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Introduction

• This chapter concerns choice under uncertainty.

• It is an important topic in economics, and is of great

practical interest.

• In real-life, almost every decision needs to be made under

uncertainty.
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Introduction

• In this chapter, we will sketch a systematic way of making

such decisions.

• In terms of mathematics, there will be nothing new.

• You will see more economic concepts and intuitions.
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Introduction

• Let’s get familiarized with problems of choice under un-

certainty.

• Uncertainty means that you do not anticipate a sure out-

come.

• To make our discussion more concrete, we will need to

introduce some concepts.
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Introduction

Consider the following simple example:

Example 9.1. Suppose that you have access to the following

lottery: the lottery pays $100 with probability 1/4, and pays

nothing with the remaining probability. The question is, do

you wish to pay $25 for such a lottery?
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Introduction

• This is a problem of choice under uncertainty.

• Outcome is uncertain: you will either get $100 or $0.

• There are two important elements in the problem:

(i) Outcomes. In the example, outcomes refer to the state

paying $100 , and the state paying $0 .

(ii) Probabilities associated with outcomes. In the exam-

ple, 1/4 is the probability associated with the state

paying $100 , and 3/4 is the probability associated with

the state paying $0 .
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Introduction

• Note that probabilities are objective here, but they could

be referred to as subjective probabilities in certain appli-

cations.

• Probabilities in a well-defined problem should be

1. non-negative, and

2. add up to 1.

• In this example, we could write consumer’s utility from

lottery could be written as follows: U($100, $0; 1/4, 3/4).
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Introduction

• More generally, denote possible outcomes by Y1, Y2, ..., Ym.

• Probability associated with outcomes by p1, p2, .., pm.

• Utility could be written as

U(Y1, Y2, ..., Ym; p1, p2, .., pm).

• Next, we will introduce a widely-used method to express

utility in a way that more analysis could be performed.
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9.A. Expected Utility

• Since probabilities are involved, it is somewhat natural

to make use of mathematical expectation, or probability

weighted average.

• For instance, in Example 9.1, we could express utility as

follows:

U($100, $0; 1/4, 3/4) = 1/4U($100) + 3/4U($0).

• This is called the von Neumann-Morgenstern utility func-

tion, and is of expected utility form.
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Expected Utility

• For a general utility function, expected utility form is

expressed as follows:

U(Y1, Y2, ..., Ym; p1, p2, .., pm)

= p1U(Y1) + p2U(Y2) + ... + pmU(Ym) =
m!

i=1
piU(Yi). (9.1)

• This formulation is useful in its simplicity and its ability

to capture economically interesting aspects of behavior.

• We will discuss some implications of this representation.
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Money Lotteries and Risk-aversion

• Now consider Yi’s as money amounts.

• U is an increasing function.

• Definition of Risk-aversion is intuitive.

• In Example 9.1, the lottery gives in expectation

$100 × 1/4 + $0 × 3/4 = $25.

• A risk-averse individual dislikes risk, and thus prefers sure

outcome of $25 to lottery that gives on average $25.
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Risk-aversion

• In general, for two distinct outcomes Y1 and Y2 with (any)

positive probability p and (1 − p) respectively, a decision

maker is risk-averse if

U(pY1 + (1 − p)Y2) > pU(Y1) + (1 − p)U(Y2).

• This is, U is (strictly) concave.
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Risk-aversion

• More generally, we could include more than 2 states:

• A decision maker is risk-averse if

U(
m!

i=1
piYi) >

m!

i=1
piU(Yi). (9.2)

• If U is twice differentiable, U ′′ < 0 corresponds to risk-

aversion.
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Insurance

• Let’s now bring back decision variable x, which affect

some or all of outcomes and probabilities.

• Suppose Y1 < Y2, which means first state entails some

loss relative to second.

• Y1 occurs with probability p; Y2 with probability (1 − p).

• A risk-averse decision maker would want to purchase in-

surance.
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Insurance

• Consider an insurance policy that requires

– an advance payment of x (paid independent of state

realization), and

– gives X if state 1 is realized.

• Suppose the insurance policy is actuarially fair: pX = x.

• Actuarially fairness is an outcome of a perfectly compet-

itive insurance industry.

– Insurance company is risk-free.

– Zero-profit condition implies pX = x.
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Insurance

• Decision maker’s objective function is

max
x≥0

pU(Y1 − x + X) + (1 − p)U(Y2 − x)

⇐⇒ max
x≥0

pU(Y1 − x + x/p) + (1 − p)U(Y2 − x)

• FOC for x gives:

pU ′(Y1 − x + x/p)(1/p − 1) − (1 − p)U ′(Y2 − x) ≤ 0

and x ≥ 0, with complementary slackness. (9.3)
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Insurance

• When x = 0,

pU ′(Y1)(1/p − 1) − (1 − p)U ′(Y2)

=(1 − p)[U ′(Y1) − U ′(Y2)] >"#$%
U ′′<0

0,

contradicting with (9.3).

• Therefore, we must have x > 0 at the optimum.
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Insurance

• Since x > 0, by (9.3),

pU ′(Y1 − x + x/p)(1/p − 1) − (1 − p)U ′(Y2 − x) = 0

=⇒ U ′(Y1 − x + x/p) = U ′(Y2 − x) (9.4)

• When U ′′ < 0, objective function is concave in x and FOC

is also sufficient.

• FOC (9.4) implies

Y1 − x + x/p = Y2 − x.
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Insurance

Y1 − x + x/p = Y2 − x is the full-insurance result:

a risk-averse decision maker would buy the actuarially fair

insurance to the point where the outcomes in different states

are equal.
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Care

• Consider again previous problem faced by decision maker,

but leave aside insurance for the moment.

• Now suppose that probability of bad outcome (state 1)

can be reduced by incurring an expense z in advance.

• Specifically, you could think of it as exercising more care

by yourself to reduce probability of being ill.

• In terms of modelling, we make probability p a function

of z, and the function is decreasing.
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Care

• Objective function is

max
z≥0

φ(z) ≡ max
z

p(z)U(Y1 − z) + (1 − p(z))U(Y2 − z)

• Then, derivative of φ(z) gives

φ′(z) = −p′(z)
" #$ %

reduction of prob.

[U(Y2 − z) − U(Y1 − z)]
" #$ %

utility diff.
" #$ %

marginal benefit

− {p(z)U ′(Y1 − z) + (1 − p(z))U ′(Y2 − z)}
" #$ %

marginal cost
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Care

Optimal solution is defined by FOC

φ′(z∗) = 0.
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Moral Hazard

• Suppose both insurance and care variables are available.

• Interaction between insurance company and decision maker

could be formulated as the game in the next page.
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Moral Hazard

1. Insurance company sells insurance at constant rate p(z̄)

per $1 coverage.

• If individual purchases x shares, insurance company

pays X = x
p(z̄) when bad outcome (state 1) occurs.

2. Decision maker chooses how much to purchase x.

3. Decision maker chooses care parameter z.

4. Outcome realized and decision maker gets paid from in-

surance company if realized state is 1.

Assume insurance policy is actuarially fair (in equilibrium).
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Moral Hazard

• Insurance is actuarially fair =⇒ p(z∗)X = x, where z∗

is decision maker’s actual choice

• Since X = x
p(z̄) , we have z̄ = z∗.

• Objective function for decision maker is

max
x≥0,z≥0

φ(x, z) ≡ max
x≥0,z≥0

p(z)U(Y1 − z − x + x/p(z∗))

+ (1 − p(z))U(Y2 − z − x)
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Moral Hazard

• Partial derivative of φ(x, z) with respect to x gives

φx(x, z) = p(z)U ′(Y1 − z − x + x/p(z∗))(1/p(z∗) − 1)

− (1 − p(z))U ′(Y2 − z − x)

• Next, we show that optimal x∗ > 0 must hold.

φx(0, z∗) =(1 − p(z∗))[U ′(Y1 − z∗) − U ′(Y2 − z∗)] >"#$%
U ′′<0

0.
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Moral Hazard

• FOC on x gives

φx(x∗, z∗) = 0

=⇒ Y1 − z∗ − x∗ + x∗/p(z∗) = Y2 − z∗ − x∗ (9.5)

• Optimal choices of x∗ and z∗ must satisfy (9.5) above.

• Let Y1 − z∗ − x∗ + x∗/p(z∗) = Y2 − z∗ − x∗ = Y0.
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Moral Hazard

• Partial derivatvie of φz(x, z) with respect to z gives

φz(x, z) = −p′(z) [U(Y2 − z − x) − U(Y1 − z − x + x/p(z∗))]
" #$ %

marginal benefit

− [p(z)U ′(Y1 − z − x + x/p(z∗)) + (1 − p(z))U ′(Y2 − z − x)]
" #$ %

marginal cost

• Evaluated at optimal level (x∗, z∗), we have

φz(x∗, z∗) = −p′(z∗) · 0 − U ′(Y0) = −U ′(Y0) < 0.
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Moral Hazard

• Optimum of care occurs at the corner z∗ = 0.

• This is known as “moral hazard”: availability of full in-

surance destroys incentive to exercise costly care.
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9.B. One Safe and One Risky Asset

• Next, we will study portfolio choice.

• Since we will be working with multiple states, for conve-

nience, we introduce a continuous representation.

• Index i is replaced by a continuous random variable r

with support [r, r].
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One Safe and One Risky Asset

• Expected utility form in (9.1) is modified by replacing

probabilities with densities, and sums with integrals:

E[U(Y )] =
& r

r
U(Y (r))f(r)dr.

• Interpretation of risk-aversion parallels (9.2): A decision-

maker is risk averse if

U(E(Y )) > E[U(Y )]

⇐⇒ U(
& r

r
Y (r)f(r)dr) >

& r

r
U(Y (r))f(r)dr.
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One Safe and One Risky Asset

A risk-averse investor has initial wealth W0, and has two

investment options:

(i) A risky asset: investing x gives x(1 + r), where r is a

random variable with density f(r) and support [r, r].

Assume

• E[r] > 0: on average return is positive

• r < 0: does not always generate positive return.

(ii) A safe asset: investing x gives x.
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One Safe and One Risky Asset

• Investing x ∈ [0, W0] in risky asset and rest in safe asset

generates final wealth

W = x(1 + r) + (W0 − x) = W0 + xr.

• Investor’s objective is to maximize expected final wealth:

max
x∈[0,W0]

E[(U(W ))] ≡ max
x

& r

r
U(W0 + xr)f(r)dr.

• Let φ(x) = E[(U(W ))].
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One Safe and One Risky Asset

• Derivative of φ(x) gives

φ′(x) =
& r

r
rU ′(W0 + xr)f(r)dr.

• Note when x = 0:

φ′(0) = U ′(W0)E[r] > 0.

• So, x = 0 is not optimal.

• Therefore, risk-averse investor will buy at least some of

actuarially good investment.
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One Safe and One Risky Asset

• Typically, investor will hold some of each asset.

• FOC is

φ′(x) =
& r

r
rU ′(W0 + xr)f(r)dr = 0. (9.6)

• If there is an x < W0 satisfying this, then strict concavity

of U guarantees that it is global maximum:

φ′′(x) =
& r

r
r2 U ′′(W0 + xr)

" #$ %
U ′′(W )<0 for all W

f(r)dr < 0. (9.7)
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One Safe and One Risky Asset: Comparative Statics

• Next, assuming an interior maximum, we consider com-

parative statics of x with respect to W0.

• That is, whether investor would invest more or less in the

risky asset when he becomes wealthier.

• Now, we recognize W0 as a parameter in φ, i.e., φ(x, W0).
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One Safe and One Risky Asset: Comparative Statics

• FOC for an interior solution is

φx(x, W0) = 0.

• Total differentiation gives

φxx(x, W0)dx + φxw(x, W0)dW0 = 0

=⇒ dx/dW0 = −φxw(x, W0)/φxx(x, W0).

• By second-order sufficient condition, φxx(x, W0) < 0.

• Then, sign of dx/dW0 is same as:

φxw(x, W0) =
& r

r
rU ′′(W0 + xr)f(r)dr.
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One Safe and One Risky Asset: Comparative Statics

• To gain more insight, we introduce a measure of risk-

aversion, called absolute risk-aversion:

A(W ) = −U ′′(W )/U ′(W ). (9.8)

• Experimental and empirical evidence is consistent with

A(W ) being decreasing in W .

• If A(W ) is decreasing in W , then we would be able to

show φxw(x, W0) > 0.

38



One Safe and One Risky Asset: Comparative Statics

• φxw(x, W0) > 0 implies dx/dW0 > 0.

• Investor would invest more in risky asset when he becomes

wealthier.
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9.C. Examples

Example 9.1: Managerial Incentives

• A risk-neutral owner (she) has to hire a risk-neutral man-

ager (he) to run a project.

• If project succeeds, it will produce value V .

• Success probability depends on manager’s effort.

• Project succeeds with'
((()

(((*

probability p if manager exerts effort;

probability q (< p) if no effort.

• Effort cost is e.
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Example 9.1: Managerial Incentives

• To make it worthwhile to exert effort, suppose that ex-

erting effort generates higher total surplus:

pV − e > qV =⇒ (p − q)V > e. (9.9)

• Assume the manager’s outside job pays him w.
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Example 9.1: Managerial Incentives

What is optimal compensation scheme when

(i) Owner can observe manager’s effort?

(ii) Owner cannot observe manager’s effort?
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Example 9.1: Solution (Case I: Observable Effort)

• Let payment to manager be W , paid when effort exerted.

• Manager is willing to work for owner and exert effort if

W − e ≥ w =⇒ W ≥ e + w.

• After paying least amount W to manager, owner gets

pV − W = pV − e − w.

• Owner thus is willing to hire manager if

w < pV − e. (9.10)

43



Example 9.1: Solution (Case I: Observable Effort)

• (9.10) is an assumption that we would make throughout

analysis, since otherwise, manager would not be hired.

• Under assumption, owner could offer w + e to manager,

and demand effort in return.

• Owner would get pV − e − w and manager gets w, same

as what he would get from outside job.
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Example 9.1: Solution (Case II: Unobservable Effort)

In this case, compensating effort directly would not work.

• Suppose that compensation is still based on (now un-

oberservable) effort, then manager could lie about effort:

manager could promise to exert effort, but shirk instead.

• Because of

1. unobservability of effort and

2. probalistic nature of the outcome,

owner would not catch such a lie.
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Example 9.1: Solution (Case II: Unobservable Effort)

• Therefore, the best thing owner could do is to base his

payment scheme on the thing that he could observe, i.e.,

outcome.

• Suppose that owner pays manager

– x if the project succeeds, and

– y if it fails.
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Example 9.1: Solution (Case II: Unobservable Effort)

Two constraints need to be satisfied:
(i) Given such a payment scheme, manager would exert effort

if px + (1 − p)y − e ≥ qx + (1 − q)y

=⇒ (p − q)(x − y) ≥ e. (IC)

This is called incentive compatibility constraint.

(ii) Manager will agree to work if

px + (1 − p)y − e ≥ w =⇒ y + p(x − y) ≥ w + e. (IR)

This is called participation constraint or individual ratio-

nality constraint. 47



Example 9.1: Solution (Case II: Unobservable Effort)

• Thus, owner’s problem is to maximize her profit subject

to constraints (IC) and (IR).

max
x,y

pV − [px + (1 − p)y] ≡ max
x,y

pV − y − p(x − y)

s.t. (p − q)(x − y) ≥ e; (IC)

y + p(x − y) ≥ w + e. (IR)

• (IR) must be binding.
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Example 9.1: Solution (Case II: Unobservable Effort)

• From IC and binding IR, we know

y∗ ≤ w − eq/(p − q) and x∗ ≥ w + e(1 − q)/(p − q).

• One interpretation is that manager’s compensation con-

sists of

– basic salary w,

– reward for success and penalty for failure.

• By binding IR, owner’s expected profit is

π = pV − y∗ − p(x∗ − y∗) = pV − w − e,

same as when she could observe manager’s effort.
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Example 9.1: Solution (Case II: Unobservable Effort)

• However, one potential problem here is that

y∗
max = w − eq/(p − q)

is not guaranteed to be positive.

• y∗
max < 0 means that payment scheme would involve a fine

under failure, which is always not feasible.
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Example 9.1: Solution (Case II: Unobservable Effort)

• Suppose y∗
max = w − eq/(p − q) < 0 and y ≥ 0 is required.

• Solution is to go as far as possible, i.e., y = 0.

• (IC) and (IR) becomes

(p − q)(x − 0) ≥ e =⇒ x ≥ e

p − q
; (IC’)

0 + p(x − 0) ≥ w + e =⇒ x ≥ w + e

p
. (IR’)

• Problem becomes:
max

x
pV − px

s.t. (IC ′) & (IR′)

• Owner wants x to be as small as possible.
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Example 9.1: Solution (Case II: Unobservable Effort)

• From y∗
max = w − eq/(p − q) < 0, we have

(w + e)/p < e/(p − q). (9.11)

• Minimum x is x∗∗ = e/(p − q).

• Profit becomes π = pV − px∗∗ = pV − pe/(p − q).

• By (9.11), this profit level is lower compared to previous

cases where π = pV − w − e.

• By (9.9), this profit level is still positive.
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Example 9.2: Cost-Plus Contracts

• This example is motivated by cost-plus contract.

• Government expenditures are often made on such a cost-

plus basis, that is, government reimburses supplier’s cost

plus a normal profit.

• In this example, we are concerned with appropriated amount

of reimbursement when government does not observe sup-

plier’s cost.

53



Example 9.2: Cost-Plus Contracts

• Suppose true average cost of production can take just two

values: c1 and c2 (normal profit included), with c1 < c2.

• We call supplier with cost ci Type-i supplier.

• Supplier is privately informed of its own type.

• Before contracting, government’s estimate of probability

of supplier being Type-1 is β1, Type-2 is β2 = 1 − β1.

• Problem here: low cost supplier would pretend to be of

high cost and get more reimbursement from government.
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Example 9.2: Cost-Plus Contracts

• Government would offer contracts: if supplier claims to

have cost ci for i = 1, 2, government

– purchases qi units and

– pays Ri.

• In game theory, use of different contracts to separate sup-

plier types is called “screening”.
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Example 9.2: Cost-Plus Contracts

• Governments gets benefit B(q) from quantity q.

• B(q) is strictly increasing, strictly concave in q, and

B′(0) > c2 (A)

so that government would demand positive quantities from

either type if cost can be observed.

What is the optimal menu of contracts (q1, R1) and

(q2, R2) when cost is unobservable?
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Example 9.2: Solution (Observable Cost)

• Government problem facing a supplier with Type-i is:

max
qi,Ri

B(qi) − Ri

s.t. Ri − ciqi ≥ 0. (IR)

qi ≥ 0, Ri ≥ 0.

• Before solving the problem, we make two observations:

1. (IR) must be binding.

2. (IR) and qi ≥ 0 implies Ri ≥ 0.
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Example 9.2: Solution (Observable Cost)

• Government’s problem is reduced to

max
qi

B(qi) − ciqi

s.t. qi ≥ 0.

• Optimal qi is given by

B′(qi) = ci. (9.12)

• Optimal Ri is given by binding (IR)

Ri − ciqi = 0. (IR)
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Example 9.2: Solution (Unobservable Cost)

When cost is unobservable, government would offer two con-

tracts and let supplier choose.
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Example 9.2: Solution (Unobservable Cost)

• To make supplier willing to choose contract designed for

his type:

R1 − c1q1 ≥ R2 − c1q2; (IC1)

R2 − c2q2 ≥ R1 − c2q1. (IC2)

• These are incentive compatibility constraints.
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Example 9.2: Solution (Unobservable Cost)

• To ensure that supplier wants to participate:

R1 − c1q1 ≥ 0; (IR1)

R2 − c2q2 ≥ 0. (IR2)

• These are participation constraints.
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Example 9.2: Solution (Unobservable Cost)

• We also need to ensure qi ≥ 0 and Ri ≥ 0.

• Government’s problem is

max
q1,q2,R1,R2

β1 [B(q1) − R1] + β2 [B(q2) − R2]

s.t. (IC1), (IC2), (IR1), (IR2)

q1 ≥ 0, q2 ≥ 0, R1 ≥ 0, R2 ≥ 0.
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Example 9.2: Solution (Unobservable Cost)

• It is a maximization problem with 4 inequality constraints

and 4 non-zero variables.

• These inequality pairs permit 28 = 256 patterns.

• We will make some initial analysis to simplify problem.
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Example 9.2: Solution (Unobservable Cost)

Lemma 1. Ri ≥ 0 is implied by (IR1), (IR2) and qi ≥ 0.

• We could safely ignore non-negativity constraints on Ri.
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Example 9.2: Solution (Unobservable Cost)

Lemma 2. (IR1) is implied by (IC1), (IR2) and q2 ≥ 0.

• We could safely ignore (IR1).
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Example 9.2: Solution (Unobservable Cost)

From Lemmas 1 and 2, government’s problem becomes:

max
q1,q2,R1,R2

β1 [B(q1) − R1] + β2 [B(q2) − R2]

s.t. R1 − c1q1 ≥ R2 − c1q2; (IC1)

R2 − c2q2 ≥ R1 − c2q1; (IC2)

R2 − c2q2 ≥ 0; (IR2)

q1 ≥ 0, q2 ≥ 0.
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Example 9.2: Solution (Unobservable Cost)

Lemma 3. (IR2) must be binding in optimal scheme, i.e.,

R2 − c2q2 = 0.
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Example 9.2: Solution (Unobservable Cost)

Lemma 4. (IC1) must be binding in the optimal scheme,

i.e., R1 − c1q1 = R2 − c1q2.
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Example 9.2: Solution (Unobservable Cost)

• By Lemmas 3 and 4, we have

R2 = c2q2 (R2)

R1 = c1q1 + (c2 − c1)q2 (R1)

• Plugging (R2) and (R1) into (IC2), we have

q1 ≥ q2 (IC2’)
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Example 9.2: Solution (Unobservable Cost)

• Maximization problem is simplfied as follows:

max
q1,q2

β1 [B(q1) − (c1q1 + (c2 − c1)q2)] + β2 [B(q2) − c2q2]

s.t. q1 ≥ q2 (IC2’)

q2 ≥ 0

• We can solve this problem in usual way.

• See Appendix A.
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Example 9.2: Solution (Unobservable Cost)

• Here, we introduce another way of solving this problem:

1. solve relaxed problem with no (IC2’), and

2. show that solution to relaxed problem is also solution

to initial problem.

• Relaxed problem is as follows:

max
q1,q2

β1 [B(q1) − (c1q1 + (c2 − c1)q2)] + β2 [B(q2) − c2q2]

s.t. q2 ≥ 0
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Example 9.2: Solution (Unobservable Cost)

Solution to relaxed problem is
'
((((((((((((()

(((((((((((((*

B′(q1) = c1, q2 = 0

if B′(0) ≤ c2 + β1
β2

(c2 − c1);

B′(q1) = c1, B′(q2) = c2 + β1
β2

(c2 − c1)

if B′(0) > c2 + β1
β2

(c2 − c1).

(9.16)
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Example 9.2: Solution (Unobservable Cost)

• Next, we show that (9.16) also solves initial problem.

• We need to show: (IC2’) holds in (9.16).
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Example 9.2: Solution (Unobservable Cost)

• The logic is similar to “(since you are a student in Eco-

nomic and Management School of Wuhan university), if

you are the best student in Wuhan university, then you

are the best student in EMS of Wuhan university.”

• If we want to find “the best student in EMS of Wuhan

university”, we could relax the problem and search for the

best student in whole university.
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Example 9.2: Solution (Unobservable Cost)

• Relaxed problem is easier to solve since it involves less

constraints.

• However, solution to relaxed problem may not be solution

to initial problem.

• You must make sure that conditions left out are indeed

satisfied.
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Example 9.2: Solution (Unobservable Cost)

There are two points worth noticing.

1. When B′(0) ≤ c2 + β1
β2

(c2 − c1), high cost supplier does

not produce. This is likely to happen when

a) β2 is small: probability of high cost is low,

b) B′(0) is small: benefit of having a high cost supplier

producing a little is small.

• By placing q2 = 0, government can effectively eliminate

incentive of low cost supplier to pretend to be high cost.
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Example 9.2: Solution (Unobservable Cost)

2. When q2 > 0, optimal q2:

B′(q2) = c2 + β1

β2
(c2 − c1).

is lower than optimal q2 when cost is observable:

B′(q2) = c2.

• Lowering quantities demanded for high-cost supplier makes

it less tempting for low-cost supplier to declare high cost.
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Example 9.2: Graphs (Observable Cost)

(a) (b)
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Example 9.2: Graphs (Unobservable Cost)

(a) (b)

Efficiency concern and rent extraction is key trade-off faced

by government. 79


