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Introduction

e This chapter concerns choice under uncertainty.

e [t is an important topic in economics, and is of great
practical interest.

e In real-life, almost every decision needs to be made under

uncertainty.



Introduction

e In this chapter, we will sketch a systematic way of making
such decisions.
e In terms of mathematics, there will be nothing new.

e You will see more economic concepts and intuitions.



Introduction

e Let’s get familiarized with problems of choice under un-
certainty.

e Uncertainty means that you do not anticipate a sure out-
come.

e To make our discussion more concrete, we will need to

introduce some concepts.



Introduction

Consider the following simple example:

Example 9.1. Suppose that you have access to the following
lottery: the lottery pays $100 with probability 1/4, and pays
nothing with the remaining probability. The question is, do

you wish to pay $25 for such a lottery?



Introduction

e This is a problem of choice under uncertainty.
e Outcome is uncertain: you will either get $100 or $0.

e There are two important elements in the problem:

(i) Outcomes. In the example, outcomes refer to the state
paying $100, and the state paying $0.

(ii) Probabilities associated with outcomes. In the exam-
ple, 1/4 is the probability associated with the state
paying $700, and 3/4 is the probability associated with

the state paying $0.



Introduction

e Note that probabilities are objective here, but they could
be referred to as subjective probabilities in certain appli-
cations.

e Probabilities in a well-defined problem should be
1. non-negative, and
2. add up to 1.

e In this example, we could write consumer’s utility from

lottery could be written as follows: U($100,$0;1/4,3/4).



Introduction

More generally, denote possible outcomes by Y1, Ys, ..., Y,,.

Probability associated with outcomes by p1, p2, .., Pm.-

Utility could be written as

U(Y17 Y27 "'7Y;n;p1ap2a "ap7n)-

e Next, we will introduce a widely-used method to express

utility in a way that more analysis could be performed.



9.A. Expected Utility

e Since probabilities are involved, it is somewhat natural
to make use of mathematical expectation, or probability
weighted average.

e For instance, in Example 9.1, we could express utility as

follows:
U($100, $0;1/4,3/4) = 1/4U($100) + 3/4U($0).

e This is called the von Neumann-Morgenstern utility func-

tion, and is of expected utility form.



Expected Utility

e For a general utility function, expected utility form is

expressed as follows:

U(Yia }/27 (X2} Ym;plaan 7pm)
=pUM) +pU(Ya) + oo 400U (Ym) = D piU(Yi).  (9.1)
i=1
e This formulation is useful in its simplicity and its ability

to capture economically interesting aspects of behavior.

e We will discuss some implications of this representation.
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Money Lotteries and Risk-aversion

Now consider Y;’s as money amounts.
e [ is an increasing function.

Definition of Risk-aversion is intuitive.

In Example 9.1, the lottery gives in expectation

$100 x 1/4 4 $0 x 3/4 = $25.

A risk-averse individual dislikes risk, and thus prefers sure

outcome of $25 to lottery that gives on average $25.
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Risk-aversion

e In general, for two distinct outcomes Y; and Y5 with (any)
positive probability p and (1 — p) respectively, a decision

maker is risk-averse if

UpYr + (1 —p)Ya) > pU (Y1) + (1 — p)U(Ya).

e This is, U is (strictly) concave.
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Risk-aversion

e More generally, we could include more than 2 states:
e A decision maker is risk-averse if
U(>_pY) > Y pUY)). (9.2
i=1 i=1

e If U is twice differentiable, U” < 0 corresponds to risk-

aversion.
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Insurance

e Let’s now bring back decision variable x, which affect
some or all of outcomes and probabilities.

e Suppose Y; < Y5, which means first state entails some
loss relative to second.

e Y, occurs with probability p; Y5 with probability (1 — p).

e A risk-averse decision maker would want to purchase in-

surance.
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Insurance
e Consider an insurance policy that requires
— an advance payment of = (paid independent of state
realization), and
— gives X if state 1 is realized.
e Suppose the insurance policy is actuarially fair: pX = z.
e Actuarially fairness is an outcome of a perfectly compet-
itive insurance industry.
— Insurance company is risk-free.

— Zero-profit condition implies pX = x.
15



Insurance

e Decision maker’s objective function is
maxpU (Y1 —z + X) + (1 = p)U(Yz — z)

= maxpU(Yi — o +a/p) + (1 = pU(Y2 - )

e FOC for x gives:

pUMi—z+a2/p)(1/p—1)— (1 =pU'(Y2—2) <0

and z > 0, with complementary slackness. (9.3)
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Insurance

e When x = 0,

pU'(Y1)(1/p—1) = (1 = p)U'(Y2)

(1= U (%) = U'(¥2)] >0,

U"”<0
contradicting with (9.3).

e Therefore, we must have x > 0 at the optimum.
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Insurance

e Since x > 0, by (9.3),

pU'Yr —x+a/p)(1/p—1)— (1 =pU'(Yo—2)=0

—=U'(Y1 —z+a/p) =U'(Yz2 — x) (9.4)

e When U” < 0, objective function is concave in  and FOC
is also sufficient.

e FOC (9.4) implies

Yi—z+x/p=Y,—x.
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Insurance

Y1 — x4+ z/p = Ys — z is the full-insurance result:
a risk-averse decision maker would buy the actuarially fair
insurance to the point where the outcomes in different states

are equal.
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Care

e Consider again previous problem faced by decision maker,
but leave aside insurance for the moment.

e Now suppose that probability of bad outcome (state 1)
can be reduced by incurring an expense z in advance.

e Specifically, you could think of it as exercising more care
by yourself to reduce probability of being ill.

e In terms of modelling, we make probability p a function

of z, and the function is decreasing.
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Care

e Objective function is

max ¢(z) = maxp(z)U(Y1 — z) + (1 — p(2))U(Ya — )

2>0

e Then, derivative of ¢(z) gives

d(z)=  —pz) [U2—2)-U}—2)
N——
reduction of prob. utility diff.

marginal benefit

—{p)U'(Y1 — 2) + (1 — p(2))U'(Y — 2)}

marginal cost

21



Care

Optimal solution is defined by FOC

¢'(z") = 0.
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Moral Hazard

e Suppose both insurance and care variables are available.
e Interaction between insurance company and decision maker

could be formulated as the game in the next page.
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Moral Hazard

1.

Insurance company sells insurance at constant rate p(z)
per $1 coverage.

e If individual purchases x shares, insurance company

T

p(2)

Decision maker chooses how much to purchase x.

pays X = when bad outcome (state 1) occurs.
Decision maker chooses care parameter z.
Outcome realized and decision maker gets paid from in-

surance company if realized state is 1.

Assume insurance policy is actuarially fair (in equilibrium).
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Moral Hazard

e Insurance is actuarially fair = p(2*)X = z, where 2*

is decision maker’s actual choice

e Since X = £
p(

5, we have z = z*.

e Objective function for decision maker is
max ¢(z,z) = max p(z)U(Y1 —z—xz+z/p(z"))

2>0,2>0 230,20

+ (1 =p()U (Y2 — 2 —x)
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Moral Hazard

e Partial derivative of ¢(z, z) with respect to = gives

¢a(7,2) = p(2)U'(V1 — 2 —w + 2/p(27))(1/p(z") — 1)

— (1 =p()U'(Ya -z — )

e Next, we show that optimal x* > 0 must hold.

$2(0,27) =(1 = p(z")[U'(V1 = 27) = U'(Y2 = 2")] > 0.

U"<0
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Moral Hazard

e FOC on x gives
G (%,2%) =0
=Y -2 ="+ p(z") =Yy — 2" —2"  (9.5)
e Optimal choices of z* and z* must satisfy (9.5) above.

o Let Vi — 2" —a* + 2% /p(2*) = Yo — 2* —a* =V,
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Moral Hazard

e Partial derivatvie of ¢,(x, z) with respect to z gives

¢:(z,2) = p'(2) [UYa — 2 —2) — U1 — 2 —x + 2/p(2"))]

marginal benefit

— (U1 —z =2+ 2/p(z") + (1 = p())U'(Ya — 2 — 2)]

marginal cost

e Evaluated at optimal level (z*, z*), we have

¢0=(2",2") = =p'(z") - 0 = U'(Yp) = =U'(Yo) < 0.
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Moral Hazard

e Optimum of care occurs at the corner z* = 0.
e This is known as “moral hazard”: availability of full in-

surance destroys incentive to exercise costly care.
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9.B. One Safe and One Risky Asset

e Next, we will study portfolio choice.

e Since we will be working with multiple states, for conve-
nience, we introduce a continuous representation.

e Index i is replaced by a continuous random variable r

with support [r, 7].
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One Safe and One Risky Asset

e Expected utility form in (9.1) is modified by replacing

probabilities with densities, and sums with integrals:

e Interpretation of risk-aversion parallels (9.2): A decision-

maker is risk averse if

UEY)) > E[U(Y)]
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One Safe and One Risky Asset
A risk-averse investor has initial wealth W,, and has two

investment options:

(i) A risky asset: investing = gives x(1 + r), where r is a
random variable with density f(r) and support [r,7].
Assume

e E[r] > 0: on average return is positive
e r < 0: does not always generate positive return.

(ii) A safe asset: investing z gives .
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One Safe and One Risky Asset

e Investing = € [0, Wy] in risky asset and rest in safe asset

generates final wealth

W=xz(l+r)+(Wy—2x)=Wy+ zr.

e Investor’s objective is to maximize expected final wealth:
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One Safe and One Risky Asset

e Derivative of ¢(z) gives

¢'(x) = /FTU'(WO + xr) f(r)dr.

r

e Note when z = 0:
¢'(0) = U'(Wy)E[r] > 0.

e So, x = (0 is not optimal.
e Therefore, risk-averse investor will buy at least some of

actuarially good investment.
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One Safe and One Risky Asset

e Typically, investor will hold some of each asset.

e F'OC is

T

rU'(Wo + ar) f(r)dr = 0. (9.6)

S
O
I
—

e If there is an # < W) satisfying this, then strict concavity
of U guarantees that it is global maximum:
() = / 2 U"(Wo + r) f(r)dr < 0. (9.7)
r —

U"(W)<O0 for all W
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One Safe and One Risky Asset: Comparative Statics

e Next, assuming an interior maximum, we consider com-
parative statics of x with respect to Wj.

e That is, whether investor would invest more or less in the
risky asset when he becomes wealthier.

e Now, we recognize Wy as a parameter in ¢, i.e., ¢(z, Wp).
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One Safe and One Risky Asset: Comparative Statics

e FOC for an interior solution is
¢z (2, W) = 0.
e Total differentiation gives
Gae(, Wo)dx + ¢pu(x, Wo)dWy = 0
= da/dWy = — ¢ (x, Wo) [/ Puu(z, Wp).

e By second-order sufficient condition, ¢, (z, W) < 0.

e Then, sign of dz/dW) is same as:

P (T, Wo) = /;TU”(WO + ar) f(r)dr. .



One Safe and One Risky Asset: Comparative Statics

e To gain more insight, we introduce a measure of risk-
aversion, called absolute risk-aversion:
AW) = =U"(W)/U (W). (9.8)
e Experimental and empirical evidence is consistent with
A(W) being decreasing in W.
o If A(WW) is decreasing in W, then we would be able to
show ¢, (2, Wy) > 0.
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One Safe and One Risky Asset: Comparative Statics

® Oup(z, Wy) > 0 implies dx/dWj > 0.

e Investor would invest more in risky asset when he becomes

wealthier.
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9.C. Examples

Example 9.1: Managerial Incentives
e A risk-neutral owner (she) has to hire a risk-neutral man-

ager (he) to run a project.

If project succeeds, it will produce value V.

Success probability depends on manager’s effort.

Project succeeds with

probability p if manager exerts effort;

probability ¢ (< p) if no effort.

Effort cost is e.
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Example 9.1: Managerial Incentives

e To make it worthwhile to exert effort, suppose that ex-

erting effort generates higher total surplus:

pV—e>qV = (p—q)V >e. (9.9)

e Assume the manager’s outside job pays him w.
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Example 9.1: Managerial Incentives
What is optimal compensation scheme when
(i) Owner can observe manager’s effort?

(ii) Owner cannot observe manager’s effort?
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Example 9.1: Solution (Case I: Observable Effort)

e Let payment to manager be W, paid when effort exerted.

e Manager is willing to work for owner and exert effort if
W—-—e>w = W >e+w.

o After paying least amount W to manager, owner gets

pV —W =pV —e—w.
e Owner thus is willing to hire manager if
w < pV —e. (9.10)
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Example 9.1: Solution (Case I: Observable Effort)

e (9.10) is an assumption that we would make throughout
analysis, since otherwise, manager would not be hired.

e Under assumption, owner could offer w + e to manager,
and demand effort in return.

e Owner would get pV — e — w and manager gets w, same

as what he would get from outside job.
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Example 9.1: Solution (Case Il: Unobservable Effort)

In this case, compensating effort directly would not work.

e Suppose that compensation is still based on (now un-
oberservable) effort, then manager could lie about effort:
manager could promise to exert effort, but shirk instead.

e Because of
1. unobservability of effort and
2. probalistic nature of the outcome,

owner would not catch such a lie.
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Example 9.1: Solution (Case Il: Unobservable Effort)

e Therefore, the best thing owner could do is to base his
payment scheme on the thing that he could observe, i.e.,
outcome.

e Suppose that owner pays manager
— x if the project succeeds, and

— y if it fails.
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Example 9.1: Solution (Case Il: Unobservable Effort)

Two constraints need to be satisfied:

i) Given such a payment scheme, manager would exert effort
Yy
if pr+(1—ply—e>qr+(1—q)y

= (p—q)(z—y) >e (1C)

This is called incentive compatibility constraint.

(ii) Manager will agree to work if
pr+(l-py—e>w = y+plr—y) >w+e (IR)
This is called participation constraint or individual ratio-

ality constraint.
nality constrain A7



Example 9.1: Solution (Case Il: Unobservable Effort)

e Thus, owner’s problem is to maximize her profit subject

to constraints (IC) and (IR).
max pV — [pr + (1 = p)y] = maxpV —y —p(a —y)
st (p—q)(z—y) =€ (IC)

y+plx—y) >w+te. (IR)

e (IR) must be binding.
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Example 9.1: Solution (Case Il: Unobservable Effort)

e From IC and binding IR, we know
y'<w—eq/(p—q)and " > w+e(l—q)/(p—q)
e One interpretation is that manager’s compensation con-
sists of
— basic salary w,
— reward for success and penalty for failure.
e By binding IR, owner’s expected profit is
T=pV -y —p(a—y") =pV —w—e,

same as when she could observe manager’s effort.
49



Example 9.1: Solution (Case Il: Unobservable Effort)

e However, one potential problem here is that
Ymax = W —€q/(p — q)
is not guaranteed to be positive.
o .. < 0means that payment scheme would involve a fine

under failure, which is always not feasible.
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Example 9.1: Solution (Case Il: Unobservable Effort)

e Suppose ¥ =w—eq/(p—q) < 0and y > 0 is required.

Solution is to go as far as possible, i.e., y = 0.

(IC) and (IR) becomes
P-ae-0)2ze = > (1)
w+e
L,

O+plz—0)>w+e = x> (IR”)

Problem becomes:

mgxpV — px
st. (IC") & (IR)

e Owner wants x to be as small as possible. -



Example 9.1: Solution (Case Il: Unobservable Effort)

e From y: = w—eq/(p—q) <0, we have

(w+e)/p<e/(p—q) (9.11)

e Minimum z is z** = ¢/(p — q).

Profit becomes m = pV — px™ = pV — pe/(p — q).

By (9.11), this profit level is lower compared to previous
cases where m = pV —w —e.

e By (9.9), this profit level is still positive.
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Example 9.2: Cost-Plus Contracts

e This example is motivated by cost-plus contract.

e Government expenditures are often made on such a cost-
plus basis, that is, government reimburses supplier’s cost
plus a normal profit.

e In this example, we are concerned with appropriated amount
of reimbursement when government does not observe sup-

plier’s cost.
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Example 9.2: Cost-Plus Contracts

e Suppose true average cost of production can take just two
values: ¢; and ¢y (normal profit included), with ¢; < ¢s.

e We call supplier with cost ¢; Type-i supplier.

e Supplier is privately informed of its own type.

e Before contracting, government’s estimate of probability
of supplier being Type-1is 31, Type-2is o = 1 — f3;.

e Problem here: low cost supplier would pretend to be of

high cost and get more reimbursement from government.
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Example 9.2: Cost-Plus Contracts

e Government would offer contracts: if supplier claims to
have cost ¢; for ¢ = 1,2, government
— purchases ¢; units and
— pays R;.

e In game theory, use of different contracts to separate sup-

plier types is called “screening”.
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Example 9.2: Cost-Plus Contracts

e Governments gets benefit B(q) from quantity g.
e B(q) is strictly increasing, strictly concave in ¢, and
B'(0) > ¢ (A)
so that government would demand positive quantities from

either type if cost can be observed.

What is the optimal menu of contracts (¢i, R;) and

(g2, R2) when cost is unobservable?
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Example 9.2: Solution (Observable Cost)

e Government problem facing a supplier with Type-i is:

max B(q;) — R;

qi,Ri

s.t. Rz — Ciq; 2 0. (IR)

¢ > 0,R; > 0.

e Before solving the problem, we make two observations:
1. (IR) must be binding.

2. (IR) and ¢; > 0 implies R; > 0.
o7



Example 9.2: Solution (Observable Cost)

e Government’s problem is reduced to
max B(qi) — ciq;
s.t. q; > 0.
e Optimal ¢; is given by
B'(q;) = ci.
e Optimal R; is given by binding (IR)

R; —¢iq; = 0.

(9.12)

(IR)
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Example 9.2: Solution (Unobservable Cost)

When cost is unobservable, government would offer two con-

tracts and let supplier choose.
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Example 9.2: Solution (Unobservable Cost)

e To make supplier willing to choose contract designed for

his type:

Ry —caqn =2 Ry — c1q; (ICy)

Ry — coqa > Ry — coq. (1Cy)

e These are incentive compatibility constraints.
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Example 9.2: Solution (Unobservable Cost)

e To ensure that supplier wants to participate:

Ry —ciq1 > 0; (IRy)

Ry — coq2 > 0. (IRy)

e These are participation constraints.
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Example 9.2: Solution (Unobservable Cost)

e We also need to ensure ¢; > 0 and R; > 0.

e Government’s problem is

max [ [B(q1) — Ri] + B2 [B(g2) — Ro]

q1,92,R1,R2

s.t. (IC’l), (]CQ), (]Rl), (]RQ)

q1 207612 207R1 ZoaRQ 20
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Example 9.2: Solution (Unobservable Cost)

e [t is a maximization problem with 4 inequality constraints
and 4 non-zero variables.
e These inequality pairs permit 2% = 256 patterns.

e We will make some initial analysis to simplify problem.
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Example 9.2: Solution (Unobservable Cost)

Lemma 1. R; > 0 is implied by (IR,), (IR>) and g; > 0.

e We could safely ignore non-negativity constraints on R;.
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Example 9.2: Solution (Unobservable Cost)

Lemma 2. (IR;) is implied by (IC}), (IR3) and g2 > 0.

e We could safely ignore (I Ry).
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Example 9.2: Solution (Unobservable Cost)
From Lemmas 1 and 2, government’s problem becomes:

max (1 [B(q1) — Ri] + B2 [B(g2) — Ra]

q1,92,R1,R2
s.t. Ry —ciqr > Ry — c1g; (1Cy)
Ry — ¢2ga > Ry — caqu; (1Cy)
Ry — caq2 > 0; (/R>)
@1 > 0,92 2 0.

66



Example 9.2: Solution (Unobservable Cost)

Lemma 3. (IR;) must be binding in optimal scheme, i.e.,

R2 — C2(9 = 0.
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Example 9.2: Solution (Unobservable Cost)

Lemma 4. (ICy) must be binding in the optimal scheme,

i.e., Ry —ciq1 = Ry — c1qo.

68



Example 9.2: Solution (Unobservable Cost)

e By Lemmas 3 and 4, we have

Ry = c2q0

Ri=cq + (2 — 1)@

e Plugging (R,) and (R;) into (/C5), we have

q1 = @2

(1Cy)
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Example 9.2: Solution (Unobservable Cost)

e Maximization problem is simplfied as follows:

max (3 [B(q1) — (c1q1 + (c2 — ¢1)q2)] + B2 [B(q2) — c262]

q1,92
st. 1 2 @
2 =0

e We can solve this problem in usual way.

e See Appendix A.

(1Cy)
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Example 9.2: Solution (Unobservable Cost)

e Here, we introduce another way of solving this problem:
1. solve relaxed problem with no (/C,’), and

2. show that solution to relaxed problem is also solution

to initial problem.

e Relaxed problem is as follows:

max (1 [B(q1) — (c1q1 + (c2 — c1)@2)] + P2 [B(q2) — c2¢2)

91,92

s.t. @@ >0
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Example 9.2: Solution (Unobservable Cost)

Solution to relaxed problem is

B'(q1) =c1, =0

if B'(0) < cy+2(c; — 1);
- (9.16)

B'(q1) =c1, B'(g2) = c2 + %(02 — )

if B'(0) > co + %(Cg — ).
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Example 9.2: Solution (Unobservable Cost)

e Next, we show that (9.16) also solves initial problem.

e We need to show: (/C5’) holds in (9.16).
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Example 9.2: Solution (Unobservable Cost)

e The logic is similar to “(since you are a student in Eco-
nomic and Management School of Wuhan university), if
you are the best student in Wuhan university, then you
are the best student in EMS of Wuhan university.”

e If we want to find “the best student in EMS of Wuhan
university”, we could relax the problem and search for the

best student in whole university.
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Example 9.2: Solution (Unobservable Cost)

e Relaxed problem is easier to solve since it involves less
constraints.

e However, solution to relaxed problem may not be solution
to initial problem.

e You must make sure that conditions left out are indeed

satisfied.
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Example 9.2: Solution (Unobservable Cost)

There are two points worth noticing.

1. When B'(0) < ¢y + %(02 — ¢1), high cost supplier does
not produce. This is likely to happen when
a) o is small: probability of high cost is low,
b) B’(0) is small: benefit of having a high cost supplier

producing a little is small.

e By placing ¢ = 0, government can effectively eliminate

incentive of low cost supplier to pretend to be high cost.
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Example 9.2: Solution (Unobservable Cost)

2. When ¢ > 0, optimal ¢s:

Bl(q2) = Cy + é(CQ — Cl).
Bo

is lower than optimal ¢» when cost is observable:
B'(q2) = ¢s.

e Lowering quantities demanded for high-cost supplier makes

it less tempting for low-cost supplier to declare high cost.
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Example 9.2: Graphs (Observable Cost)

R=cq

B(@)-R=v]

B(q)—R=v]

R=cq

B@-R=v;
B@)-R=vi

B(q)—R=2v;
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Example 9.2: Graphs (Unobservable Cost)

R =cyq R

B i
/2

R;

1
1
1
1
1
1
|
i R; |--
1
q

/ P 7 0

R’

// a

Efficiency concern and rent extraction is key trade-off faced

by government. 79



