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1 Relational contract model

There are two players: a principal (she) and an expert (he). Both players are risk-
neutral and infinitely lived. Periods are discrete and indexed by t ∈ {1,2, ...,∞}.
Players discount payoffs from the following period by a factor of δ ∈ (0,1). In each
period, the principal relies on the expert to both study the state of nature and then
take an action to match the state of nature. The state of nature θt can take two
possible values, θL and θH . The state of each period is independently drawn and the
ex-ante probability of each possible state is 1/2. Both players share a common prior
regarding the state.

Expert’s private signal The expert can exert some effort level et ≥ 0 to generate
an informative, yet imperfect, signal of the state st whose distribution depends on
both the state and the expert’s effort level. Specifically, signal st takes values sL and
sH with

Pr(sL | θL) = Pr(sH | θH) = x t , Pr(sH | θL) = Pr(sL | θH) = 1− x t

where x t ∈ X ≡ [0.5, 1]measures the precision of the signal and is drawn according
to the cumulative distribution function (CDF):

H(x t; et) = (1− p(et))F(x t) + p(et)G(x t). (1)

Here H(· ; et) is a convex combination of two exogenous CDFs, F(·) and G(·). Both
F and G admit PDFs, f and g respectively, that are strictly positive over X . Expert’s
effort level et , the realized signal st , and the signal precision x t are all privately
observed by the expert.

Throughout this paper, we impose the following assumptions:

(i) The PDFs f and g satisfy the monotone likelihood ratio property (MLRP), i.e.,
g(x)/ f (x) increases on [0.5,1]. Note that MLRP further implies that G first-
order stochastically dominates F , i.e., G(x)< F(x) for all x ∈ (0.5, 1).
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(ii) The weight function p(·) is continuously differentiable and strictly increasing
with p(0) = 0, lime→∞ p(e) = 1 and p′(e)> 0 for all e ∈ (0,∞).

(iii) The expert’s cost function c(e) is continuously differentiable and strictly in-
creasing with c(e) = 0 and c′(e)> 0 for all e ∈ (0,∞).

(iv) The ratio c′(e)
p′(e) is strictly increasing in e, lime→0

c′(e)
p′(e) = 0, lime→∞

c′(e)
p′(e) ≥ 1 and

lime→0 p′(e)/
� c′(e)

p′(e)

�′
= +∞.1

Public opinion After the expert privately observes the realized signal, Nature gen-
erates a public signal σt that takes values σL and σH according to

Pr(σH | θH) = Pr(σL | θL) = q, Pr(σL | θH) = Pr(σH | θL) = 1− q.

We refer signal σt as public opinion, whose distribution and realization are known
to both players. The precision of public opinion is measured by the exogenous pa-
rameter q ∈ (0.5,1).

After Nature draws public opinion, the expert takes an action a ∈ {aH , aL}, gen-
erating payoffs of r(a,θ ) to the principal with:

r(aL,θL) = r(aH ,θH) = 1, r(aL,θH) = r(aH ,θL) = 0.

Compensation package At the beginning of each period t, the principal proposes
a compensation package to the expert. Compensation consists of a base wage wt

and a discretionary payment, which we refer to as a performance-based bonus, bt .
The base wage can be contingent on all publicly observable information until period
t. The bonus can be contingent on all publicly observable information in period t:
the expert’s chosen action at , the realized state θt and the realized public opinion
σt . The bonus function is characterized by b̂t : {aL, aH} × {θL,θH} × {σL,σH} → R.

At the end of period t, the principal is only obligated to pay wt . The players
decide whether to pay bt(at ,θt ,σt): if bt > 0, the principal makes the decision; if
bt < 0, the expert makes the decision. Let the total payment from the principal to
the expert in the period be Wt .

Payoffs The principal’s ex-post payoff in period t is

uP
t = r(at ,θt)−Wt (2)

and the expert’s ex-post payoff is

uE
t =Wt − c(et). (3)

The values of both players’ outside options are assumed to be 0.
1Our assumptions on p(·) and c(·) guarantee that expert’s optimal effort level should be positive.
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Timing The timing of the period-t game is as follows.

1. The principal offers a compensation package to the expert.

2. If accepts the compensation package, the expert exerts effort level et ≥ 0 and
observes the realized signal precision x t ∈ (0.5, 1) and the realized private
signal st ∈ {sL, sH}.

3. Both players observe the realized public opinion, σt ∈ {σL,σH}.

4. The expert chooses an action at ∈ {aL, aH}.

5. The state of nature is realized, θt ∈ {θL,θH}. And the players decide whether to
honor the discretionary payment bt . Player’s payoffs are specified by Equations
(2) and (3).

1.1 Solution concept

In this game, the principal’s observations are all public in the sense that she does
not observe anything that the expert does not observe. Therefore, this is a game of
imperfect public monitoring. We follow the literature to use perfect public equilibrium
(PPE) as the solution concept. PPE requires the strategy profile following any public
history forms a Nash Equilibrium.2 We also follow the literature in calling such an
equilibrium in a repeated game with transfers a relational contract.

1.2 Symmetric contract

Again, we focus on symmetric contracts in which the bonus payment is conditional on
(a) whether the chosen action is Good or Bad and (b) whether the chosen action is
Approved or Disapproved. Denote a symmetric contract by b ≡ (bGA, bGD, bBA, bBD),
whose meaning and relation to the bonus function b(a,θ ,σ) are depicted in Table 1.

Expert’s Action Contingencies bonus

Good, Approved { (aL,θL,σL), (aH ,θH ,σH) } bGA

Good, Disapproved { (aL,θL,σH), (aH ,θH ,σL) } bGD

Bad, Approved { (aL,θH ,σL), (aH ,θL,σH) } bBA

Bad, Disapproved { (aL,θH ,σH), (aH ,θL,σL) } bBD

Table 1: Symmetric contract (bGA, bGD, bBA, bBD)

2See Appendix A1 for a detailed description of PPE in this particular game.
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2 Analysis

A relational contract is optimal if and only if it generates the highest expected sur-
plus. The reason is that the surplus can be redistributed between the two players
by changing the fixed wage in the initial period. Such a change does not affect the
incentives except for the participation constraints in the initial period.

According to Levin (2003), for the purpose of characterizing the optimal rela-
tional contract in our environment, it is without loss of generality to restrict atten-
tion to stationary contracts, in which the base wage and the bonus function are the
same in each period. That is, for each t, wt = w and b̂t is b̂ : {aL, aH} × {θL,θH} ×
{σL,σH} → R.

Lemma 1. (Theorem 2 of Levin (2003)) If an optimal contract exists, there are sta-
tionary contracts that are optimal.

Proof. See Appendix A1.

Due to the stationary nature of the optimal contract, we will suppress the sub-
script t in the analysis.

2.1 First-best case

The first-best case is the same as in the one-shot model. To achieve the first-best
outcome, the principal must (i) follow the public signal if x < q and follow the
private signal if x ≥ q; and (ii) choose an effort that solves:

∫ 1

q

(F(x)− G(x))d x =
c′(eFB)
p′(eFB)

. (4)

2.2 Characterizing the optimization problem

We first characterize the expert’s strategy provided that the discretionary bonuses are
paid. Then, we derive conditions for the enforcement of the discretionary bonuses.
Finally, we characterize the maximization problem.

2.2.1 Expert’s strategy

The analysis of the optimal action rule in the one-shot model goes through and
Lemma 2 follows.3

3One subtle point is that when proving the non-optimality of a contract with x∗∗ ∈ [0.5, 1) (similar
to Appendix A1 in the paper), we need to ensure that the constructed contract does not pay an
excessive bonus. This could be shown in two steps. First, the maximum bonus under the constructed
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Lemma 2. Under the optimal symmetric contract,

0< bGD − bBA <
q

1− q
(bGA− bBD); (Act)

and there is there is a cutoff x∗ ∈ (0.5, 1) defined by

x∗ =
q(bGA− bBD)

(1− q)(bGD − bBA) + q(bGA− bBD)
, (x∗)

such that the expert follows his private signal if x > x∗ and follows public opinion
otherwise.

Expert’s effort level The expert chooses e according to:

[q(bGA− bBD) + (1− q)(bGD − bBA)]

∫ 1

x∗
(F(x)− G(x))d x =

c′(e)
p′(e)

. (IC)

Same as in the one-shot model, the constraints (Act), (x∗) and (IC) are only
concerned with the payment differences, bGD − bBA and bGA− bBD.

2.2.2 Dynamic enforcement

Since the bonus payment is discretionary, there is an additional dynamic enforce-
ment constraint. Denote the surplus of the relationship under the symmetric contract
b by

S(b) =

∫ x∗

0.5
qdH(x; e) +

∫ 1

x∗
xdH(x; e)− c(e)

1−δ
where x∗ and e are determined by (x∗) and (IC) respectively. Given S(b), the most
extreme outcomes at the end of each period are that either the principal or the expert
obtains the entire surplus of the game going forward. Therefore, the maximum
difference in bonuses is bounded above by the size of the future surplus discounted
by one period. We can normalize the minimum bonus to zero. Then:

min{bGA, bGD, bBA, bBD}= 0,

max{bGA, bGD, bBA, bBD} ≤ δS(b).
(DE)

2.2.3 Characterizing optimal symmetric contract

The optimal symmetric contract solves:

max
bGA,bBD ,bGD ,bBA

S(b)

subject to (Act), (x∗), (IC), (DE)

contract is no higher than that under the original contract. Second, the value of the relationship is
higher under the constructed contract.
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2.3 Sustainability of the first-best surplus

If there is no bound on the bonus payment, the principal could choose a bonus sched-
ule such that (i) x∗ = q; and (ii) effort induced by (IC) coincides with the first-best
effort given by (4). Under this bonus schedule, the first-best surplus is achieved. The
following lemma identifies the required bonus schedule:

Lemma 3. The first-best surplus is achieved if and only if

bGA = bGD = 1, bBA = bBD = 0.

Proof. See Appendix A2.

From Lemma 3, the bonus schedule that induces the first-best surplus requires:

max{bGA, bGD, bBA, bBD}= 1.

Since the restriction on maximum bonus is given by (DE), and the first-best sur-
plus of the relationship is given by:

SFB =

∫ q

0.5
qdH(x; eFB) +

∫ 1

q
xdH(x; eFB)− c(eFB)

1−δ
,

we obtain that the first-best surplus may only be achieved when the players are
sufficiently patient:

δ ≥
1

1+
∫ q

0.5
qdH(x; eFB) +

∫ 1

q
xdH(x; eFB)− c(eFB)

≡ δFB. (5)

A more precise public opinion corresponds to higher total surplus, which further
translates into a lower cutoff discount factor required to sustain the first-best surplus.
Therefore, the sustainability of the first-best outcome varies systematically in δ and
q. The result is summarized in Lemma 4 and illustrated in Figure 1.

Lemma 4.

(1) The first-best surplus is never achievable for all values of q ∈ (0.5, 1) when δ ≤
0.5;

(2) The first-best surplus is achievable for all values of q ∈ (0.5, 1)whenδ ≥ limq→0.5δ
FB;

(3) For every δ with δ ∈
�

0.5, limq→0.5δ
FB
�

, there exists q∗∗ ∈ (0.5,1), such that

(a) for q < q∗∗, the first-best surplus is not achievable, and

(b) for q ≥ q∗∗, the first best is achievable.

Proof. See Appendix A3.
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0 q
0.5

δ

1

1

0.5

δFB
q→0.5 FB achievable

FB not achievable

q∗∗

Figure 1: First-best surplus (FB)

2.4 When the first-best surplus is not sustainable

When the first-best surplus is not attainable, the optimal contract may be one with
distortion in information acquisition and/or utilization. In addition, the optimal
contract must share the feature that the maximum bonus amount is equal to the
upper bound. The lemma below formalizes the idea:

Lemma 5. When the first-best surplus is not attainable, the optimal contract must
satisfy:

min{bGA, bGD, bBA, bBD} = 0,
max{bGA, bGD, bBA, bBD} = δS(b).

Proof. See Appendix A4.

By Lemma 2, bGD > bBA and bGA > bBD. Accordingly, the maximum bonus must
be one of bGD and bGA; the minimum bonus must be one of bBA and bGD. Further-
more, since the expert’s cutoff action rule and the IC condition for effort are only
concerned with the payment differences bGA − bBD and bGD − bBA, we can further
restrict attention to the following two types of contracts.
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Lemma 6. It is without loss of generality to focus on the two types of contracts:

bBA = 0, bGD = δS(b), and bBD, bGA ∈ [0,δS(b)], or
bBD = 0, bGA = δS(b), and bBA, bGD ∈ [0,δS(b)].

Proof. See Appendix A5.

We refer to these contracts as Contract S and Contract F, respectively, as the for-
mer contract may induce the expert to be Stubborn in the sense that it may induce
bias in favor of his private signal over public opinion (i.e. x∗ < q) and the latter
contract may induce the expert to be a Flip-flopper in the sense that it may induce
bias in favor of public opinion over the private signal (i.e. x∗ > q). These two classes
of contracts are nontrivial and we will analyze them in detail in the next subsection
(Section 2.5). Below we formally define Contract S and Contract F, and discuss their
implications.

Definition 1 (Contract S). A Contract S is a tuple (wGA, wGD, wBA, wBD) satisfying

bBA = 0, bGD = δS(b), bBD = ε̃, bGA = δS(b)− ε,

for ε, ε̃ ∈ [0,δS(b)].

Under Contract S, the expert will be rewarded a smaller bonus δS(b)− ε when
his state-matching action also matches public opinion, and/or rewarded a positive
bonus ε̃ when the expert defies public opinion but fails. We know that only (bGA−
bBD) and (bGD − bBA) matter in determining x∗ and e. In Contract S:

bGA− bBD = δS(b)− ε − ε̃,
bGD − bBA = δS(b).

Therefore, the optimal contract would be invariant of reallocation of ε and ε̃ as
long as (ε + ε̃) is kept unchanged. In the analysis that follows, it is without loss of
generality to focus on ε̂ = ε + ε̃, instead of analyzing ε and ε̃ separately.

From Lemma 2, the expert will follow his own signal if:

x ≥ x∗ =
q(δS(b)− ε̂)
δS(b)− qε̂

.

It is easy to see that:
x∗ ≤ q,

and:
∂ x∗

∂ ε̂

�

�

�

�

S(b)

= −
(1− q)qδS(b)
(δS(b)− qε̂)2

< 0. (6)

Therefore, Contract S indeed induces the expert to rely less on public opinion. More-
over, when there is more distortion in bonuses, reliance on public opinion further
decreases. Clearly, when ε̂ = 0, x∗ = q.
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Definition 2 (Contract F). A Contract F is a tuple (wGA, wGD, wBA, wBD) satisfying

bBD = 0, bGA = δS(b), bBA = ε̃, bGD = δS(b)− ε,

for ε, ε̃ ∈ [0,δS(b)].

Similar to Contract S, in Contract F, only (ε+ ε̃) matters, and so it is without loss
of generality to focus on ε̂ = ε + ε̃. The expert will follow his own signal if:

x ≥ x∗ =
qδS(b)

δS(b)− ε̂ + qε̂
.

It is easy to see that: x∗ ≥ q,

and: ∂ x∗

∂ ε̂

�

�

�

�

S(b)

=
(1− q)qδS(b)
(δS(b)− ε̂ + qε̂)2

> 0. (7)

Therefore, Contract F encourages the expert to rely more on public opinion com-
pared to a contract with no distortion in information utilization. In addition, when
the expert’s incentive in information utilization is more distorted, he follows public
opinion more frequently. Similar to Contract S, when ε = ε̃ = 0, Contract F does not
induce bias in the utilization of the private information and public opinion.

2.5 Main result

From the above analysis, we know that when the first-best surplus is not attainable,
the optimal contract must belong to one of two classes: Contract S or Contract F.
By analyzing the two classes of contracts separately, we find that the optimal con-
tract with the form of Contract S sometimes induces distortion, while the optimal
contract with the form of Contract F always remains a contract with no distortion in
information utilization. Therefore, Contract S weakly dominates Contract F, and we
have the following proposition:

Proposition 1. There exist δ∗,

(1) when δ ∈ (0, 0.5], the first-best surplus is never attainable, and there exists a
unique cutoff q∗ such that if q > q∗, the optimal contract is Contract S with ε > 0
or ε̃ > 0, or both; and if q ≤ q∗, the optimal contract is the contract with no
distortion in information utilization (ε = ε̃ = 0 & x∗ = q).

(2) when δ ∈ (0.5,δ∗), there exist unique cutoffs q∗ and q∗∗ with q∗ < q∗∗ such that
if q ≤ q∗, or q ≥ q∗∗, the optimal contract is the contract with no distortion in
information utilization (ε = ε̃ = 0 & x∗ = q). For q ∈ (q∗, q∗∗), the optimal
contract is Contract S with ε > 0 or ε̃ > 0, or both.
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(3) when δ ∈ [δ∗, 1], the optimal contract is the contract with no distortion in infor-
mation utilization (ε = ε̃ = 0 & x∗ = q).

Proof. See Appendix A6.

Figure 2 below illustrates the optimal contracts identified in Proposition 1.

0 q
0.5

δ

1

1

q∗

0.5

δ∗

δFB
q→0.5

FB contract
(no distortion)

Contract with
no distortion Contract S

(with distortion)

q∗∗

Figure 2: Optimal contract

According to Part (2) of Proposition 1, for the intermediate range of discount
factors, when the precision of public opinion is either very high or very low, it is
optimal for the principal to offer the expert a contract which induces him to utilize
the more precise signal between the private signal and public opinion. However,
when the precision of public opinion falls into the intermediate range, it is beneficial
for the principal to induce the expert to rely more on his private signal than public
opinion, sometimes acting on his private signal even when it is less informative than
public opinion. We interpret this behavior as a form of stubbornness because the
socially optimal choice should be to follow the more informative signal. Obviously,
the optimal relational contract induces the expert to inefficiently defy public opinion
only when his private information is slightly less informative than public opinion.
Therefore, our theory generates very specific predictions about when the expert’s
behavior exhibits stubbornness.
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Now, we provide the intuition for our main finding. The motivation for the expert
to exert effort comes from the increased likelihood of matching the state and receiv-
ing the bonus. By lowering the bonus when the expert’s state-matching action also
matches public opinion (and/or increasing the bonus when the state-mismatching
action defies public opinion) in Contract S, there are several effects. The first effect is
that, on average, the bonus difference of the state-matching and state-mismatching
actions is lowered, and this weakens the expert’s effort incentive. Notice that this
effect is specific to the relational contracting environment where there is an en-
dogenous limited liability constraint on the principal’s side. More specifically, in a
relational contract, any bonus is bounded above by the future value of the relation-
ship discounted by one period. When we introduce distortion in Contract S, some
bonus of the state-matching action must be set below the maximum bonus and/or
some bonus of the state-mismatching action must be set above 0 to create the differ-
ential in bonuses, causing the expected bonus difference of the state-matching and
state-mismatching actions to be reduced.

On the other hand, Contract S with distortion also motivates the expert’s incen-
tive by cutting the expert’s expected bonus disproportionately when he exerts low
effort. More specifically, if the expert follows public opinion, which he is more likely
to do if he exerts low effort, the bonus for matching the state is reduced with cer-
tainty. If he generates a more informative private signal and follows that instead,
when his action matches the state, the bonus is reduced only with probability q < 1.
According to Proposition 1, the positive effect on effort dominates the negative ef-
fect on effort only when public opinion is accurate enough, i.e., when q is larger
than q∗. This is because when q is sufficiently close to half, or when public opinion
is sufficiently uninformative, x is going to be almost always larger than q whether
or not the expert exerts effort. As a result, the effort-motivating effect disappears,
causing the net effect of Contract S with distortion on effort to be negative.

When δ is relatively high, i.e., when δ > 0.5, as public opinion becomes suf-
ficiently precise, i.e., q is sufficiently close to one, the first-best surplus becomes
achievable.4 Note that it is impossible to achieve the first-best surplus using a con-
tract with distortion. This implies that for q > q∗∗, the optimal contract must not
induce distortion in information utilization. When δ is relatively low, i.e., when
δ ≤ 0.5, the first-best surplus is not attainable for all q ∈ (0.5,1)5 In this case, Con-
tract S that induces stubbornness becomes optimal for any q > q∗.

Adopting Contract S with distortion also has another two effects on the expert’s
effort incentive but they do not affect the main finding qualitatively. First, Contract
S with distortion in information utilization shifts the cutoff value x∗, causing it to fall

4When δ ≥ limq→0.5 δ
FB > 0.5, the first-best surplus is always attainable for all q ∈ (0.5, 1) .

5Note that there is a discontinuity at q = 1. When q = 1, the optimal effort is zero and as a result,
the first-best surplus is trivially achievable. We do not consider the case of q = 1 of practical interest
because the outcomes of important decisions are rarely absolutely certain.
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below q, and potentially leads to efficiency loss. However, since the first-best cutoff
is x∗ = q, as long as ε (and/or ε̃) is small, the small shift in x∗ only has a second-
order effect. This second-order effect is reflected in Equation (16) in the Appendix.
Second, when a change in ε (and/or ε̃) leads to a change in effort, the surplus of
the relationship and thus the maximum bonus payable will also change in the same
direction, further amplifying the effect of the change in ε (and/or ε̃). However, since
the changes are in the same direction, they only reinforce the change in effort, and
do not change the sign of the net effect on effort.

From Proposition 1, we already know that Contract F with distortion is never
optimal. We formally state the result in the following corollary:

Corollary 1. It is never optimal to induce x∗ > q.

The intuition for the non-optimality to induce under-utilization of the private
signal is as follows. Just like in the case of Contract S, there are four effects of
using Contract F with distortion. First, to introduce distortion in Contract F, as under
Contract S, some bonus of the state-matching action is set below the maximum bonus
and/or some bonus for the state-mismatching action is set at a positive level, causing
the expected bonus difference of the state-matching and state-mismatching actions
to be lower than that under a contract with no distortion. Second, the anticipation
of his own reduced reliance on the private signal motivates the expert to work less
hard on the generation of a precise private signal. Third, setting x∗ above q leads to
inefficient over-utilization of public opinion and thus lowers the principal’s expected
payoff. Fourth, the maximum bonus payable will change in the same direction as the
surplus of the relationship, further amplifying the effect of the change in ε (and/or
ε̃). Since all four effects are negative to the principal’s payoff, it is never optimal to
induce under-utilization of the expert’s private signal.
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A Appendix

A1 Proof of Lemma 1

A1.1 Solution concept

Let U P
t and U E

t be the principal’s and the expert’s expected total discounted pay-
offs in period t. Suppose that a relational contract specifies an initial payment w1,
b1(a1,θ1,σ1) and induces the first period effort e1. Continuation contract gives
payoffs U P

2 (a1,θ1,σ1) and U E
2 (a1,θ1,σ1) for each a1 ∈ {aL, aH}, s1 ∈ {sL, sH} and

σ1 ∈ {σL,σH}. We assume the most severe punishment: any deviation results in
reversion to the static equilibrium in which no trade is possible and the players both
obtain their outside options (which are assumed to be 0).

U E
1 =Ex ,s,σ,θ [w1 + b1

�

â1(x1, s1,σ1),θ1,σ1

�

− c(e1); e1]

+δEx ,s,σ,θ [U
E
2

�

â1(x1, s1,σ1),θ1,σ1

�

; e1]

U P
1 =Ex ,s,σ,θ [r1(a1,θ1)−w1 − b1

�

â1(x1, s1,σ1),θ1,σ1

�

; e1]

+δEx ,s,σ,θ [U
P
2

�

â1(x1, s1,σ1),θ1,σ1

�

; e1]

and

S∗ = Ex ,s,σ,θ [r1(a1,θ1)− c(e1); e1] +δEx ,s,σ,θ [S2

�

â1(x1, s1,σ1),θ1,σ1

�

; e1]

where S2

�

a1,θ1,σ1

�

is the continuation surplus following outcome (a1,θ1,σ1).
Denote ρt ∈ (0,1) the expert’s posterior belief regarding the state being θL in

period t. For the strategy profile to form a PPE, it requires

(i) Expert’s belief updating process ρ̂1(x1, s1,σ1) is consistent with Bayesian up-
dating.

(ii) Expert’s action a1(ρ1,σ1) solves

W (ρ1,σ1)≡max
a

w1 +ρ1 b̂(a,θL,σ1) + (1−ρ1)b̂(a,θH ,σ1) +δU E
2

�

a,θ1,σ1

�

for any ρ1 ∈ [0,1] and σ1 ∈ {σL,σH}.

(iii) Expert’s effort level e1 solves:

max
e≥0

∫ 1

0.5

E{s,σ}[W
�

ρ̂(x , s,σ),σ
�

| x] dH(x; e)− c(e).
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(iv) Both parties are willing to make the discretionary payment:

b1(a1,θ1,σ1) +δU E
2

�

a,θ1,σ1

�

≥ 0;

− b1(a1,θ1,σ1) +δU P
2

�

a,θ1,σ1

�

≥ 0

for all a1 ∈ {aL, aH}, s1 ∈ {sL, sH} and σ1 ∈ {σL,σH}.

(v) Participation constraints:
U E

1 ≥ 0, U P
1 ≥ 0.

(vi) The strategies in each continuation game constitute a PPE. In particular, for
each (a1,θ1,σ1), the pair U E

2

�

a1,θ1,σ1

�

, U P
2

�

a1,θ1,σ1

�

constitute PPE payoffs.

A1.2 Stationary contracts

We show the optimality of stationary contracts. Let S∗ be the maximum surplus.
We use upper bar to denote the players’ actions and the payoffs in an optimal

contract. Then Ū E
1 +Ū P

1 = S∗. We first show that, Ū E
2

�

a1,θ1,σ1

�

+Ū P
2

�

a1,θ1,σ1

�

= S∗

for all
�

a,θ1,σ1

�

. Suppose not, then there exists
�

ã, θ̃1, σ̃1

�

such that Ū E
2

�

ã1, θ̃1, σ̃1

�

+
Ū P

2

�

ã1, θ̃1, σ̃1

�

< S∗. Then consider increase Ū P
2

�

ã1, θ̃1, σ̃1

�

by some small amount
ε > 0 so that Ū E

2

�

ã1, θ̃1, σ̃1

�

+ Ū P
2

�

ã1, θ̃1, σ̃1

�

+ ε < S∗ still holds. So, constraints
(vi) is still satisfied. Moreover, such a change does not affect the constraints (i), (ii)
and (iii), and relaxes the constraints (iv) and (v). In addition, U P

1 increases, and
consequently the total surplus becomes higher than S∗, which is impossible.

Since Ū E
2

�

a1,θ1,σ1

�

+ Ū P
2

�

a1,θ1,σ1

�

= S∗ for all
�

a,θ1,σ1

�

, we have

S∗ =
1

1−δ
Ex ,s,σ,θ [r1(a1,θ1)− c(e1); e1].

Then we show that there exist stationary contracts that yield S∗. Define the
stationary discretionary payment:

b∗(a1,θ1,σ1) := b̄1(a1,θ1,σ1) +δŪ E
2 (a1,θ1,σ1)−δŪ E

1 ,

for all a1 ∈ {aL, aH}, s1 ∈ {sL, sH} and σ1 ∈ {σL,σH}. Define the fixed payment w∗:

w∗ = (1−δ)Ū E
1 −Ex ,s,σ,θ [b

∗
�

â1(x1, s1,σ1),θ1,σ1

�

− c(ē1); ē1]

The stationary contract has the principal propose w∗ and b∗(a1,θ1,σ1) in each pe-
riod. This contract yields payoffs (U E

1 , U P
1 ) with

U E
1 =

1
1−δ
Ex ,s,σ,θ [w

∗ + b∗
�

â1(x1, s1,σ1),θ1,σ1

�

− c(e1); e1] = Ū E
1 ;

U P
1 = S∗ − Ū E

1 = Ū P
1
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to the expert and the principal respectively.
We check that the proposed stationary contract forms a PPE. Note that the dis-

cretionary payments are defined so that

b∗(a1,θ1,σ1) +δŪ E
1 = b̄1(a1,θ1,σ1) +δŪ E

2 (a1,θ1,σ1), (8)

for all a1 ∈ {aL, aH}, s1 ∈ {sL, sH} and σ1 ∈ {σL,σH}. We could directly check that
(ii), (iii) and (iv) are satisfied by substituting (8) into the respective functions. (vi)
is satisfied since the stationary contract repeats in each following period.

A2 Proof of Lemma 3

1. “If”

With bGA = bGD = 1, bBA = bBD = 0, (x∗) becomes:

x∗ = q,

and (IC) becomes:
∫ 1

q

(F(x)− G(x))d x =
c′(e)
p′(e)

which is the same as the first-best effort given by (4).

2. “Only if”

The first-best surplus requires: the action rule x∗ = q and the optimal effort
from (IC) is the same as the first-best effort given by (4).

(i) For the action rule, from (x∗):

x∗ =
q[bGA− bBD]

(1− q)[bGD − bBA] + q[bGA− bBD]
= q

⇒ bGA− bBD = bGD − bBA. (9)

(ii) For the optimal effort, with x∗ = q and bGA−bBD = bGD−bBA, (IC) becomes:

(bGA− bBD)

∫ 1

q

(F(x)− G(x))d x =
c′(e)
p′(e)

. (10)

The only way for (10) and (4) to induce the same level of effort is to set:

bGA− bBD = 1.
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Together with (9), we have:

bGA− bBD = bGD − bBA = 1.

Since:
min{bGA, bGD, bBA, bBD}= 0,

we have bBD = 0, or bBA = 0, or both. If bBD > 0 and bBA = 0, we could always
find another bonus schedule with:

b′BD = b′BA = 0, b′GA = b′GD = 1,

that induces the same incentive. Note that in the original contract, bGA =
bBD + 1 > 1, and thus the sustainability for the newly constructed contract is
higher since:

max{b′GA, b′GD, b′BA, b′BD}= 1< bGA =max{bGA, bGD, bBA, bBD}.

Therefore, a contract with bBD > 0 and bBA = 0 is dominated. Similarly, a
contract with bBD = 0 and bBA > 0 is also dominated. So:

bBD = bBA = 0,

and thus:
bGA = bGD = 1.

A3 Proof of Lemma 4

Notice that higher q results in higher per period reward from the relationship:

Envelope Theorem
d
dq

�

∫ q

0.5

qdH(x; eFB) +

∫ 1

q

xdH(x; eFB)− c(eFB)

�

= H(q; eFB)> 0.

This higher reward will translate into a larger set of δ sustainable for the relationship
since the lower bound δFB decreases with q. To see this, from (5):

dδFB

dq
=

1

(1+
∫ q

0.5
qdH(x; eFB) +

∫ 1

q
xdH(x; eFB)− c(eFB))2

· (−H(q; eFB))< 0. (11)

Part (1): the maximum bonus of 1 is never credible if it is not credible for the highest
value of q, i.e., q→ 1, and this requires:

δ ≤ δFB
q→1 =

1

1+
∫ 1

0.5
1dH(x; eFB

q→1)− c(eFB
q→1)

=
1

2− c(eFB
q→1)

=
1
2

.
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Part (2): the maximum bonus of 1 is always credible if it is credible for the lowest
value of q, i.e., q→ 0.5, which requires:

δ ≥ δFB
q→0.5 =

1

1+
∫ 1

0.5
xdH(x; eFB

q→0.5)− c(eFB
q→0.5)

=
1

2−
∫ 1

0.5
H(x; eFB

q→0.5)d x − c(eFB
q→0.5)

,

where eFB
q→0.5 is defined by:

∫ 1

0.5

(F(x)− G(x))d x =
c′(eFB

q→0.5)

p′(eFB
q→0.5)

.

Part (3): According to Part (1) and (2), when:

δ ∈
�

1
2

,δFB
q→0.5

�

,

the first-best surplus is achievable for some, but not all, values of q. Every δ ∈
�

0.5,δFB
q→0.5

�

is the lower bound for some q∗∗. For q ≥ q∗∗, the first-best surplus is
achievable while for q < q∗∗, the first-best surplus is not achievable. By (11), the
lower bound decreases with q.

A4 Proof of Lemma 5

We prove by contradiction. Suppose, on the contrary:

min{bGA, bGD, bBA, bBD} = 0,

max{bGA, bGD, bBA, bBD} < δS(b).

We will then show that this contract is dominated by a scaled contract. Define a
scaled contract:

b′GA = kbGA, b′GD = kbGD, b′BA = kbBA, b′BD = kbBD

with

0< k ≤
δS(b)

max{bGA, bGD, bBA, bBD}
.

Since
δS(b)

max{bGA, bGD, bBA, bBD}
> 1,

The constant k could either be smaller or greater than 1.
By construction, the constraint (DE) is still satisfied as long as the total surplus

under the newly constructed contract is weakly higher than that under the original
contract. We will show below that the condition holds.
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From (x∗), the cutoff value x∗ is preserved under scaling. However, the induced
effort e changes. From (IC), after scaling, FOC of the expert’s problem becomes:

k[q(bGA− bBD) + (1− q)(bGD − bBA)]

∫ 1

x∗
(F(x)− G(x))d x =

c′(e)
p′(e)

.

FOC of the original problem is given by (IC). Since the ratio c′(e)
p′(e) is strictly increasing

in e, if k > 1 (scale up), e under the scaled contract is larger than e under the original
contract; if k < 1 (scale down), e under the scaled contract is smaller than e under
the original contract.

We now show that the effect of a marginal change of e while keeping x∗ fixed on
the value of the relationship

S(b) =

�

∫ x∗

0.5
qdH(x; e) +

∫ 1

x∗
xdH(x; e)

�

− c(e)

1−δ
is not neutral, i.e.,

dS(b)
de

�

�

�

�

x∗
=

p′(e)
�

[G(x∗)− F(x∗)](q− x∗)−
∫ 1

x∗
[G(x)− F(x)]d x

�

− c′(e)

1−δ
6= 0.

There are two cases to consider.

1. x∗ ≥ q

dS(b)
de

�

�

�

�

x∗
=

p′(e)
�

(G(x∗)− F(x∗))(q− x∗)−
∫ 1

x∗
(G(x)− F(x))d x

�

− c′(e)

1−δ

=
p′(e)
1−δ

�

(F(x∗)− G(x∗))(x∗ − q)
+{1− [q(bGA− bBD) + (1− q)(bGD − bBA)]}

∫ 1

x∗
(F(x)− G(x))d x

�

≥
p′(e)
1−δ

¨

[1− {q[bGA− bBD] + (1− q)[bGD − bBA]}]
∫ 1

x∗
(F(x)− G(x))d x

«

>
p′(e)
1−δ

[1− {q+ (1− q)}]
∫ 1

x∗
(F(x)− G(x))d x = 0.

The second inequality follows from bGA− bBD < 1 and bGD − bBA < 1.

2. x∗ < q

Suppose, on the contrary:
dS(b)

de

�

�

�

�

x∗
= 0. (12)
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We show that we could marginally increase bBA to achieve a higher surplus.

First, a marginal increase of x∗ increases total surplus:

dS(b)
d x∗

�

�

�

�

e

=
(q− x∗)[p(e)g(x) + (1− p(e)) f (x)]

1−δ
> 0. (13)

Second, an increase in bBA induces an increase in x∗:

d x∗

d bBA
=

d
d bBA

�

q(bGA− bBD)
(1− q)(bGD − bBA) + q(bGA− bBD)

�

=
q(1− q)(bGA− bBD)

{(1− q)(bGD − bBA) + q(bGA− bBD)}2
> 0.

So:
d x∗

d bBA
> 0. (14)

Then, it follows from (13), (14) and the assumption (12):

dS(b)
d bBA

=
dS(b)

de

�

�

�

�

x∗
·

de
d bBA

+
dS(b)
d x∗

�

�

�

�

e

·
d x∗

d bBA

=
dS(b)
d x∗

�

�

�

�

e

·
d x∗

d bBA
> 0.

Since:
max{bGA, bGD, bBA, bBD}< δS(b),

we can achieve the higher surplus by increasing the bonus of bBA slightly. This
contradicts with the fact that the bonus schedule is optimal. Therefore, the
initial supposition must be wrong and we must have:

dS(b)
de

�

�

�

�

x∗
6= 0.

So, total surplus could be increased by either increasing or decreasing effort
through scaling the bonuses in a manner which does not alter x∗. Base wage could
be adjusted so that the expert still obtains his outside option of 0.

A5 Proof of Lemma 6

By Lemma 5, the maximum bonus must be δS(b). By Lemma 2, bGD > bBA and
bGA > bBD. So, the maximum bonus must be one of bGD and bGA; the minimum
bonus must be one of bBA and bGD. There are four such possibilities. Now, we show
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that we can restrict attention to two of such pairs: 1) bGA = δS(b) and bBD = 0; 2)
bGD = δS(b) and bBA = 0.

Suppose, to the contrary, bGA = δS(b) and bBD > 0. We could construct a new
contract {b′GA, b′GD, bBA, bBD}:

b′GA = δS(b)− bBD, b′GD = bGD, b′BA = bBA, b′BD = 0.

The new contract induces the same x∗ and e. So, the surplus under the new contract
is the same as that under the initial contract. If:

max{bGD, bBA}< δS(b),

then, in the new contract:

max{b′GA, b′GD, b′BA, b′BD}< δS(b).

by Lemma 5, it must not be optimal. Or if:

max{bGD, bBA}= δS(b),

then, the initial contract can be replaced by the new contract {b′GA, b′GD, b′BA, b′BD}
where the maximum bonus is not b′GA. Therefore, if bGA = δS(b) and bBD > 0,
the contract is either not optimal or it can be replaced by a contract of which the
maximum bonus is not bGA. A similar logic is applicable to the other pair. Therefore,
we could restrict attention to the following two types of contracts:

bBA = 0, bGD = δS(b), and bBD, bGA ∈ [0,δS(b)], or

bBD = 0, bGA = δS(b), and bBA, bGD ∈ [0,δS(b)].

A6 Proof of Proposition 1

There are two classes of potentially optimal contracts: a contract that induces stub-
bornness (Contract S) and a contract that induces the flip-flopper behavior (Contract
F). We consider the two classes of contracts separately, and analyze the optimal con-
tract within each class of contracts. Then, we combine the results and arrive at
Proposition 1.

For Contract S:

1. When the first-best surplus is attainable, Contract S with no distortion out-
performs Contract S with distortion. Given δ and q, the attainability of the
first-best surplus is given by Lemma 4.

2. When the first-best surplus is not attainable, we obtain a cutoff q∗ where there
is a switch of dominance between Contract S with ε̂ = 0 and Contract S with
ε̂ > 0.
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The difficulty in analyzing these contracts stems from the interplay of the bonus
schedule and the value of the relationship. The bonus schedule affects both agent’s
information acquisition and information utilization incentives, which further affect
the surplus of the relationship. In turn, by Lemma 5, the upper bound of the bonus
schedule is determined by the discounted value of the relationship. To tackle this
problem, we first consider a fixed upper bound of a bonus schedule r ≤ 1,6 and then
show that allowing for a bonus schedule to adjust only enhances our result.

The bonus schedule for Contract S is thus written as:

bBA = 0, bGD = r, bBD = ε̃, bGA = r − ε.

From (IC), the expert’s effort choice is given by:

(r − qε̂)

∫ 1

x∗
(F(x)− G(x))d x =

c′(e)
p′(e)

, where ε̂ = ε + ε̃. (15)

Let:

D := (r − qε̂)

∫ 1

x∗
(F(x)− G(x))d x ,

then, (15) becomes:
p′(e)D = c′(e),

and
de
d ε̂
=
�

p′(e)
c′′(e)− p′′(e)D

�

dD
d ε̂

.

Since p′(e) > 0, c′′(e) > 0, p′′(e) < 0 and D > 0, the two derivatives de/d ε̂ and
dD/d ε̂ share the same sign. Based on this observation, we will next prove that
de/d ε̂ > 0 by showing that dD/d ε̂ > 0.

dD
d ε̂
=
∂ D
∂ ε̂
+
∂ D
∂ x∗

d x∗

d ε̂
= q[(1− x∗)(F(x∗)− G(x∗))−

∫ 1

x∗
(F(x)− G(x))d x].

As ε̂ goes to zero, x∗ goes to q. Therefore:

lim
ε̂→0

dD
d ε̂
= q

�

(1− q)(F(q)− G(q))−
∫ 1

q

(F(x)− G(x))d x

�

.

Lemma 7. There exists a unique q∗ in(0.5,1), such that:

(1− q)(F(q)− G(q))−
∫ 1

q

(F(x)− G(x))d x







< 0 if q < q∗,
= 0 if q = q∗,
> 0 if q > q∗.

6When r = 1, the first-best surplus is attained.
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Proof. Since g(x)/ f (x) increases on (0.5, 1), there exists some point c ∈ (0.5, 1),
such that g(x) ≤ f (x) for x ≤ c and g(x) > f (x) for x > c, implying that F(x)−
G(x) increases for x ≤ c and decreases for x > c. Figure 3 below depicts these
relationships.

x
0.5

F(x)− G(x)

q c 1

F(q)− G(q)

(1− q)(F(q)− G(q))

∫ 1

q
(F(x)− G(x))d x

Figure 3: F(x)− G(x), q, c

Let:

λ(q) = (1− q)(F(q)− G(q))−
∫ 1

q

(F(x)− G(x))d x

=

∫ 1

q

(F(q)− G(q)− (F(x)− G(x)))d x .

We have:

lim
q→0.5

λ(q) = 0−
∫ 1

0.5

(F(x)− G(x))d x < 0,

λ(c) =

∫ 1

c

((F(c)− G(c))− (F(x)− G(x)))d x > 0.

For q ∈ (0, c):
λ′(q) = ( f (q)− g(q))(1− q)> 0.

So, there exists a unique q∗ ∈ (0.5, c), such that λ(q∗) = 0.
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For q ∈ (c, 1), since F(x)−G(x) decreases on x ∈ (c, 1), F(q)−G(q)> F(x)−G(x)
for all x ∈ (q, 1). Then, it follows immediately that:

λ(q) =

∫ 1

q

(F(q)− G(q)− (F(x)− G(x)))d x > 0.

This completes the proof of the lemma.

Now, we return to the proof of the main result.

Case I: q > q∗ Since:

(1− q)(F(q)− G(q))>

∫ 1

q

(F(x)− G(x))d x ,

we have:

lim
ε̂→0

dD
d ε̂
= q

�

(1− q)(F(q)− G(q))−
∫ 1

q

(F(x)− G(x))d x

�

> 0.

This further implies:

lim
ε̂→0

de
d ε̂
> 0.

Therefore, inducing stubbornness improves effort incentives given that the upper
bound of the bonus schedule is fixed.

Next, we show that for a given effort level, shifting the cutoff x∗ downward at
x∗ = q only leads to a second-order loss. Total surplus under Contract S is given by:

SS(b) =

∫ x∗

0.5
qdH(x; e) +

∫ 1

x∗
xdH(x; e)− c(e)

1−δ
.

Then:
∂ SS(b)
∂ x∗

=
(q− x∗)[p(e)g(x∗) + (1− p(e)) f (x∗)]

1−δ
,

lim
ε̂→0

∂ SS(b)
∂ x∗

=
(q− q)[p(e)g(q) + (1− p(e)) f (q)]

1−δ
= 0. (16)

The partial derivative of SS(b) with respect to e is:

∂ SS(b)
∂ e

=
p′(e)

�

(G(x∗)− F(x∗))(q− x∗)−
∫ 1

x∗
(G(x)− F(x))d x

�

− c′(e)

1−δ

=
p′(e)
1−δ

¨

(G(x∗)− F(x∗))(q− x∗) + (1− r + qε̂)

∫ 1

x∗
(F(x)− G(x))d x

«

,

lim
ε̂→0

∂ SS(b)
∂ e

=
p′(e)
1−δ

¨

(G(x∗)− F(x∗)) · 0+ (1− r + qε̂)

∫ 1

x∗
(F(x)− G(x))d x

«

> 0.
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The strict inequality holds because we look at the case where the first-best surplus
is not achievable and thus r < 1.

Finally:

lim
ε̂→0

dSS(b)
d ε̂

= lim
ε̂→0

∂ SS(b)
∂ e

de
d ε̂
+ lim
ε̂→0

∂ SS(b)
∂ x∗

d x∗

d ε̂

= lim
ε̂→0

∂ SS(b)
∂ e

lim
ε̂→0

de
d ε̂
> 0.

Relaxing the constraint of the fixed upper bound on the bonus schedule, the equi-
librium surplus will be further increased because an increase in SS(b) allows the
payment of a larger bonus. Therefore, Contract S with some x∗ < q outperforms
Contract S with no distortion when q > q∗.

Case II: q ≤ q∗ First, a marginal increase in ε̂ induces a lower amount of effort:

(1− q)(F(q)− G(q))≤
∫ 1

q

(F(x)− G(x))d x

⇒ lim
ε̂→0

dD
d ε̂
= q

�

(1− q)(F(q)− G(q))−
∫ 1

q

(F(x)− G(x))d x

�

≤ 0

⇒ lim
ε̂→0

de
d ε̂
≤ 0.

(16) still applies. Then, a marginal increase in ε̂ induces a lower total surplus:

lim
ε̂→0

dSS(b)
d ε̂

= lim
ε̂→0

∂ SS(b)
∂ e

de
d ε̂
+ lim
ε̂→0

∂ SS(b)
∂ x∗

d x∗

d ε̂

= lim
ε̂→0

∂ SS(b)
∂ e

lim
ε̂→0

de
d ε̂
≤ 0.

To obtain the global result, we analyze dSS(b)
d ε̂ for any ε̂ > 0. Since, by (x∗):

x∗ =
q(r − ε̂)
r − qε̂

= q−
q(1− q)ε̂

r − qε̂
< q when ε̂ > 0,

we have x∗ < q ≤ q∗. Then:

dD
d ε̂
= q

�

(1− x∗)(F(x∗)− G(x∗))−
∫ 1

x∗
(F(x)− G(x))d x

�

< 0⇒
de
d ε̂
< 0. (17)

The partial derivative of SS(b) with respect to e could be written as:

∂ SS(b)
∂ e

=
p′(e)

�

∫ x∗

0.5
qd(G(x)− F(x)) +

∫ 1

x∗
xd(G(x)− F(x))− D

�

1−δ
.
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Let:

θ =

�

∫ x∗

0.5

qd(G(x)− F(x)) +

∫ 1

x∗
xd(G(x)− F(x))− D

�

.

Then, since p′(e)> 0 and 1−δ > 0,

sgn
�∂ SS(b)
∂ e

�

= sgn(θ ).

Differentiating θ with respect to ε̂, we have:

dθ
d ε̂
= −[(q− x∗)(g(x∗)− f (x∗))]

�

(1− q)qr
(r − qε̂)2

�

−
dD
d ε̂
> 0.

The inequality holds because q− x∗ > 0, g(x∗)− f (x∗)< 0 (since x∗ is to the left of
c), and dD

d ε̂ < 0.

We also have that limε̂→0 θ > 0 since limε̂→0
∂ SS(b)
∂ e > 0. So θ > 0 for all ε̂ > 0.

This implies:
∂ SS(b)
∂ e

> 0. (18)

Besides, a marginal increase of x∗ increases SS(b):

∂ SS(b)
∂ x∗

=
(q− x∗)[p(e)g(x∗) + (1− p(e)) f (x∗)]

1−δ
> 0. (19)

Therefore, from (17), (18), (19) and (6):

dSS(b)
d ε̂

=
∂ SS( b)
∂ e

de
d ε̂
+
∂ SS( b)
∂ x∗

d x∗

d ε̂
< 0 for ε̂ > 0.

Relaxing the constraint of the fixed upper bound on the bonus schedule, the equilib-
rium surplus will further decrease because a decrease in SS(b) allows the payment
of a smaller bonus only. This implies that it is optimal to set ε̂ = 0, i.e. Contract S
with no distortion outperforms Contract S with distortion when q ≤ q∗.

Now, we compare the magnitude of q∗ and q∗∗ for δ ∈
�

0.5,δFB
q→0.5

�

in which
range q∗∗ ∈ (0.5,1) exists. On one hand, q∗∗ decreases with δ. We also know that
when δ = 1

2 , q∗∗ = 1, and when δ = δFB
q→0.5, q∗∗ = 0.5. On the other hand, q∗ ∈

(0.5, c) is independent of δ. So, there exists δ∗, such that q∗∗ = q∗, and when δ < δ∗,
q∗∗ > q∗; when δ ≥ δ∗, q∗∗ ≤ q∗.

When q∗∗ > q∗, corresponding to δ ∈ (0.5,δ∗), the optimal contract with the form
of Contract S is the contract with no distortion if q ≤ q∗ (due to the dominance of
Contract S with ε̂ = 0), or q ≥ q∗∗ (due to the attainability of the first-best surplus),
and the optimal contract with the form of Contract S is Contract S with distortion if
q ∈ (q∗, q∗∗), corresponding to part (2) of Proposition 1.
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When q∗∗ ≤ q∗, corresponding to δ ∈
�

δ∗,δFB
q→0.5

�

, since q > q∗∗ achieves the
first-best surplus and when q < q∗, Contract S with no distortion outperforms Con-
tract S with distortion, the optimal contract with the form of Contract S is always
the one with no distortion. Together with the fact that the first-best surplus is al-
ways attainable when δ ∈

�

δFB
q→0.5, 1

�

, for δ ∈ [δ∗, 1], the optimal contract with the
form of Contract S is the contract with no distortion, corresponding to part (3) of
Proposition 1.

Part (1) of Proposition 1 comes directly from the fact that the first-best surplus is
never attainable when δ ∈ (0, 0.5]. The cutoff q∗ governs the dominance of Contract
S with and without distortion when the first-best surplus is not attainable.

For Contract F:

1. When the first-best surplus is attainable, Contract F with no distortion outper-
forms Contract F with distortion.

2. When the first-best surplus is not attainable, we will show below that Contract
F with ε̂ = 0 also outperforms Contract F with ε̂ > 0.

We first prove that the bonus schedule in Contract F with distortion makes the
principal to induce less effort from the expert. To show this, we adopt a similar
strategy as we do for Contract S and first consider a fixed upper bound of a bonus
schedule r. From (IC), the expert’s effort choice is given by:

(r − ε̂ + qε̂)

∫ 1

x∗
(F(x)− G(x))d x =

c′(e)
p′(e)

.

Similar to D, we define D′ as follows:

D′ := (r − ε̂ + qε̂)

∫ 1

x∗
(F(x)− G(x))d x .

Proving that e increases in ε̂ is equivalent to proving that D′ increases in ε̂.

dD′

d ε̂
=
∂ D′

∂ ε̂
+
∂ D′

∂ x∗
d x∗

d ε̂
= (1− q)

�

x∗(G(x∗)− F(x∗)) +

∫ 1

x∗
(G(x)− F(x))d x

�

< 0.

Therefore, inducing under-utilization of the private signal reduces effort incentives
given that the upper bound of the bonus schedule is fixed, i.e.,

de
d ε̂
< 0. (20)
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Next, we show that for a given effort level, shifting the cutoff x∗ upward leads to a
loss. The total surplus is given by:

SU(b) :=

∫ x∗

0.5
q dH(x; e) +

∫ 1

x∗
x dH(x; e)− c(e)

1−δ
.

Distortion of x∗ leads to loss:

∂ SU(b)
∂ x∗

=
(q− x∗)[p(e)g(x∗) + (1− p(e)) f (x∗)]

1−δ
≤ 0. (21)

An increase in effort induces a higher surplus:

∂ SU(b)
∂ e

=
p′(e)

�

∫ x∗

0.5
qd(G(x)− F(x)) +

∫ 1

x∗
xd(G(x)− F(x))− D′

�

1−δ

=
p′(e)
1−δ

�

(x∗ − q)(F(x∗)− G(x∗)) + (1− r + ε̂(1− q))

∫ 1

x∗
(F(x)− G(x))d x

�

> 0. (22)

The inequality follows from q ≤ x∗ and r < 1.
Finally, from (20), (21), (22) and (7):

dSU(b)
d ε̂

=
∂ SU(b)
∂ e

de
d ε̂
+
∂ SU(b)
∂ x∗

d x∗

d ε̂
< 0.

Relaxing the constraint of the fixed upper bound on the bonus schedule, the equi-
librium surplus will be further decreased because a decrease in SU(b) constrains the
payment of a bonus to a lower level. Therefore, the optimal contract with the form
of Contract F is the contract with no distortion.

Since Contract F with distortion is always dominated by a contract with no dis-
tortion, Contract S weakly dominates Contract F. So, the optimal contract must be
of the form of Contract S, and Proposition 1 follows.
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