1!

t=0
[πt+2(1 + rt+1) − πt+1]kt+1

+ π1(1 + r0)k0 − πT +1kT +1 +
T!

t=0
πt+1wt.
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Life-cycle saving problem

Kuhn-Tucker conditions:

∂L
∂ct

= βtu′(ct) − πt+1 = 0 for all t = 0, ..., T

∂L
∂kt+1

= πt+2(1 + rt+1) − πt+1 = 0 for all t = 0, ..., T − 1

∂L
∂kT +1

= −πT +1 ≤ 0, kT +1 ≥ 0 with CS

∂L
∂πt+1

= wt + (1 + rt)kt − ct − kt+1 = 0 for all t = 0, ..., T
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Life-cycle saving problem

1. CS and πT +1 = βT u′(cT ) =⇒ kT +1 = 0.

2. Euler Equations:

u′(ct)" #$ %
marginal benefit

= β(1 + rt+1)u′(ct+1)" #$ %
marginal cost

for all t = 0, ..., T − 1

3. ct for t = 0, ..., T and kt+1 for t = 0, ..., T − 1 could be

solved from constraints and Euler equations.
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Consumption Pattern

1. Suppose β(1 + rt+1) = 1 for all t = 0, ..., T − 1.

• Euler equation implies u′(ct) = u′(ct+1).

• If u(c) is strictly concave, then ct = ct+1 (consumption

does not vary over time).

2. Suppose β(1 + rt+1) > 1 for all t = 0, ..., T − 1.

• Euler equation implies u′(ct) > u′(ct+1).

• If u(c) is strictly concave, then ct < ct+1.

• When the worker is patient (β large), he is willing to

save more for future consumption.
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Consumption Pattern

3. Suppose β(1 + rt+1) < 1 for all t = 0, ..., T − 1.

• Euler equation implies u′(ct) < u′(ct+1).

• If u(c) is strictly concave, then ct > ct+1.

• When the worker is impatient (β small), he is willing

to consume more today.
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10.B. Discrete-Time Optimization: General

10.B.1. Statement of the Problem

• Most important aspect of optimization over time is stock-

flow relationships.

• A stock is measured at one specific time, and represents

a quantity existing at that point in time.

• A flow is measured over an interval of time.

• Denote yt as stock variables and zt as flow variables.
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Statement of the Problem

• In mathematical terminology,

– stocks are called state variables and

– flows are called control variables.

• In the previous example,

– kt are state (or stock) variables and

– ct are control (or flow) variables.
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Statement of the Problem

• Increment of stocks depends on both stocks and flows

during that period.

• Production possibility constraints are

yt+1 − yt = Q(yt, zt, t).

– Q should be thought of as a production function.

– t as an argument of Q: exogenous technological change.

• In previous example, we have kt+1 − kt = wt + rtkt − ct.
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Statement of the Problem

• In addition, there may be constraints on all variables per-

taining to any one date,

G(yt, zt, t) ≤ 0,

where G is a vector function.

• In previous example, we need ct ≥ 0 for all t.

– Even though we ignore such constraints in the calcu-

lations by assuming limct→0 u′(ct) = ∞ so that ct > 0

for all t.
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Statement of the Problem

It is assumed that criterion function is additively separable:

T!

t=0
F (yt, zt, t).

• We take initial stock y0 as given.

• For simplicity, we take terminal value yT +1 to be fixed.

• Note that in previous example, we instead have terminal

condition kT +1 ≥ 0.

• Cases with yT +1 ≥ 0, or more generally yT +1 ≥ ŷ are

discussed at the end of this section.
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10.B.2. The Maximum Principle

• Choice variables are

– yt for t = 1, 2, ...T and

– zt for t = 0, 1, 2, ...T .

• Let λt denote the multipliers for G constraints and

πt+1 denote multipliers for Q constraints.

• In terms of economic interpretations, λt are usual shadow

prices; πt+1 are shadow prices of yt+1.
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The Maximum Principle

Lagrangian of the full inter-temporal problem is

L =
T!

t=0
{F (yt, zt, t) + πt+1 [yt + Q(yt, zt, t) − yt+1] − λtG(yt, zt, t)}

(Arguments in L are all yt, zt, λt, πt+1)
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The Maximum Principle

1. FOC with respect to zt for t = 0, 1, ..., T are

∂L/∂zt ≡ Fz(yt, zt, t) + πt+1Qz(yt, zt, t) − λtGz(yt, zt, t) = 0.

2. FOC with respect to yt for t = 1, ..., T (note that y0 and

yT +1 are not included) are

πt+1 − πt = − [Fy(yt, zt, t) + πt+1Qy(yt, zt, t) − λtGy(yt, zt, t)] .
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The Maximum Principle

3. FOC with respect to πt+1 for t = 0, ..., T are

∂L/∂πt+1 = yt + Q(yt, zt, t) − yt+1 = 0.

These are Q constraints.

4. FOC with respect to λt for t = 0, ..., T are

G(yt, zt, t) ≤ 0, λt ≥ 0 with CS.
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Hamiltonian

• Conditions could be written in a more compact and eco-

nomic illuminating way.

• Define Hamiltonian:

H(yt, zt, πt+1, t) = F (yt, zt, t) + πt+1Q(yt, zt, t).
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Hamiltonian

• Initial inter-temporal maximization problem could be rewrit-

ten as T single-period maximization problems:

max
zt

H(yt, zt, πt+1, t) ≡ max
zt

F (yt, zt, t) + πt+1Q(yt, zt, t)

s.t. G(yt, zt, t) ≤ 0.

• In these single-period problems, only zt are choice vari-

ables; yt, πt+1 are parameters.
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Hamiltonian

• Define Lagrangian:

L(zt, λt, ytπt+1, t) = H(yt, zt, πt+1, t) − λtG(yt, zt, t)

• FOCs 1 and 4 are the conditions for the single-period

maximization problem.

• Write H∗(yt, πt+1, t) resulting maximum value.
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Hamiltonian

• Envelope Theorem applies to parameters yt and πt+1:

H∗
y (yt, πt+1, t) = Ly(z∗

t , λ∗
t , yt, πt+1, t)

H∗
π(yt, πt+1, t) = Lπ(z∗

t , λ∗
t , yt, πt+1, t) = Q(yt, z∗

t , t)

• Then FOCs 2 and 3 are more simply written as

πt+1 − πt = −H∗
y (yt, πt+1, t)

yt+1 − yt = H∗
π(yt, πt+1, t)
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Hamiltonian

Theorem 10.1 (The Maximization Principle). First-order

necessary conditions for tmaximization problem

max
{yt}T

t=1,{zt}T
t=0

T!

t=0
F (yt, zt, t)

s.t. yt+1 − yt = Q(yt, zt, t)

G(yt, zt, t) ≤ 0

are
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Theorem 9.1 (continued)

(i) for each t, zt maximizes the Hamiltonian H(yt, zt, πt+1, t)

subject to the single-period constraints G(yt, zt, t) ≤ 0,

and

(ii) the changes in yt and πt over time are governed by the

difference equations

πt+1 − πt = −H∗
y (yt, πt+1, t)

yt+1 − yt = H∗
π(yt, πt+1, t)
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Interpretations

1. For condition (i),

• Choice of zt affects yt+1 via Q constraint and therefore

affects terms in objective function at t + 1 onwards.

• Effect of zt on yt+1 equals its effect on Q(yt, zt, t), and

resulting change in objective function is shadow price

πt+1 of yt+1 times Q(yt, zt, t).

• Hamiltonian offers a simple way to take into account

future consequences of choices of controls zt at t.
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Interpretations

2. For condition (ii),

πt+1 − πt = −H∗
y (yt, πt+1, t)

could be viewed as intertemporal no-arbitrage condition.

• Marginal unit of yt yields

– marginal return Fy(yt, zt, t) − λtGy(yt, zt, t) within t,

– extra Qy(yt, zt, t) next period evaluated at πt+1.

– In addition, there is capital gain of πt+1 − πt.

• When yt is optimum, sum of these components is 0.
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Transversality condition

• If we change the terminal condition to yT +1 ≥ 0.

– By Kuhn-Tucker condition for yT +1, we need

πT +1 ≥ 0 and πT +1yT +1 = 0.

– That is, if any positive stocks are left, they must be

worthless.
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Transversality condition

• More generally, if there is a constraint yT +1 ≥ ŷ, then we

require

πT +1 ≥ 0 and πT +1(yT +1 − ŷ) = 0.

• Such conditions on terminal stocks and respective shadow

prices are called transversality conditions.
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10.C. Continuous-Time Model

• We have treated time as discrete succession of periods.

• Such a formulation allows us to develop the theory using

technics of Kuhn-Tucker theorem.

• However, in practice, it is sometimes more convenient to

treat time as a continuous variable.
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Continuous-Time Model

• We can think of continuous-time models as limit of discrete-

time models when we take ∆t to 0.

• Flows are now rates per time.

• In particular, Q constraint becomes

y(t + ∆t) − y(t) = Q(y(t), z(t), t)∆t.

• Denote ẏ(t) = dy(t)/dt,

ẏ(t) = Q(y(t), z(t), t).
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Continuous-Time Model

Problem becomes

max
y(t),z(t)

& T

0
F (y(t), z(t), t)dt

s.t. ẏ(t) = Q(y(t), z(t), t)

G(y(t), z(t), t) ≤ 0

Initial condition y(0) and terminal condition y(T ) are given.
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Maximum Principle

• We also have similar results as in discrete-time model.

• Define Hamiltonian:

H(y(t), z(t), π(t), t) = F (y(t), z(t), t)+π(t)Q(y(t), z(t), t).

π(t) is called the co-state variable.

• Lagrangian is:

L(z(t), λ(t), y(t), π(t), t) = H(y(t), z(t), π(t), t) − λ(t)G(y(t), z(t), t).
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Maximum Principle

Theorem 10.2. FOCs for the continuous-time problem is

(i) z(t) maximizes Hamiltonian H(y(t), z(t), π(t), t) subject

to single period constraints G(y(t), z(t), t) ≤ 0, and

(ii) y(t) and π(t) are governed by differential equations

π̇(t) = −H∗
y (y(t), π(t), t)

ẏ(t) = H∗
π(y(t), π(t), t)
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10.D. Further Discussions

10.D.1. Infinite Horizon problems

• There is no last period in infinite horizon problems.

• So, unlike finite-horizon problems, now it is unreasonable

to impose non-negative stock in last period.

• For problem to be well-defined, we need to impose

transversality condition.

• Heuristically, natural extensions of previous transversal-

ity conditions for finite-horizon problems with non-negative

terminal stock. 41



Transversality Condition

• For discrete-time problems, transversality condition is:

lim
T →∞

πT yT = 0.

• For continuous-time problems, transversality condition is:

lim
T →∞

π(T )y(T ) = 0.
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10.D.2. Present Value v.s. Current Value Hamiltonian

• In economic applications, we usually need to discount fu-

ture values.

• In previous example, worker discount future utilities by

β per period.

• In this section, we analyze optimization problem with dis-

count factors explicitly expressed in objective function.

• For simplicity, we assume finite T , and y0, yT +1 given.

• Transversality conditions are needed if T is infinite or we

only impose yT +1 ≥ 0 for finite T .
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Discrete-Time Model

In order to explicitly taking into account discount factors β,

we rewrite the criterion function as:

T!

t=0
βtf(yt, zt, t).
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Present value Hamiltonian

• As in previous section, we define Hamiltonian, called

present value Hamiltonian:

Hp(yt, zt, πt+1, t) = βtf(yt, zt, t) + πt+1Q(yt, zt, t).

π is the present value multiplier.

• Lagrangian is

Lp(zt, λt, yt, πt+1, t) = Hp(yt, zt, πt+1, t) − λtG(yt, zt, t)
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Present value Hamiltonian

FOCs are:

Lp
z(zt, λt, yt, πt+1, t) = 0

πt+1 − πt = −Hp∗

y (yt, πt+1, t)

yt+1 − yt = Hp∗

π (yt, πt+1, t) (Q constraint)

G(yt, zt, t) ≤ 0, λt ≥ 0 with CS.
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Current value Hamiltonian

• It is also possible to define Hamiltonian in terms of cur-

rent value:

Hc(yt, zt, µt+1, t) = f(yt, zt, t) + βµt+1Q(yt, zt, t).

• This is called current value Hamiltonian and µ is current

value multiplier.

• Note that Hp = βtHc and πt = βtµt.
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Current value Hamiltonian

• Lagrangian is

Lc(zt, νt, yt, µt+1, t) = Hc(yt, zt, πt+1, t) − νtG(yt, zt, t).

• Note that Lp = βtLc and λt = βtνt.
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Current value Hamiltonian

From FOCs for present value Hamiltonian, we could deduce

FOCs for current value Hamiltonian:

Lc
z(zt, νt, yt, µt+1, t) = 0

βµt+1 − µt = −Hc∗

y (yt, µt+1, t)

β(yt+1 − yt) = Hc∗

µ (yt, µt+1, t) (Q constraint)

G(yt, zt, t) ≤ 0, νt ≥ 0 with CS.
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Continuous-Time Model

• Discount factor changes from β ≡ 1
1+ρ

to e−ρt where ρ is

discount rate:

lim
n→∞

'
1

1 + ρ
n

(n

= lim
n→∞

)*
1 + ρ

n

+ n
ρ

,−ρ

= e−ρ.

• Thus, we rewrite criterion function as:

& T

0
e−ρtf(y(t), z(t), t)dt.
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Present value Hamiltonian

• We define present value Hamiltonian:

Hp(y(t), z(t), π(t), t) = e−ρtf(y(t), z(t), t)+π(t)Q(y(t), z(t), t).

π is present value multiplier.

• Lagrangian is

Lp(z(t), λ(t), y(t), π(t), t) = Hp(y(t), z(t), π(t), t) − λ(t)G(y(t), z(t), t).
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Present value Hamiltonian

FOCs are:

Lp
z(z(t), λ(t), y(t), π(t), t) = 0

π̇(t) = −Hp∗

y (y(t), π(t), t)

ẏ(t) = Hp∗

π (y(t), π(t), t)

G(y(t), z(t), t) ≤ 0, λ(t) ≥ 0 with CS.
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Current value Hamiltonian

• It is also possible to define Hamiltonian in terms of cur-

rent value:

Hc(y(t), z(t), π(t), t) = f(y(t), z(t), t)+µ(t)Q(y(t), z(t), t).

• This is called current value Hamiltonian and µ is current

value multiplier.

• Note that Hp = e−ρtHc and π(t) = e−ρtµ(t).
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Current value Hamiltonian

• Lagrangian is

Lc(z(t), ν(t), y(t), π(t), t) = Hc(y(t), z(t), π(t), t) − ν(t)G(y(t), z(t), t).

• Note that Lp = e−ρtLc and λ(t) = e−ρtν(t).
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Current value Hamiltonian

From the FOCs for present value Hamiltonian, we could de-

duce FOCs for current value Hamiltonian:

Lc
z(z(t), ν(t), y(t), π(t), t) = 0

µ̇(t) − ρµ(t) = −Hc∗

y (y(t), µ(t), t)

ẏ(t) = Hc∗

µ (y(t), µ(t), t)

G(y(t), z(t), t) ≤ 0, λ(t) ≥ 0 with CS.
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10.E. Examples

Example 1: Life-Cycle Saving

• Consider continuous-time version of life-cycle saving model.

• Evolution of k is governed by

k̇ = w + rk − c.

• w is constant wage rate and r is constant interest rate.

• Assume no inheritances or bequests: k(0) = k(T ) = 0.
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Example 1: Life-Cycle Saving

• Instantaneous utility function is ln(c)

• Discount rate is ρ

• Objective function is:

& T

0
e−ρt ln(c)dt.
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Maximum Principle

• Define Hamiltonian:

H = e−ρt ln(c) + π(w + rk − c).

• Condition for c is:

Hc = e−ρtc−1 − π = 0 =⇒ c∗ = e−ρtπ−1

• Substituting into H:

H∗ = e−ρt[−ρt − ln(π)] + π(w + rk) − e−ρt.
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Maximum Principle

• Differential equations for k and π are:

π̇ = −H∗
k = πr

k̇ = H∗
π = w + rk − e−ρtπ−1

59



Example 2: Optimum Growth

• Consider optimal saving problem from the view of

economy as a whole.

– Rate of return now is endogenous.

– Besides, consider T = ∞.

• k denotes stock of capital.

• Let F (k) be production function.

– F is increasing, strictly concave with F (0) = 0 and

F ′(0) = ∞.

• Capital depreciates at a constant rate δ.
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Optimum Growth

• c is the consumption flow.

• Capital accumulation equation is

k̇ = F (k) − δk − c. (10.1)

• Initial capital stock k(0) is given.
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Optimum Growth

• Objective is still to maximize present discounted value of

utilities:

& ∞

0
e−ρtU(c)dt,

– Flow utility U(c) is increasing and strictly concave.
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Maximum Principle

• Define Hamiltonian:

H = e−ρtU(c) + π(F (k) − δk − c).

• Condition for c is:

Hc = e−ρtU ′(c) − π = 0 =⇒ e−ρtU ′(c) = π.

• Condition for k is:

π̇ = −H∗
k = −π(F ′(k) − δ)
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Maximum Principle

• Condition for π gives capital accumulation equation (10.1)

at optimal c.

• Furthermore, this is an infinite-horizon problem, so we

require transversality condition:

lim
T →∞

π(T )
" #$ %

discounted shadow price

k(T ) = 0 =⇒ lim
T →∞

e−ρT U ′(c(T ))k(T ) = 0.

– It means that present value of capital stock in infinite

future is zero.
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Analysis

We could derive a pair of differential equations in k and c:

k̇ = F (k) − δk − c

and Euler equation

ċ

c
= F ′(k) − (ρ + δ)

η(c)

where η(c) = − cU ′′(c)
U ′(c) is the elasticity of marginal utility of

consumption.
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Phase Diagram
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